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Abstract: Machine learning (ML) has transformed the financial industry by enabling advanced
applications such as credit scoring, fraud detection, and market forecasting. At the core of this
transformation is deep learning (DL), a subset of ML that is robust in processing and analyzing
complex and large datasets. This paper provides a comprehensive overview of key deep learning
models, including Convolutional Neural Networks (CNNs), Long Short-Term Memory networks
(LSTMs), Deep Belief Networks (DBNs), Transformers, Generative Adversarial Networks (GANs),
and Deep Reinforcement Learning (Deep RL). Beyond summarizing their mathematical foundations
and learning processes, this study offers new insights into how these models are applied in real-
world financial contexts, highlighting their specific advantages and limitations in tasks such as
algorithmic trading, risk management, and portfolio optimization. It also examines recent advances
and emerging trends in the financial industry alongside critical challenges such as data quality, model
interpretability, and computational complexity. These insights can guide future research directions
toward developing more efficient, robust, and explainable financial models that address the evolving
needs of the financial sector.
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1. Introduction

The integration of artificial intelligence (AI), particularly deep learning (DL), into
financial systems has significantly transformed the finance industry. Deep learning’s ability
to process and analyze vast arrays of data has led to breakthroughs in areas such as credit
scoring, fraud detection, and algorithmic trading [1,2]. These advancements have improved
accuracy and enabled the development of more sophisticated financial tools and services.
Despite these advancements, the deployment of deep learning in finance is not without its
challenges, such as the interpretability of DL models, their demand for large amounts of
data, and the need for high computational power [3,4]. These challenges highlight the need
for models that not only excel in performance but also offer transparency, scalability, and
compliance with financial regulations.

Recent reviews have explored various aspects of AI in finance; however, they have
often focused broadly on machine learning (ML) without delving deep into the specific
applications and intricacies of DL models. For example, the reviews by Ahmed et al. [5]
and Goodell et al. [6] explored the applications of ML in finance, covering financial fraud,
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bankruptcy prediction, stock price prediction, and portfolio management. Furthermore,
some studies have addressed the technical capabilities and applications of deep learning in
specific financial applications. For example, Mienye and Jere [4] reviewed the application
of DL architectures in credit card fraud detection, including the challenges encountered in
deploying these models in real-world applications. Similarly, Gunnarsson et al. [7] reviewed
deep learning with application to credit scoring, suggesting best practices to ensure optimal
utilization of DL models. Other deep learning reviews include those applied to stock
market prediction [8] and algorithmic trading [9]. However, these studies often overlook
the detailed discussion of how advancements in modern deep learning architectures, like
Transformers and generative adversarial networks (GANs), can offer novel approaches
for overcoming challenges specific to the financial sector, such as non-stationary data and
sudden market shifts.

Over the years, there have been numerous advances in deep learning architectures,
such as advancements in Transformer architectures, GANs, and deep reinforcement learn-
ing models [10]. These methods have played vital roles in various technological advance-
ments and have been applied in different financial applications. For instance, Transformer
models have revolutionized natural language processing tasks, which are critical in senti-
ment analysis and financial document analysis [11]. GANs have been effectively used in
generating synthetic financial data, thereby enhancing the robustness of models trained on
limited datasets [12]. Deep reinforcement learning, on the other hand, has shown promise
in optimizing trading strategies and portfolio management [13]. Although these models
have demonstrated significant potential, there remains a pressing need to evaluate their
application in complex financial scenarios, where model performance must balance both
prediction accuracy and risk management. Due to these recent advances, there is a need for
an up-to-date review that consolidates these developments and critically examines their
implications and potential in the financial sector.

Therefore, this paper provides a comprehensive review of deep learning and its appli-
cations in the financial industry. The study aims to critically assess the inner workings of
different DL architectures and their effectiveness and explore the challenges they present
in financial contexts. Unlike previous reviews, this paper aims to go beyond simply
summarizing established methods by offering insights into how emerging DL architec-
tures can address the unique challenges posed by the financial sector, such as regulatory
compliance and real-time data analysis. The goal of this review is to provide a robust
analysis that highlights the current state of deep learning in finance and identifies areas
where further research and development are needed. This will be beneficial to both deep
learning researchers and industry professionals aiming to harness these technologies for
financial applications.

The remainder of this paper is organized as follows. Section 2 reviews related works,
highlighting their contributions and limitations. Sections 3 and 4 discuss the various deep
learning models used in finance and their applications, respectively. Section 5 presents
recent advances and emerging trends in deep learning. Section 6 discusses challenges limit-
ing deep learning applications in finance. Section 7 highlights future research directions,
while Section 8 concludes the study.

2. Related Works

Recently, there have been significant advancements in the application of deep learning
within financial data modeling. For example, Wang et al. [14] highlighted the effectiveness
of sequence-to-sequence models for predicting market movements, offering sophisticated
tools for algorithmic trading. However, their work does not explore how these models can
be tailored to different financial environments, a critical factor for effective deployment.
Risk management is another critical area where deep learning has made a substantial
impact. Meng et al. [15] explored the application of CNNs in identifying high-risk patterns,
thus aiding preemptive measures against financial instability. These models are well-suited
for analyzing large volumes of unstructured data, which is common in financial datasets.
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Nonetheless, the scalability of CNNs for larger financial institutions and complex datasets
remains underexplored.

Credit scoring has also benefited from deep learning. Khandani et al. [16] demon-
strated how deep learning could enhance the precision of credit scoring systems, essential
for evaluating the creditworthiness of potential borrowers. Similarly, Esenegho et al. [17]
employed a deep learning ensemble for credit risk and fraud detection. The study used
the long short-term memory (LSTM) network as the base learner in the adaptive boosting
(AdaBoost) implementation, achieving excellent performance. Mienye and Sun [18] pro-
posed a deep ensemble learning method for credit card fraud detection using LSTM and
gated recurrent units (GRUs) as base learners and a multilayer perceptron (MLP) as the
meta-learner, achieving classification performance that outperformed benchmark models.
However, the specific challenges these models face, such as overfitting and interpretability,
were not deeply examined in these works.

Additionally, Sezer and Ozbayoglu [19] provided a comprehensive review of deep
learning applications in finance, covering areas such as fraud detection, algorithmic trading,
and portfolio management. Their study illustrates the adaptability of DL models and their
potential to transform many aspects of the financial industry. However, their review did not
address how the advancements in DL architectures, particularly for Transformers, GANs,
and Deep RL, can be integrated into these applications to further enhance performance
and scalability. Their review primarily focused on established deep learning techniques
like CNN, LSTM, and deep belief networks (DBNs), with limited coverage of the latest
advancements such as Transformer models, GANs, and Deep RL, which have shown
great promise in recent years. Another notable review by Lim et al. [20] focused on deep
learning’s role in time series forecasting, such as financial markets. While their analysis
was thorough in the context of traditional ML and DL, they did not explore the application
of advanced DL techniques in high-frequency trading and its complexities, a growing area
of interest.

Moreover, a study by Goodell et al. [6] provided an extensive overview of AI applica-
tions in finance, including ML and DL. The study grouped all AI and ML methods together
without a specific focus on the unique contributions and challenges of deep learning in
finance. As a result, the review did not adequately cover the intricacies of deep learning
models nor the specific advancements in architectures like GANs and Deep RL, which are
crucial for understanding the current deep learning in finance. Their approach limited the
discussion on how GANs, for example, can generate synthetic financial data to improve
model training under data scarcity, or how Deep RL models can optimize trading strategies
in dynamic market environments.

Recent work by Mienye and Jere [4] concentrated on the challenges and applications
of DL in credit card fraud detection. Although the study provided valuable insights into
the practical deployment of deep learning models, it was narrowly focused on a specific
application, leaving out a broader discussion of other emerging deep learning techniques
and their implications for the financial industry as a whole. A more in-depth examination
of how these models could be generalized across different financial sectors would have
provided a more complete perspective.

Given these limitations in the existing literature, there is a gap in comprehensive
reviews that not only cover traditional DL applications in finance but also explore the
recent advances in DL architectures, such as Transformers, GANs, and Deep RL. These
modern techniques, which offer significant improvements in scalability, interpretability,
and real-time decision making, are transforming how financial institutions manage risks,
make predictions, and automate processes. These modern techniques are reshaping the
financial industry, offering new methods for analyzing complex datasets, predicting market
movements, and managing financial risk.

Therefore, this paper aims to bridge this gap by providing an up-to-date review of
deep learning applications in the financial industry, focusing on the latest advancements
and how they can address current challenges in finance. This approach will provide
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a deeper understanding of the intricacies of applying DL architectures, particularly in
environments that demand explainability and adaptability. This review is timely, given the
rapid evolution of DL technologies and their increasing impact on financial systems, and it
seeks to guide future research and development in this dynamic field.

3. Deep Learning Architectures

Deep learning models have significantly impacted financial data modeling, offering
advanced solutions for analyzing and predicting financial variables. These DL models are
discussed in this section.

3.1. Feedforward Neural Networks

Feedforward Neural Networks (FNNs), also known as MLPs, are the most basic
type of artificial neural networks. They consist of an input layer, one or more hidden
layers, and an output layer, with each node in one layer connected only to nodes in the
subsequent layer [21]. This unidirectional flow of data—from the input layer to the output
layer—distinguishes FNNs from other types of neural networks that may have connections
cycling back to previous layers. In an FNN, each node (or neuron) in a layer computes a
weighted sum of its inputs, adds a bias term, and then applies an activation function to
produce its output. Mathematically, the output y of a neuron can be expressed as:

y = σ(Wx + b) (1)

where x represents the input vector, W is the weight matrix, b is the bias vector, and σ is the
activation function (commonly a ReLU or sigmoid function) [22]. The activation function
introduces non-linearity into the model, allowing the network to learn complex patterns
within the data [23]. FNNs are very useful in finance for tasks such as credit scoring,
bankruptcy prediction, and customer segmentation, where the relationships between input
variables and the output can be learned through straightforward mapping. Their simplicity
and efficiency make them suitable for these applications, especially when the goal is to
classify or predict outcomes based on historical financial data. The training process of an
FNN involves adjusting the weights W and biases b to minimize a loss function, typically
using a method like stochastic gradient descent (SGD). Algorithm 1 outlines the key steps
in the training process of an FNN.

Algorithm 1 Training a Feedforward Neural Network.

1: Input: Training dataset {(x(i), y(i))}N
i=1

2: Initialize: Weights W and biases b randomly
3: for each epoch do
4: for each training sample (x(i), y(i)) do
5: Forward Pass:
6: Compute the input to each neuron in the hidden layers and the output layer:
7: a(l) = W(l)x(l−1) + b(l)

8: Apply activation function: h(l) = σ(a(l))
9: Compute output of the network: ypred = houtput

10: Backpropagation:
11: Compute the loss: L(ypred, y(i))
12: Compute gradients ∇W(l) and ∇b(l) using backpropagation
13: Update weights and biases:
14: W(l) ←W(l) − η∇W(l)

15: b(l) ← b(l) − η∇b(l)

16: end for
17: end for



AI 2024, 5 2070

3.2. Simple Recurrent Neural Networks

RNNs are a type of neural network designed to process sequential data by maintaining
a hidden state that captures information from previous elements in the sequence [24].
Unlike feedforward neural networks, RNNs have recurrent connections that allow them to
remember past inputs, making them effective for tasks involving time-dependent data such
as stock price forecasting, natural language processing, and algorithmic trading [25]. The
RNN architecture is shown in Figure 1. At each time step t, an RNN takes the current input
xt and the hidden state from the previous time step ht−1 to compute the current hidden
state ht. The hidden state is updated using the following equation:

ht = σ(Whxxt + Whhht−1 + bh) (2)

where Whx and Whh are weight matrices, bh is the bias, and σ is a non-linear activation
function, such as the hyperbolic tangent (tanh) or Rectified Linear Unit (ReLU). The hidden
state ht serves as a summary of all past inputs up to time t, allowing the RNN to model
temporal dependencies in the data [26]. This capability is crucial in financial applications
where the value of an asset is influenced by its past behavior and other sequential fac-
tors. Meanwhile, despite their effectiveness, the simple RNN face a significant challenge
known as the vanishing gradient problem, which arises during backpropagation. When
training on long sequences, the gradients of the loss function with respect to the network
parameters can diminish to near zero, hindering the model’s ability to learn long-term
dependencies [27]. This limitation reduces the RNN’s effectiveness in capturing extended
patterns in data, which is critical in many financial tasks. However, there are more ad-
vanced RNN architectures like LSTM networks and GRU, which are specifically designed
to retain information over longer sequences.

Figure 1. RNN architecture [4].

3.3. Long Short-Term Memory Networks

LSTMs are designed to overcome the vanishing gradient problem that can occur in
traditional RNNs by incorporating gates that regulate the flow of information [28]. These
gates ensure that the network can maintain long-term dependencies in the data, which
is critical for applications like sequential prediction, where context from far back in the
sequence is important. The LSTM unit, shown in Figure 2, includes input, forget, and
output gates, together with a cell state that carries information across time steps [17]. The
equations governing these components are:

it = σ(Wxixt + Whiht−1 + bi), (3)

ft = σ(Wx f xt + Wh f ht−1 + b f ), (4)

ot = σ(Wxoxt + Whoht−1 + bo), (5)
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gt = tanh(Wxgxt + Whght−1 + bg), (6)

ct = ft ⊙ ct−1 + it ⊙ gt, (7)

ht = ot ⊙ tanh(ct), (8)

where it, ft, and ot are the input, forget, and output gates, respectively, and ct repre-
sents the cell state at time t. The term σ denotes the sigmoid activation function, which
squashes the input values to a range between 0 and 1, determining the extent to which
information should be allowed through each gate. The cell state ct acts as the memory
of the network, carrying forward relevant information across time steps. The operator ⊙
represents the element-wise (Hadamard) product, which controls how much of the past
information is retained in the cell state [18]. This gating mechanism allows LSTMs to
effectively manage long-term dependencies in sequential data, making them highly effec-
tive for financial time series analysis, anomaly detection in transaction data, and complex
decision-making processes.

Figure 2. LSTM architecture [29].

3.4. Gated Recurrent Units

GRUs simplify the LSTM design by combining the forget and input gates into a single
update gate and by merging the cell state and hidden state into one [26]. This reduction
in complexity can lead to faster training times without a significant drop in performance,
making GRUs a popular choice for tasks where efficiency is crucial. The architecture of a
GRU is shown in Figure 3. Meanwhile, the GRU uses the following set of update equations:

zt = σ(Wxzxt + Whzht−1 + bz), (9)

rt = σ(Wxrxt + Whrht−1 + br), (10)

h̃t = tanh(Wxhxt + rt ⊙ (Whhht−1 + bh)), (11)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t, (12)

where zt is the update gate, determining how much of the previous hidden state ht−1 is
carried forward to the current hidden state ht, the reset gate rt controls how much of the
previous hidden state contributes to the candidate hidden state h̃t, the term σ represents
the sigmoid activation function, which outputs values between 0 and 1, controlling the
influence of previous states, the candidate hidden state h̃t is a potential new state influenced
by the reset gate and the input at time t, while the final hidden state ht is a combination of
the previous hidden state and the candidate hidden state, modulated by the update gate,
and the operator ⊙ denotes the element-wise product [26].

GRUs have proven effective in various financial applications, including predictive
analytics for stock prices, loan default likelihood, and identifying patterns in high-frequency
trading data [30]. Their simplified architecture makes them suitable for scenarios where
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computational efficiency is crucial without compromising accuracy. For instance, in stock
price prediction, GRUs can capture and model temporal dependencies within financial time
series data, allowing for more accurate forecasts. The reset and update gates help the model
maintain relevant historical information while discarding noise, which is valuable in volatile
markets where only certain past events may be predictive of future price movements. With
respect to credit risk assessment, GRUs can be used to predict loan defaults by analyzing
the sequential behavior of borrowers, such as payment histories and transaction patterns.
The efficiency of GRUs allows them to be trained on large datasets, ensuring that they can
process and learn from vast amounts of borrower information quickly. This capability is
essential for real-time risk assessment, where decisions must be made rapidly based on the
latest available data.

Figure 3. GRU architecture [4].

3.5. Convolutional Neural Networks

CNNs are a class of deep learning models originally designed for processing grid-like
data, such as images and videos. The architecture of CNNs is particularly effective for tasks
that involve identifying spatial hierarchies in data through the application of convolutional
layers. Although CNNs are most commonly associated with image processing, their
powerful pattern recognition capabilities have made them highly suitable for various
financial applications, especially in areas like anomaly detection, fraud detection, and
financial time series analysis. The CNN architecture is shown in Figure 4.

The fundamental building block of a CNN is the convolutional layer, where the con-
volution operation is performed. The convolution operation involves sliding a filter (also
known as a kernel) across the input data to produce feature maps [31]. The mathematical
operation for a convolution in one dimension is defined as:

z = σ

(
k

∑
i=1

Wi · xi:i+n−1 + b

)
(13)

where Wi represents the weight of the filter, xi:i+n−1 is the segment of the input data over
which the filter is applied, b is the bias term, and σ denotes the activation function, typically
a ReLU [31]. The result of the convolution operation is the feature map z, which highlights
specific patterns in the input data based on the learned filter weights. Meanwhile, the
pooling layers perform down-sampling operations to reduce the dimensionality of the
feature maps, thereby focusing on the most critical features and reducing the computational
load [31]. The pooling operation is usually defined as:

zpool = max(xi:i+n−1) (14)



AI 2024, 5 2073

Figure 4. CNN architecture [32].

In the case of max pooling, the operation selects the maximum value from a segment
of the feature map. This helps in making the model more robust to small changes in the
input, which is crucial in financial applications where noise and minor fluctuations are
common in the data [33]. Furthermore, the fully connected layer is typically added after
several convolutional and pooling layers. These layers integrate the features extracted by
the convolutional layers to perform tasks such as classification (e.g., determining whether
a transaction is fraudulent) or regression (e.g., predicting the likelihood of default). The
output from the fully connected layer can be given by:

y = σ(W f c · z f lattened + b f c) (15)

where W f c and b f c are the weights and biases of the fully connected layer, and z f lattened
represents the flattened output from the previous layer, which is a one-dimensional vector.
The applications of CNNs in the financial domain extend beyond anomaly detection and
fraud detection. CNNs have been employed in algorithmic trading to analyze market
data, including order book data, where the model learns to predict price movements by
identifying patterns in the order flow [31]. CNNs are also used in credit scoring systems,
where they can process large volumes of borrower data to identify risk factors and make
accurate predictions about creditworthiness [34].

3.6. Transformers and Attention Mechanisms

Transformers are a powerful class of DL models that have significantly impacted vari-
ous domains, mostly natural language processing (NLP), due to their ability to efficiently
handle large sets of time-dependent data. The core innovation of Transformers is in their
use of attention mechanisms, which allow the model to dynamically weigh the importance
of different parts of the input data, enabling the capture of long-range dependencies with-
out the need for sequential processing, as required by RNNs [35]. The attention mechanism,
a fundamental component of Transformers, can be mathematically described as:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (16)

where Q (queries), K (keys), and V (values) are linear projections of the input data, with
Q = WqX, K = WkX, and V = WvX, where Wq, Wk, and Wv are learned weight matrices. The
dot product QKT calculates the similarity between queries and keys, and the softmax function
normalizes these into attention weights, allowing the model to focus on the most relevant
parts of the input [35]. Algorithm 2 summarizes the key steps in the Transformer model.

Furthermore, a major advantage of this architecture is its parallelizability, making
it highly scalable and efficient for processing large datasets, which is advantageous in
financial applications such as market movement prediction, risk assessment, and sentiment
analysis. For example, in market movement prediction, Transformers can analyze sequences
of historical price data, economic indicators, and textual data from news articles or social
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media [36]. The flexibility of Transformers also extends to other financial tasks such
as sentiment analysis, where they analyze textual data to gauge market sentiment, and
portfolio optimization, where their ability to capture dependencies across multiple time
periods ensures more informed investment strategies.

Algorithm 2 Training a Transformer Model.

1: Input: Sequence of data points X = {x1, x2, . . . , xT}
2: Initialize: Parameters Wq, Wk, Wv, and other model weights
3: for each layer in the Transformer do
4: Compute queries: Q = WqX
5: Compute keys: K = WkX
6: Compute values: V = WvX

7: Compute attention scores: A = softmax
(

QKT√
dk

)
8: Compute weighted values: Z = AV
9: Pass Z through feedforward network layers

10: end for
11: Output: Predicted output based on the final Transformer layer

3.7. Generative Adversarial Networks

GANs are a class of DL models that consist of two neural networks: a generator and a
discriminator. These networks are trained simultaneously in a competitive setting, where
the generator aims to create realistic data instances while the discriminator attempts to
distinguish between real data (from the actual dataset) and fake data (produced by the
generator) [37]. The adversarial nature of this training process forces the generator to
produce increasingly realistic data over time. Meanwhile, the generator takes a random
noise vector z from a latent space (usually sampled from a standard normal distribution)
and transforms it into a data instance G(z) that resembles the real data. The goal of the
generator is to fool the discriminator by producing data that is indistinguishable from the
real data. Conversely, the discriminator receives both real data x and generated data G(z).
It outputs a probability D(x) or D(G(z)), indicating whether the input data are real or
fake [37]. The discriminator is trained to correctly classify the real data as “real” and the
generated data as “fake”.

The objective of the GAN is expressed as a minimax game, where the generator and
discriminator are pitted against each other. The generator tries to minimize the probability
that the discriminator correctly classifies its outputs as fake, while the discriminator tries to
maximize this probability. The overall objective function V(D, G) is given by:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))] (17)

where pdata(x) is the distribution of the real data and pz(z) is the distribution of the noise
input to the generator. The steps in Algorithm 3 describe the training procedure of a GAN.

GANs have proven to be highly effective in various financial applications due to their
ability to generate realistic synthetic data and model complex distributions. One prominent
application is in the generation of synthetic financial datasets [38]. Financial data, especially
in areas like credit scoring or market transactions, are often scarce or imbalanced. GANs
can generate additional synthetic data points that resemble the original dataset, which can
be used to augment training datasets, thus reducing the risk of overfitting and improving
model robustness. For example, in credit risk modeling, GANs can generate synthetic
borrower profiles that maintain the statistical properties of the original dataset. Similarly,
in portfolio management, GANs have been used to simulate various market scenarios,
helping investors to assess the robustness of different investment strategies under different
market conditions [39].
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Algorithm 3 Training a Generative Adversarial Network.

1: Initialize generator G and discriminator D with random weights.
2: while not converged do
3: for each training step do
4: Sample a minibatch of m noise samples {z(1), . . . , z(m)} from the noise prior

pz(z).
5: Sample a minibatch of m real data samples {x(1), . . . , x(m)} from the data distri-

bution pdata(x).
6: Compute the discriminator loss:

LD = − 1
m

m

∑
i=1

[
log D(x(i)) + log(1− D(G(z(i))))

]
7: Update the discriminator by performing a gradient ascent step on LD.
8: Compute the generator loss:

LG = − 1
m

m

∑
i=1

log(D(G(z(i))))

9: Update the generator by performing a gradient descent step on LG.
10: end for
11: end while

3.8. Deep Reinforcement Learning

Deep reinforcement learning (Deep RL) combines the principles of reinforcement learning
with deep learning to tackle complex decision-making problems, particularly in environments
with large state or action spaces [40]. In Deep RL, DNNs are employed as function approximators
to represent the policy or value functions, enabling the agent to learn optimal strategies even in
high-dimensional spaces, such as those found in financial markets. Deep RL has been effective
in optimizing trading strategies, portfolio management, and risk management [41]. Unlike
traditional RL, where simpler function approximators like tables or linear models might be used,
Deep RL leverages the representational power of DNNs to model complex relationships within
data. Meanwhile, Deep RL problems are often modeled as Markov decision processes (MDPs),
defined by the tuple (S, A, P, R, γ), where:

• S represents the set of possible states the agent can be in, such as different market
conditions;

• A represents the set of possible actions the agent can take, such as buying, selling, or
holding assets;

• P is the state transition probability, which defines the probability of moving from one
state to another given an action;

• R is the reward function, which assigns a reward to each state–action pair, reflecting
the profitability of an action in a given state;

• γ is the discount factor, which determines the importance of future rewards.

The agent’s goal is to learn a policy π that maximizes the expected cumulative reward,
defined as:

Gt = E
[

∞

∑
k=0

γkRt+k+1 | St = s, At = a

]
, (18)

where Gt is the return at time step t and π is the policy that maps states to actions. The
policy π or value function V(s) is typically represented by a deep neural network, which
is trained using algorithms like Deep Q-Networks (DQN), Proximal Policy Optimization
(PPO), or Actor-Critic methods. Deep RL is particularly well-suited for solving complex
decision-making problems, such as real-time trading and portfolio optimization, where
decisions must be made under uncertainty and dynamic market conditions. Financial
markets are characterized by high volatility and the need for immediate responses to
changes, making traditional rule-based models ineffective. Deep RL’s ability to learn from
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historical data, simulate multiple trading scenarios, and adapt to evolving market dynamics
allows it to outperform conventional models. Moreover, Deep RL can be employed to
optimize multi-period investment strategies, continuously adjusting asset allocations to
maximize long-term returns while managing risk, which is critical in financial contexts.
These attributes make Deep RL a powerful tool for addressing key financial challenges.

3.9. Deep Belief Networks

Deep Belief Networks (DBNs) are a class of generative DL models composed of multi-
ple layers of stochastic, latent variables. These layers are typically Restricted Boltzmann
Machines (RBMs), where each layer serves as a feature detector for the layer above it [42].
DBNs are trained in a layer-wise manner, where each RBM is trained to model the data
distribution of the inputs it receives. Once trained, these layers can be stacked to form a
deep network that captures complex patterns in the data. The architecture of a DBN begins
with a visible layer, which directly interacts with the input data, and is followed by one or
more hidden layers that learn hierarchical representations of the data. The main advantage
of DBNs is in their ability to pre-train each layer as an RBM before fine-tuning the entire
network using backpropagation [43]. This pre-training assists in overcoming issues such
as poor initialization and vanishing gradients, which can hinder the performance of deep
neural networks. Meanwhile, an RBM is a type of Markov Random Field that consists of a
visible layer v and a hidden layer h, where the joint distribution P(v, h) is defined as:

P(v, h) =
1
Z

exp(−E(v, h)), (19)

where E(v, h) is the energy function, and Z is the partition function. The energy function
for an RBM is typically defined as:

E(v, h) = −vTWh− bTv− cTh, (20)

where W is the weight matrix between the visible and hidden layers, b is the bias vector
for the visible layer, and c is the bias vector for the hidden layer [44]. DBNs have been
successfully applied in various financial applications, particularly in tasks that require the
modeling of complex, high-dimensional data distributions. For example, DBNs can be
used for credit risk assessment, where they model the underlying patterns in borrower
behavior and financial histories. By learning a hierarchical representation of the data,
DBNs can capture subtle patterns that traditional models might miss, leading to more
accurate predictions of creditworthiness. Despite their powerful modeling capabilities,
DBNs are not without challenges. One of the main difficulties is in the training process,
which can be computationally expensive, especially when dealing with very deep networks.
Additionally, while DBNs can model complex data distributions, they may still suffer from
issues related to scalability and overfitting, particularly when applied to large financial
datasets [45].

3.10. Comparison of Deep Learning Models

Selecting the appropriate DL model for financial applications depends on several
factors, such as the nature of the data, the task at hand, and the desired trade-off between
accuracy, interpretability, and computational efficiency. While some models, like FNNs,
excel in static tasks like credit scoring, others, like RNNs and their variants (LSTMs and
GRUs), are more suited to sequential data, such as stock price forecasting. Models like
CNNs and GANs are better suited to specialized tasks like anomaly detection and synthetic
data generation, respectively, [46].

For example, FNNs are simple and computationally efficient but may struggle with
tasks that require capturing sequential dependencies or handling unstructured data. In
contrast, RNNs, LSTMs, and GRUs excel at tasks involving time-series data, though
they may require more computational resources and are susceptible to issues like the
vanishing gradient problem. CNNs, although primarily designed for image processing,
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have found their place in financial applications such as pattern recognition. Transformers
offer further advancements, particularly for tasks that require attention to specific parts
of the input data, such as financial sentiment analysis from text. Deep reinforcement
learning excels in dynamic decision-making tasks, such as portfolio management and
trading strategy optimization, but demands significant computational power and extensive
training data [47]. Table 1 below summarizes the key advantages and disadvantages
of the various DL models covered in this review, focusing on their application in the
financial domain. This comparison can help practitioners and researchers choose the most
appropriate architecture based on their specific needs and constraints.

Table 1. Comparison of DL models in financial applications.

Model Advantages Disadvantages Suitable Applications

FNN Simple, computationally efficient Limited ability to handle sequen-
tial or unstructured data

Credit scoring, classification
tasks

RNN Handles sequential data, cap-
tures temporal dependencies

Susceptible to vanishing gradi-
ent problem

Time-series analysis, stock
price prediction

LSTM
Overcomes vanishing gradient
problem, handles long-term de-
pendencies

Higher computational cost com-
pared to RNN

Financial time-series analy-
sis, anomaly detection

GRU Simplified structure, faster train-
ing time than LSTM

May not capture long-term de-
pendencies as well as LSTM

Predictive analytics, high-
frequency trading

CNN Effective for pattern recognition,
robust to noise Not designed for sequential data Fraud detection, anomaly de-

tection, pattern recognition

Transformer Captures long-range dependen-
cies, efficient parallel processing

Requires large datasets, compu-
tationally expensive

Sentiment analysis, market
trend prediction

GAN
Generates realistic synthetic data,
handles complex data distribu-
tions

Training instability, computa-
tional complexity

Synthetic financial data gen-
eration, stress testing, portfo-
lio optimization

Deep RL
Optimizes dynamic decision
making, learns from interaction
with environment

Requires significant computa-
tional resources and training
data

Trading strategy optimiza-
tion, portfolio management

4. Applications of Deep Learning in Finance

Deep learning has found numerous applications in finance, providing innovative
solutions across various aspects of the financial sector. This section explores some of the
key applications where deep learning has made a significant impact.

4.1. Algorithmic Trading

Algorithmic trading involves the use of computer algorithms to execute trading orders
based on predefined criteria. Deep learning models, specifically those utilizing RNNs like
LSTM and GRU, have been increasingly applied to enhance algorithmic trading strategies.
These models are capable of analyzing vast amounts of historical and real-time data to
identify patterns and predict market movements with greater accuracy. The ability to
process and interpret sequential data allows these models to adapt to changing market
conditions, offering traders a competitive edge in executing trades efficiently.

Recent studies have demonstrated the effectiveness of deep learning models in al-
gorithmic trading. For instance, Ozbayoglu et al. [48] applied an LSTM-based model to
forecast stock prices and subsequently generate trading signals. The proposed LSTM ob-
tained a classification accuracy of 91.5%, which outperformed traditional moving average
strategies. Similarly, Wang et al. [14] employed a sequence-to-sequence model, which is
an extension of RNNs, to predict market trends and optimize trading algorithms. Their
model achieved a prediction accuracy of 85%, leading to more profitable trades. These
applications of LSTM and sequence-to-sequence models demonstrate how deep learning
can process temporal data and provide dynamic trading strategies in real time.
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In addition, Sirignano and Cont [49] proposed a universal deep learning (DL) model
using convolutional neural networks (CNNs) to predict price changes in limit order books.
Their approach demonstrated an accuracy improvement of 5–10% over traditional methods,
significantly enhancing trading strategy performance. Moreover, the model’s ability to
generalize across different market conditions indicates its robustness and adaptability,
making it a valuable tool in volatile trading environments. In real-world applications,
banks such as JPMorgan and Goldman Sachs have adopted similar deep learning models
to optimize high-frequency trading, where speed and accuracy in prediction provide
significant profit margins [50]. The adoption of DL models in these institutions illustrates
their capacity to handle massive data streams and react to sudden price movements more
efficiently than traditional algorithms.

The use of reinforcement learning (RL) in algorithmic trading has also gained traction.
For instance, Huang et al. [51] developed a deep reinforcement learning model that learns
optimal trading strategies by interacting with the market environment. Their model
outperformed conventional strategies by achieving a higher cumulative return and a
precision of 92%, which indicates the potential of RL in creating autonomous trading agents
that can continuously adapt to market dynamics without the need for manual intervention.
In particular, RL-based models have been successfully implemented by hedge funds like
Renaissance Technologies and Citadel, where trading bots autonomously adapt to real-
time changes in market conditions and identify profitable opportunities. These real-world
applications show how RL is reshaping algorithmic trading by introducing agents that
self-learn and adapt to complex market behaviors, minimizing human intervention while
maximizing returns.

4.2. Risk Management and Credit Scoring

Risk management and credit scoring are essential components of the financial industry,
as accurate assessment of risk is crucial for maintaining financial stability and optimizing
decision-making processes. In risk management, institutions must continuously evaluate
various types of risk, such as market risk, credit risk, and operational risk, to avoid potential
losses. Traditional methods, often based on statistical techniques, tend to oversimplify
these risks by assuming linear relationships within the data. However, deep learning
models, such as feedforward neural networks and autoencoders, have emerged as powerful
tools capable of modeling complex, non-linear relationships within financial datasets.
These models can automatically identify intricate patterns in large, high-dimensional data,
offering more granular risk assessments compared to conventional models.

In credit scoring, deep learning models have proven effective in analyzing borrower
profiles and predicting default risks by capturing subtle interactions between variables
that traditional models might overlook. For example, autoencoders have been applied to
detect anomalies in transaction data, providing early warnings for potential risks [52]. The
unsupervised nature of autoencoders allows these models to identify irregular patterns
that do not fit within the expected data distribution, making them particularly useful
in high-stakes scenarios where preemptive action is needed. Deep learning’s ability to
work with both labeled and unlabeled data are especially critical in environments where
labeled datasets are scarce, yet there is still a need to make accurate, data-driven decisions.
Furthermore, the real-time processing capabilities of DL models make them suitable for
high-frequency risk evaluations, providing financial institutions with the tools to adjust
their strategies in response to market fluctuations.

For example, Khandani et al. [16] utilized a deep learning model to predict consumer
credit risk, achieving a 15% improvement in predictive accuracy over logistic regression
models. Their model was effective in identifying high-risk borrowers, with an AUC of
0.89, thereby enabling financial institutions to take preemptive measures to minimize
losses. Real-world implementations of deep learning in credit risk assessments have been
adopted by institutions like FICO, where deep learning models are increasingly being used
to develop more robust credit scores that account for non-traditional variables, such as
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transactional behavior or social media data, resulting in more inclusive credit evaluation
processes [53]. These models not only provide more accurate predictions but also help
reduce biases inherent in traditional scoring methods, particularly in underserved markets
where traditional credit data might be limited.

Xiao et al. [54] proposed a deep neural network (DNN) for credit scoring that out-
performed traditional scoring methods such as FICO scores by up to 20% in terms of
predictive accuracy, achieving an AUC of 0.92. The DNN model was able to account for
non-linear interactions between variables, providing a more detailed understanding of
creditworthiness. This has significant implications for improving access to credit and reduc-
ing the likelihood of defaults, especially in underserved markets. Furthermore, companies
like Zest AI have applied DL models to make credit decisions that are faster and more
accurate while reducing human bias. By integrating deep learning algorithms into the
credit scoring process, financial institutions can refine their risk models and make fairer,
more inclusive lending decisions. Yang et al. [55] developed a DL model that predicts
market risks by analyzing historical data and market indicators. Their model achieved a
lower prediction error rate compared to conventional risk assessment models, enabling
better-informed decision making regarding asset allocation and risk mitigation. In risk
management, leading hedge funds and asset management firms, such as BlackRock, have
started leveraging deep learning models to manage portfolio risks in real time. The ability
to anticipate market shifts and adjust asset allocations accordingly helps reduce potential
losses and optimize long-term returns, highlighting DL’s practical application in modern
financial systems.

4.3. Fraud Detection

Fraud detection is a critical area where deep learning has been effectively applied to
identify and prevent unauthorized transactions, money laundering, and other financial
crimes. Traditional rule-based systems and statistical models often struggle to detect
sophisticated fraud patterns, particularly when dealing with large volumes of data and
rapidly evolving fraud techniques. In contrast, deep learning models, such as CNNs, RNNs,
and autoencoders, have proven highly effective in analyzing complex, high-dimensional
transaction data and detecting subtle, non-linear patterns indicative of fraudulent activity.

CNN and other deep learning architectures have been utilized to analyze transaction
data, detect anomalies, and identify fraudulent patterns in real time [56]. These models
can process large volumes of structured, unstructured, and semi-structured data, which is
crucial in uncovering intricate patterns that might be missed by traditional methods. For
instance, CNNs are particularly robust at detecting spatial patterns within transactional
data, while RNNs, such as LSTMs, can capture temporal dependencies, allowing them to
track the evolution of fraud over time. Moreover, the real-time processing capabilities of
deep learning models enable financial institutions to detect and block fraudulent transac-
tions before they can cause significant harm. Payment processors like PayPal and Visa have
adopted deep-learning-based fraud detection systems that analyze millions of transactions
per second, reducing false positives and improving overall detection accuracy [57].

Jurgovsky et al. [58] employed LSTM networks to detect fraudulent credit card transac-
tions. Their model achieved an F1-score of 0.93, significantly outperforming traditional ma-
chine learning models such as random forests and logistic regression, which had F1-scores
of 0.85. The LSTM’s ability to capture temporal dependencies in transaction sequences
was crucial in identifying suspicious patterns that evolve over time. These real-world
applications highlight the growing importance of DL models in adapting to evolving fraud
patterns, where new types of fraud can emerge quickly and overwhelm static rule-based
systems. By leveraging historical data, DL models can learn from previous fraud cases and
anticipate future fraud patterns, helping institutions stay ahead of increasingly sophisti-
cated fraud techniques. Another study by Gandhar et al. [59] used a deep learning model
to detect anomalies in financial transactions. The model was able to reduce false positives,
which is critical in minimizing the impact of fraud detection on legitimate transactions.
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Reducing false positives is important in minimizing customer friction. For example, large
financial institutions have adopted anomaly detection models based on deep learning to
ensure that genuine transactions are not unnecessarily blocked, improving both customer
satisfaction and fraud detection efficiency.

In addition to supervised learning approaches, unsupervised deep learning methods
have also been explored for fraud detection. For example, Raj and Kumar [60] developed
an unsupervised deep learning model using autoencoders to detect fraudulent patterns in
banking transactions without the need for labeled data. Their model achieved a high detec-
tion rate of 95% with minimal manual intervention, making it a scalable solution for large
financial institutions. Unsupervised models provide a cost-effective solution for institu-
tions with limited access to labeled fraud data, allowing them to detect anomalies based on
learned representations of legitimate transactions. Meanwhile, deep reinforcement learning
has shown promise in dynamic fraud detection systems. Qayoom et al. [61] proposed a
deep Q-learning model for real-time fraud detection that adapts to changing fraud patterns.
The model achieved a high detection rate, demonstrating the potential of reinforcement
learning in continuously evolving financial environments. Reinforcement learning is useful
in environments where fraud patterns shift rapidly, such as in cryptocurrency transactions,
where fraud dynamics are less predictable. As digital payments continue to grow, adaptive
systems like these are becoming critical for fraud management.

4.4. Market Forecasting

Market forecasting involves predicting future market movements and trends based
on historical data. Deep learning models, such as Transformers and attention mecha-
nisms, have shown considerable promise in improving the accuracy of market forecasts.
These models can analyze vast datasets, including price movements, economic indica-
tors, and market sentiment, to generate predictions that inform investment strategies.
Unlike traditional statistical models, deep learning architectures can capture complex
temporal dependencies and non-linear relationships across multiple data sources, pro-
viding a more comprehensive view of market dynamics. The ability of deep learning
models to capture these intricate relationships within the data allows for more precise and
timely forecasts, which are essential for making informed investment decisions in dynamic
market environments.

In recent years, Transformers have been increasingly used in market forecasting. For
instance, Zeng et al. [62] applied a Transformer-based model to forecast stock prices, achiev-
ing a higher prediction than traditional RNN-based models. Transformers have an edge
over RNNs because they can handle longer sequences without the risk of vanishing gra-
dients, allowing them to focus on the most relevant past events for improved market
predictions. This feature is particularly advantageous in volatile markets where key events
significantly impact future trends. For example, in high-frequency trading, Transformers
can process large volumes of data in real time, helping traders identify short-term oppor-
tunities. The attention mechanism inherent in Transformers allowed the model to focus
on the most relevant historical data points, thereby improving the quality of predictions.
This approach is useful in financial markets, where certain events or periods may have a
disproportionate impact on future prices.

Another approach to market forecasting involves the use of ensemble deep learning
methods. Li et al. [63] combined multiple DL models, including CNNs and LSTMs, to
forecast market indices. The ensemble approach mitigates the weaknesses of individual
models by leveraging their complementary strengths, leading to more robust and reliable
market predictions. Ensemble methods are increasingly being adopted by hedge funds and
asset management firms, as they provide the flexibility to incorporate various data sources
and models, thereby enhancing the accuracy of market predictions [64]. This method is
particularly useful for complex market environments where no single model can account
for all variables.
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Sentiment analysis combined with deep learning has also been explored for market
forecasting. Lin et al. [65] developed a hybrid model that integrates sentiment analysis
from social media with LSTM networks to predict stock market movements. Their model
outperformed traditional sentiment analysis methods, highlighting the value of incorpo-
rating unstructured data into financial forecasts. In particular, unstructured data from
social media platforms such as Twitter or financial news can provide real-time sentiment
analysis, which can be critical for predicting market movements triggered by breaking news
or public sentiment. Financial institutions like Bloomberg have been utilizing sentiment
analysis combined with deep learning to improve their trading algorithms by gauging
market sentiment alongside traditional financial metrics [66].

Additionally, the application of generative models in market forecasting has gained
attention. Vuletic et al. [67] used GANs to simulate future market scenarios based on
historical data. Their model provided valuable insights into potential market trends,
achieving superior performance compared to traditional forecasting models. The use
of GANs in market forecasting, though still in its early stages, has shown significant
potential for stress-testing various investment strategies under different market conditions.
Leading investment firms have begun exploring GAN-based models for market simulations
to improve risk management and asset allocation. This helps traders prepare for low-
probability, high-impact events such as market crashes or sudden volatility spikes, where
traditional models often fail.

4.5. Portfolio Management

Portfolio management requires the optimization of asset allocation to achieve desired
financial objectives, such as maximizing returns or minimizing risk. Deep learning models
have been applied to develop more sophisticated portfolio management strategies that
account for a broader range of variables and market conditions. Unlike traditional op-
timization techniques, which may rely on static assumptions or limited variables, deep
learning approaches are capable of processing vast amounts of data, including historical
market behavior, investor preferences, and economic indicators, to deliver more dynamic
and adaptive portfolio strategies. Techniques such as reinforcement learning and GANs
have been explored to optimize portfolio allocations dynamically, considering factors such
as market volatility, investor preferences, and risk tolerance. Ye et al. [68] developed a
reinforcement-learning-based model for portfolio management that adapts to changing
market conditions by learning from historical data. The reinforcement-learning approach al-
lows the model to continuously adjust the portfolio in response to market changes, thereby
providing a more dynamic and responsive investment strategy.

Another application of deep learning in portfolio management involves the use of
GANs. Jiang et al. [69] applied a GAN-based model to optimize cryptocurrency portfolios,
which are characterized by high volatility and non-linear market behavior. Their model
outperformed traditional portfolio optimization methods. The advantage of using GANs in
portfolio management is in their ability to generate synthetic market scenarios, providing
investors with the ability to simulate and test different strategies under a variety of potential
market conditions. This is valuable in volatile asset classes such as cryptocurrencies,
where sudden market shifts are common. The use of GANs allows for the generation of
synthetic market scenarios, enabling the model to explore a wider range of potential market
conditions and optimize the portfolio accordingly.

Deep learning models have also been used to personalize portfolio management
strategies. Shi et al. [70] proposed a deep-learning-based framework that tailors invest-
ment strategies to individual investor preferences and risk tolerance. Their model in-
tegrates reinforcement learning with DL to optimize asset allocation in real time. This
approach demonstrates the potential of DL in creating more personalized and effective
investment solutions.

Furthermore, DL models have been employed to enhance portfolio diversification
strategies. Zhang et al. [71] utilized a deep learning model to analyze the correlation
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structure of assets in a portfolio, improving diversification by identifying non-obvious
correlations that traditional methods might miss. By identifying previously overlooked
correlations among assets, deep learning models can help portfolio managers reduce overall
portfolio risk while maximizing returns. Additionally, the integration of deep learning
with traditional quantitative models has been explored to enhance portfolio management.
Lin et al. [72] proposed a hybrid approach that combines deep learning with factor models
to optimize asset allocation. This hybrid approach employs the strengths of both deep
learning and traditional financial theories, providing a balanced and effective portfolio
management strategy. The hybridization of deep learning with traditional quantitative
models offers the advantage of combining the adaptability and precision of DL models with
the stability and theoretical rigor of traditional financial frameworks, making it a promising
approach for institutions aiming to enhance the accuracy of their asset allocation strategies.

4.6. Customer Segmentation

Customer segmentation is a critical task in the financial industry, enabling personal-
ized marketing, targeted product offerings, and improved customer service. It involves
dividing a broad customer base into smaller, more manageable groups based on shared
characteristics. These characteristics can include behavioral patterns, financial habits, and
transaction histories. Customer segmentation has traditionally relied on clustering tech-
niques like k-means [73], hierarchical clustering [74], and Gaussian mixture models [75],
which are effective but often limited by their reliance on predefined features and linear
relationships. However, the application of deep learning techniques has provided a more
sophisticated approach to customer segmentation by automatically learning complex,
non-linear patterns and latent features within the data. This allows for more granular
segmentation that can reveal previously hidden relationships between customers, enabling
more accurate predictions of customer behavior.

Wang [76] proposed a novel unsupervised deep learning approach for customer seg-
mentation. A Modified Social Spider Optimization algorithm is employed for feature
selection, identifying relevant customer behaviors. These selected features are then used to
cluster customers using a Self-Organizing Neural Network. Finally, a DNN classifies cus-
tomers based on these clusters. The proposed model achieves high segmentation accuracy
(98.67%), outperforming traditional methods. The integration of unsupervised learning for
feature selection and clustering, followed by supervised classification, demonstrates the
versatility of deep learning in customer segmentation. Financial institutions have employed
deep-learning-based segmentation models to personalize banking services and improve
customer retention, illustrating how AI-driven segmentation can have tangible benefits
in practice.

Mousaeirad [77] proposed a novel customer segmentation approach using a neural
embedding framework called Customer2Vec. The approach leverages feature engineering
to identify important customer characteristics and combines supervised and unsuper-
vised learning techniques to embed customers into a vector space. This allows for a
better understanding of customer similarities and improves the quality of segmentation,
as demonstrated in a banking sector case study. The use of embeddings for customer
segmentation introduces a new level of precision, enabling institutions to track changing
customer behavior in real time.

4.7. Financial Document Analysis and Information Extraction

Financial document analysis and information extraction are vital components in the
financial industry, facilitating tasks such as risk assessment, compliance monitoring, and de-
cision making. The process involves automatically identifying, extracting, and interpreting
relevant data from vast amounts of unstructured financial documents, including invoices,
contracts, reports, and transaction records. Traditionally, rule-based systems and natural
language processing (NLP) techniques, such as named entity recognition (NER) [78], have
been employed for these tasks. However, these methods often struggle with the complexity
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and variability of financial documents, especially when dealing with ambiguous language,
varying formats, and domain-specific terminologies.

Recent advancements in machine learning, particularly in deep learning, have signifi-
cantly enhanced the capabilities of financial document analysis. Models, such as Bidirec-
tional Encoder Representations from Transformers (BERT) and its domain-specific variants
such as FinBERT, have revolutionized the extraction of information from financial texts
by capturing contextual meanings and domain-specific nuances. These models excel in
tasks such as sentiment analysis, entity recognition, and document classification, thereby
improving the accuracy and efficiency of information extraction in financial contexts. Fin-
BERT, in particular, has been adopted by financial firms such as Bloomberg and Thomson
Reuters for automating financial news and report analysis [79], demonstrating the practical
utility of domain-specific models in real-world settings. These institutions use FinBERT
to automate tasks like market sentiment analysis, which significantly reduces the time
required for analysts to process large volumes of unstructured data.

Melus [80] introduced an automated framework that combines a fine-tuned BERT with
Optical Character Recognition (OCR) for analyzing scanned financial documents. The OCR
component converts scanned images into machine-readable text, which is then processed
by the BERT model to extract relevant information. This approach is particularly useful in
scenarios where documents are not originally in digital format, ensuring that even legacy
paper documents can be included in automated workflows. The integration of OCR with
deep learning models ensures financial institutions can automate their compliance and
reporting processes, saving time and reducing human error. In addition, Yang et al. [81] de-
veloped FinBERT, a pre-trained language model specifically tailored for financial sentiment
analysis. By fine-tuning BERT on a large corpus of financial texts, FinBERT outperforms
general-purpose models in tasks such as sentiment classification and named entity recogni-
tion within financial documents, making it a powerful tool for tasks like market sentiment
analysis and risk assessment.

Another significant contribution by Montariol et al. [82] proposed a multi-task learn-
ing framework using BERT for financial annual report feature extraction. This model
simultaneously performs multiple related tasks, such as sentiment detection, objectivity
extraction, and Environmental, Social, and Governance classification, by leveraging the
shared representations learned by BERT. The multi-task approach not only improves the
performance of individual tasks but also enhances the model’s ability to generalize across
different types of feature extraction in financial reports.

Similarly, Moirangthem and Lee [83] explored the use of GRUs for financial text
classification, utilizing a hierarchical structure to better capture the document’s contextual
information. The GRUs in their model effectively processed sequential data, enabling the
extraction of meaningful sentence-level and document-level representations. Through
incorporating a hierarchical attention mechanism, the model could assign varying levels of
importance to different sentences and words, leading to improved accuracy in classifying
financial texts. This approach demonstrated the effectiveness of GRUs in handling complex
financial documents, such as earnings reports and financial news articles, by emphasizing
the most relevant content within the text.

5. Recent Advances and Emerging Trends

The field of deep learning in finance is rapidly evolving, driven by both technological
advancements and the growing availability of data. This section explores recent develop-
ments and emerging trends that are shaping the future of this domain.

1. Explainable AI and Model Transparency: One of the most significant recent advances
in the field has been the development of Explainable AI (XAI) techniques. These
methods aim to make the decision-making processes of DL models more transparent
and understandable to human users. This is important in finance, where stakeholders
need to trust and comprehend the reasoning behind model predictions, especially
in high-stakes environments such as credit scoring, fraud detection, and trading.
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Techniques such as SHapley Additive exPlanations (SHAP) and Local Interpretable
Model-agnostic Explanations (LIME) are increasingly being adopted to enhance model
transparency [84].

2. Transfer Learning and Pretrained Models: Transfer learning is a powerful technique
in deep learning, allowing models trained on one task to be repurposed for another
related task [85]. This approach is beneficial in financial applications, where labeled
data are often scarce or expensive to obtain. By leveraging pre-trained models on
large datasets (e.g., language models for sentiment analysis), financial institutions
can achieve high performance with limited data. This trend has also led to the
development of financial-specific pre-trained models, which can be fine-tuned for
specific applications such as market prediction or risk assessment [86].

3. Federated Learning and Data Privacy: With increasing concerns about data privacy,
federated learning has gained traction as a solution that allows for collaborative
model training without the need to share raw data across institutions. In federated
learning, models are trained across decentralized devices or servers, where data
remain local, and only the model updates are shared. This approach is advantageous
in finance since data privacy is paramount, enabling institutions to benefit from
collective learning while maintaining data security and compliance with regulations
like GDPR [87].

4. Reinforcement Learning in Financial Markets: Reinforcement learning has seen a
surge of interest as a method for optimizing decision-making processes in financial
markets. Unlike supervised learning, where models learn from labeled data, RL
involves learning from the environment through trial and error, making it highly
suitable for dynamic environments like trading. RL models are being used to develop
autonomous trading agents, optimize portfolio management strategies, and improve
algorithmic trading systems by adapting to changing market conditions [88].

5. Quantum Computing and Quantum Machine Learning: Quantum computing, though
still in its infancy, is an emerging trend that holds the potential to revolutionize DL and
financial modeling. Quantum ML leverages quantum computer’s ability to process
information at speeds far beyond classical computers, offering the promise of solving
complex optimization problems in finance more efficiently. While practical applica-
tions are still limited, ongoing research and development in quantum algorithms for
financial modeling suggest that this technology could become a significant technology
in the future of finance [89].

6. Ethical AI and Fairness: As AI technologies become more embedded in financial
systems, there is a growing emphasis on ensuring that these systems operate fairly
and ethically. Recent advances have focused on developing methods to detect and
mitigate biases in AI models, ensuring that financial services are accessible and
equitable. This trend is driving the adoption of fairness-aware machine learning
techniques and the integration of ethical considerations into the AI development
lifecycle. The financial industry is increasingly prioritizing these concerns to maintain
public trust and comply with evolving regulatory standards [90].

6. Challenges and Limitations

Applying deep learning in the financial sector presents several notable challenges that
can hinder effectiveness and practical deployment, and they are discussed in this section.

6.1. Data Quality and Availability

One of the fundamental challenges in applying deep learning to financial data are the
quality and availability of the data itself. Financial datasets often contain a high degree
of noise and are subject to issues such as missing values, outliers, and inconsistencies.
Moreover, the sensitive nature of financial information means that many data are not
publicly available, and where they are available, they often come with stringent usage
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restrictions [67]. These factors can significantly impede the training and validation of robust
DL models, which require large, diverse, and representative datasets to function optimally.

Another issue is the dynamic nature of financial markets. Financial data are often non-
stationary, meaning that the underlying distribution can change over time. This presents a
challenge for deep learning models, which tend to perform best when trained on stationary
data [91]. Addressing these issues often requires sophisticated data preprocessing tech-
niques, such as resampling, normalization, and dealing with missing values, but even these
solutions are not always sufficient to guarantee data quality. Furthermore, the availability
of high-frequency data are limited, which can constrain model development, especially for
more complex tasks, like real-time trading or high-frequency fraud detection.

6.2. Overfitting and Model Interpretability

Deep learning models, mainly those with many layers and parameters, are prone to
overfitting, especially when trained on financial data that inherently exhibits high volatility
and is non-stationary. Overfitting leads to models that perform well on training data but
fail to generalize to unseen data. This is concerning in financial markets, where past perfor-
mance is not always indicative of future outcomes, making overfitting a significant risk
when designing predictive models for stock prices, credit risk, or portfolio management.

Additionally, the “black-box” nature of many DL models poses significant challenges
in terms of interpretability [84,92]. Financial stakeholders typically require clear expla-
nations for decisions made by automated systems, particularly in scenarios involving
investments, lending, and risk management, where accountability is crucial. Explainability
is especially important when regulatory requirements demand transparency, such as in
credit scoring decisions. In response, research into XAI techniques has gained momentum,
with methods like SHAP and LIME being employed to make DL models more interpretable.
However, the complexity of these models still limits their deployment in high-stakes
financial applications.

6.3. Computational Complexity

The training of DL models often requires substantial computational resources, which
can be a barrier, especially for smaller institutions or startups. Deep learning algorithms,
particularly those involving large neural networks with many layers, demand considerable
processing power, memory, and storage capacity, which may not be feasible for all financial
firms [93]. This complexity also extends to the time required to train these models, which
can lead to long development cycles and increased costs. Additionally, many DL applica-
tions require continuous retraining to remain effective in dynamic financial environments,
further increasing the computational demands.

Furthermore, the energy consumption associated with training and maintaining these
models can be considerable, adding to operational costs and environmental impact. Recent
research has highlighted the significant carbon footprint associated with training large-scale
deep learning models. This has led to a growing interest in developing more energy-efficient
algorithms and hardware, such as Tensor Processing Units (TPUs) and more optimized DL
architectures that can perform well with less computational overhead. However, balancing
the need for computational efficiency with model performance remains a critical challenge
in the deployment of DL in finance.

6.4. Ethical and Regulatory Concerns

Deep learning applications in finance must navigate a complex landscape of ethical
and regulatory issues, particularly when it comes to ensuring transparency and account-
ability. One of the primary challenges is the “black-box” nature of many deep learning
models, which can obscure the decision-making process for both the developers and users
of the system [90]. This lack of transparency is especially problematic in the financial
industry, where decisions can directly affect individuals’ financial well-being. Automated
credit scoring, loan approvals, and investment decisions made by opaque algorithms can
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have serious consequences, including legal challenges if a model’s reasoning cannot be
adequately explained or defended.

Regulatory frameworks, such as the General Data Protection Regulation (GDPR) in
Europe, have introduced specific requirements related to the use of AI in decision-making
processes, particularly with respect to data privacy and algorithmic transparency. Under
the GDPR, financial institutions using AI systems must be able to explain the logic behind
automated decisions and provide mechanisms for users to contest outcomes. Furthermore,
these regulations require that any personal data used in AI models is handled in a secure
and privacy-compliant manner [94]. Financial institutions need to incorporate XAI tools
that provide post hoc explanations of model decisions to meet these regulatory demands,
but this remains an ongoing challenge as models become more complex and difficult
to interpret.

Additionally, ethical concerns are increasingly coming to the forefront, particularly as
the use of DL models in finance continues to expand. There is a growing risk that automated
decision-making systems could perpetuate or even exacerbate existing societal inequalities,
especially when they are trained on biased or incomplete datasets. Financial services such
as lending and insurance can inadvertently reinforce biases if not carefully designed and
monitored. As a result, financial institutions and regulators are increasingly focused on
creating ethical frameworks that address these concerns, ensuring that AI systems are used
responsibly and equitably. This includes the formation of AI ethics boards and guidelines
that promote fairness, transparency, and accountability in all AI-driven financial decisions.

6.5. Bias and Fairness

Bias and fairness in ML models are critical challenges, especially in finance, where
algorithmic decisions can have profound societal impacts. The primary source of bias in fi-
nancial AI systems often stems from historical data, which may reflect systemic inequalities.
When DL models are trained on these biased datasets, they can perpetuate or even amplify
these inequalities, leading to unfair outcomes such as biased credit scoring, loan approvals,
or investment advice. For example, if a model’s training data are skewed toward certain
demographic groups, it may make decisions that disproportionately favor or disadvantage
specific populations [95]. This not only affects the fairness and accuracy of financial services
but can also violate legal frameworks designed to protect against discrimination.

To address these issues, fairness-aware algorithms are being developed that aim to de-
tect and mitigate bias during the training process. These algorithms seek to enforce fairness
metrics, such as demographic parity or equalized odds, ensuring that the model does not
unfairly penalize or benefit any particular group. In addition to these algorithmic solutions,
XAI techniques, such as SHAP and LIME, are being employed to provide transparency into
how deep learning models make decisions. These tools allow stakeholders to understand
the relative importance of various features (such as income or geographic location) in the
decision-making process, which helps in identifying and mitigating potential biases before
they become systemic issues.

However, achieving true fairness in DL models remains an ongoing challenge. Bias
in financial AI systems is not only a technical issue but also a societal and ethical con-
cern. Financial institutions must balance accuracy with fairness while adhering to legal
frameworks such as the Equal Credit Opportunity Act (ECOA) in the U.S., which prohibits
discrimination based on race, gender, or other protected characteristics in lending prac-
tices [96]. As models evolve and become more complex, there is a growing recognition that
fairness cannot be fully achieved through technical fixes alone. Continuous monitoring,
auditing, and collaboration between AI developers, financial institutions, and regulators
are essential to ensuring that AI-driven financial systems remain fair and equitable, and
that they promote inclusivity in financial services.
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7. Future Research Directions

The ongoing evolution of deep learning in the financial industry presents numerous
avenues for future research. One critical area is enhancing the interpretability and explain-
ability of DL models. As these models grow in complexity, there is a pressing need to
develop new techniques that can provide transparent and actionable insights, especially
in financial contexts where understanding the rationale behind model predictions is cru-
cial. While XAI has made significant strides, further research could focus on integrating
domain-specific knowledge and creating more intuitive visualization tools that bridge
the gap between technical complexity and practical usability, a challenge that remains
largely unmet.

In addition to interpretability, improving data quality and addressing data scarcity
continue to be significant challenges. Financial data often suffer from issues such as noise,
missing values, and non-stationarity, which can undermine the reliability of DL models. Re-
search into more sophisticated data preprocessing methods and techniques for augmenting
scarce datasets, such as the generation of synthetic data using GANs, could greatly enhance
the robustness of financial models. Furthermore, exploring federated learning as a solution
to data scarcity and privacy concerns offers a promising research direction, especially in
contexts where data sharing is restricted by regulatory or competitive concerns.

Addressing bias and ensuring fairness in AI systems is another critical area that re-
quires further investigation. Bias in financial models can lead to unfair and discriminatory
outcomes, which is concerning in areas such as credit scoring and lending. While some
progress has been made in developing fairness-aware algorithms, there remains a substan-
tial gap in research on how to systematically detect and mitigate bias throughout the model
lifecycle, especially in the dynamic environments typical of financial markets. Future re-
search could focus on creating comprehensive frameworks that monitor and correct biases
as models are deployed in real-world scenarios, which is an essential step toward ensuring
that financial AI systems operate ethically.

Reinforcement learning in financial applications, though promising, is still in its early
stages and presents numerous opportunities for further research. While RL has shown
potential in optimizing trading strategies and portfolio management, more work is needed
to refine these approaches in order to develop risk-sensitive RL models and hybrid systems
that combine RL with traditional financial techniques. This research could lead to more
robust and adaptable financial decision-making systems.

8. Conclusions

Deep learning algorithms have become integral to numerous financial applications,
including credit scoring, fraud detection, algorithmic trading, and market forecasting. This
paper provides a concise yet comprehensive overview of key DL models, such as CNNs,
LSTMs, GANs, and Deep RL. The study also addresses critical challenges associated with
deploying these models in finance, including data quality, model interpretability, and
computational demands. This paper is essential for researchers and practitioners looking to
understand the current field of deep learning in finance and the potential future directions
in this rapidly evolving field.
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