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Abstract: Recent research has drawn attention to the ambiguity surrounding the definition and
learnability of Out-of-Distribution recognition. Although the original problem remains unsolved, the
term “Out-of-Model Scope” detection offers a clearer perspective. The ability to detect Out-of-Model
Scope inputs is particularly beneficial in safety-critical applications such as autonomous driving or
medicine. By detecting Out-of-Model Scope situations, the system’s robustness is enhanced and it
is prevented from operating in unknown and unsafe scenarios. In this paper, we propose a novel
approach for Out-of-Model Scope detection that integrates three sources of information: (1) the
original input, (2) its latent feature representation extracted by an encoder, and (3) a synthesized
version of the input generated from its latent representation. We demonstrate the effectiveness
of combining original and synthetically generated inputs to defend against adversarial attacks in
the computer vision domain. Our method, TRust Your GENerator (TRYGEN), achieves results
comparable to those of other state-of-the-art methods and allows any encoder to be integrated into
our pipeline in a plug-and-train fashion. Through our experiments, we evaluate which combinations
of the encoder’s features are most effective for discovering Out-of-Model Scope samples and highlight
the importance of a compact feature space for training the generator.

Keywords: Out-of-Distribution (OOD) recognition; safety-critical applications; generator as distribution
approximator; robustness of computer vision systems

1. Introduction

One of the key factors contributing to the success of deep learning in computer vision
is its ability to learn intricate patterns directly from the training data, eliminating the
need for manual feature engineering. However, deep learning models are susceptible to
overfitting [1], and their performance may degrade when faced with data that lie outside
of the training set’s distribution [2].

A neural network trained on images of handwritten digits illustrates this issue; while
some implementations [3] achieve near-perfect recognition rates on test data, in real-world
scenarios [4] where the inputs are unbounded or uncontrolled [5], there is no guarantee
that the images will belong to the same distribution as the training data. In this case, how
would a network react to an image of a human? Clearly, it would classify it as one of the
ten digits. A more tangible example would be autonomous driving, specifically when a car
encounters an unknown traffic sign or has to operate in a previously unseen environment.
In these cases, we need to develop a monitoring function that recognizes Out-of-Model
Scope (OMS) inputs and reacts accordingly.

In this work, we present a novel perspective on the concept of Out-of-Model Scope [6]
inspired by the validation processes described in the Safety of the Intended Functionality
(SOTIF) norm [7] and in ISO 26262 [8]. We shed light on critical considerations for enhancing
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the robustness and reliability of Machine Learning (ML) systems deployed in the computer
vision domain. To the best of our knowledge, there is no norm prescribing a specific
method for detecting OMS samples. Therefore, the implementation of State-Of-The-Art
(SOTA) monitors varies, consisting of hard-coded boundary binary classifiers that use
features extracted from different layers [9], input images, or a combination of both [10].
Our approach aims to incorporate diverse information during the prediction phase, as can
be seen in Figure 1. We refer to the monitored model as the Encoder and the approximated
inverse version of its In-Model Scope (IMS) distribution as the Generator. OMS detection
based on the input images, generated images, and latent feature representations is solved
by a learnable Monitor. Throughout this article, we use the terms “OMS detection” and
“OMS monitoring” interchangeably.

f : Eθ f−1 : Gθ

Mθ(x, x̂, z) : x → {IMS, OMS}

z

x x̂
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Figure 1. (a) illustrates our OMS monitoring pipeline, named TRYGEN; the process begins with the
input image x, followed by the generation of a synthetic image x̂ and extraction of the latent feature
representation z from an arbitrary encoder. These three sources of information are integrated by the
monitor to classify the sample as either In-Model Scope (IMS) or Out-of-Model Scope (OMS). In (b), we
plot the AUROC (in percentage) of SOTA Out-Of-Domain (OOD) monitoring algorithms tested on
our OMS dataset collections, comparing the covariate and semantic shifts versus adversarial attacks.

Our contributions to the domain of OMS detection are as follows:

• We describe the theoretical background of OMS detection, incorporating a generator
of synthetic images.

• We devise a novel multi-input OMS detection pipeline that facilitates the monitoring
of any pretrained classifier.

• We demonstrate the robustness of our new method against distributional shifts and
adversarial attacks.

• Through a sensitivity analysis, we evaluate the impact of various inputs on the
OMS monitor.

• We show that our pipeline achieves SOTA results in the computer vision domain.

2. Related Work

For practical reasons, the objective of our contribution is aligned with industry norms.
In the following sections, we review related works to position our contribution in the
broader research landscape.

2.1. Functional Safety Versus Computer Vision

As mentioned in the introduction, the uncertainty of machine learning models in-
curs potential risk in real-world applications. Therefore, we consider the definitions and
processes described in EN IEC 61508 [11], which defines a general clustering of safety
components in the Safety–Integrity Level (SIL). Additionally, the functional safety norm
ISO 26262 defines guidelines that minimize the occurrence and severity of hazardous
situations related to components’ malfunction or failure. Furthermore, the ISO PAS 21448,
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also referred to as SOTIF, builds upon ISO 26262 and extends the development process by
addressing potential risks in situations where a system could operate incorrectly or unsafely.

The detection of OMS falls within the scope of SOTIF. Nevertheless, the OMS detection
pipeline presented in this paper is derived from the concept of hardware (HW) malfunction
detection described in ISO 26262, namely, that in the event of HW failure the objective
is to transition the system to a safe state and enable the operator to maintain control.
To achieve this, the safety-critical function and its inverse implementation are monitored
by a plausibility function, as highlighted in Figure 2. The implementation of such software
(SW) measures reduces the risk of potential undetected malfunctions to a predefined and
acceptable level.

f f−1 x̂

M(x, x̂) =

{
continue if x ∼ x̂,

error else.
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Figure 2. (a) The standard approach of plausibility function in contemporary SW and (b) how the
monitor M, equivalent to a plausibility function, is deployed in the computer vision field.

In Computer Vision (CV), and particularly in deep learning, lossy information com-
pression (pooling Layers and activation functions) prevents the direct implementation
of an inverse function. Additionally, in real-world conditions, the monitoring function
must contend with the uncertainty of the monitored model, which is caused either by
the model’s limited generalization capabilities [12] or by missing features in the training
data [2]. These factors have led to the design of monitoring functions [13] (Monitor) based
on hard boundaries. The Monitor’s role is to detect the domain in which the model operates
safely. Although the Monitor can predict whether the input belongs to the known data
distribution, uncertainty in OMS detection remains [14].

2.2. Out-of-Distribution and Out-of-Model Scope

The terms “Out-of-Distribution” and “Out-of-Model Scope” are often used inter-
changeably, but their definitions vary [15]. In this work, we adopt the definitions and
guidelines provided by [6].

2.2.1. Out-of-Distribution

Let us consider a machine learning task on a domain X , such as classification or detec-
tion, defined by an oracle function Ω. The oracle function Ω maps points x ∈ X from the
task domain to their corresponding ground truths Ω(x) = y ∈ Y . Using the oracle function
Ω, we can define the OOD scope and OMS of any domain. We denote the operational
domain as data points (x1, y1), . . . , (xn, yn) ∈ X × Y . Considering the predefined OOD
settings, we assume that the data follow a probability distribution pID, where

∀i = 1, . . . , n; x ∼ pID. (1)

Given a new input instance x ∈ X , our goal is to determine whether it originates
from the same distribution pID or resides outside of this distribution. This leads to the
formulation of an out-of-distribution monitor M : X → {0, 1}, provided by

∀x ∈ X , M(x) =

{
0 if x ∼ pID,
1 else.

(2)
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2.2.2. Out-of-Model Scope

Referring to the nomenclature established in Section 2.2.1, we define the model scope
S f as follows:

S f = {x ∈ X : f (x) = Ω(x)} (3)

where f denotes the deployed model.
We aim to develop an OMS monitor M f : X → {0, 1} capable of identifying all data

points that fall outside the model scope S f . This monitor function is defined as follows:

∀x ∈ X , M f (x) =

{
0 if x ∈ S f ,
1 else.

(4)

As can be seen in Equation (2), OOD detection focuses on distinguishing among
an infinite number of probability distributions within the domain X and a specific In
Distribution pID. However, capturing all boundaries within a CV domain is only possible
if the condition |X | < +∞ is fulfilled [14]. Consequently, proposed solutions for OOD
detection in a stochastic environment are vulnerable to adversarial attacks and shifts within
the ID, as demonstrated in [16]. Furthermore, the definition of OOD can be significantly
influenced by the domain and the definition of the machine learning task. These ambiguities
have led to the implementation of various monitoring functions and the attainment of
diverse results, as shown in [17].

In contrast to OOD, the definition of OMS provides a more precise and consistent
framework for detecting samples that the model should not classify or make predictions on
because they are not drawn from pID. The conditions for learnable OMS remain the same
as for OOD; nonetheless, its clearer definition eliminates the need to differentiate between
outlier detection [18,19], anomaly detection [20,21], novelty detection [22], and the open-set
recognition problem [23,24], as is the case with OOD. Due to these findings, in this paper
we focus only on OMS detection instead of OOD detection. Based on the definition of an
OMS Monitor in Equation (4), our OMS definition encompasses covariate and semantic
shifts as well as adversarial attacks. These distribution shifts can be introduced into the
training data through a variety of methods, including:

• Covariate Shifts: Altering certain image aspects, such as brightness, to a degree that
causes the classifier to fail.

• Semantic Shifts: Introducing semantic content that has not been previously encoun-
tered in our domain X .

• Adversarial Attacks: Incorporating malicious perturbations in the input data that are
imperceptible to human eyes.

2.3. Out-of-Model Scope Metrics and Monitors

Although the monitors and metrics discussed in this chapter were originally developed
for detecting OOD samples, they can also be utilized for OMS detection. As is commonly
done, we cluster OOD detection methods based on the inputs used. Therefore, Figure 1
highlights the following possibilities:

• Feature-based
• Probability-based
• Logit-based
• Feature- and logit-based.

Our method belongs to the group of novel generative approaches utilizing both features
and logits.

2.3.1. Metrics

Among the possible feature-based methods, the distance between any point
x̂ = (x1, x2, x3, . . . , xN) within the operational domain X and the ID distribution pID,
called the Mahalanobis distance (MAHA), is the most frequently used. Introduced by
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P.C. Mahalanobis [25], the Mahalanobis distance was further employed by Lee et al. [16]
through a Gaussian discriminant analysis applied to the softmax layer. Lee et al. discovered
that abnormal samples are better represented in the feature space of Deep Neural Networks
(DNNs) rather than in the “label-overfitted” output space of the softmax-based posterior
distribution, as demonstrated in earlier studies [26,27].

The Max Softmax Probability (MSP) method, pioneered by Hendrycks and Gimpel [13],
establishes OMS detection based on the hypothesis that correctly classified examples should
exhibit higher probability compared to other classes. This involves determining a statistical
threshold for a binary classifier using a validation set. On top of this work, Liang et al.
built the ODIN (Out-of-Distribution detector for Neural Networks) system [28], which uses
temperature scaling to maximize the discriminability of the softmax outputs for In- and
Out-Of-Distribution images. Hendrycks et al. further focused on anomaly detection in
large-scale datasets, for which they proposed using the negative of the maximum of the
un-normalized logits for an anomaly score, which they called MaxLogit [29].

As pointed out by Liu et al. [24], however, relying solely on softmax probabilities
leads to high confidence for misclassified samples. To address this, they incorporated an
energy-based score that is theoretically aligned with the probability density of the inputs
and less susceptible to overconfidence.

2.3.2. Monitors

The Outside-the-Box method introduced by Henziger et al. [23] addresses novelty
detection by employing a monitor in addition to the arbitrary hidden layers of a pretrained
classifier. During training, the method samples class-related responses and clusters them,
thereby improving monitor accuracy. Novelties are recognized using a set of box abstrac-
tions that determine whether a new data point is inside or outside of the projected box.

Motivated by activation patterns analysis, Sun et al. [30] noted that activations of OMS
samples differ significantly from those of In-Model Scope samples. Their Rectified Activa-
tion (ReAct) method further showed that gathering activations from layers other than the
penultimate one does not enhance accuracy, as early layers capture less distinctive features.

This latter statement asserted by [30] was negated by Lin et al. [9], who evaluated the
possibility of detecting an OOD sample from different intermediate layers. They proposed
a new energy-based score to dynamically terminate an early exit during inference. They
picked the early exit based on the number of bits needed to encode the compressed image,
consequently proving on many datasets that less complex OMS inputs can also be reliably
discovered from the early layers.

2.3.3. Other Evaluation Metrics

Class imbalances and other nonuniformities in the number of False Positives (FP) and
False Negatives (FN) must be considered during the evaluation of any classifier. To address
this, the Area Under the Receiver Operating Characteristic (AUROC) [31] is frequently
used in conjunction with the F-score. AUROC evaluates the True Positive Rate (TPR)
against the False Positive Rate (FPR), where the TPR is calculated as TP/(TP + TN) and
the FPR is analogously calculated as FP/(FP + TN), where TN stands for True Negative
samples. Nonetheless, as mentioned in [13], AUROC may not be suitable when the positive
and negative classes have notably different base rates. In such cases, the Area Under
the Precision–Recall curve (AUPR) is preferred, as it adjusts for the varying positive and
negative base rates. Another metric used to combat class imbalance in data is the balanced
accuracy ACCB = (TPR + TNR)/2, where TPR is the true positive rate, defined as before,
and the True Negative Rate (TNR) is provided by TN/(TN + FP). From now on, we refer
to accuracy in the OMS domain as balanced accuracy.

3. Methodology

Our TRYGEN methodology is based on a novel pipeline that enhances the robustness
of OMS detection by providing multiple inputs to a learnable OMS monitor.
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All components of the OMS monitoring pipeline are depicted in Figure 3. The weights
θE of the Encoder E represent the feature space extracted from the operational domain
X , which in return represents the IMS distribution pS f . The Generator G produces re-
constructed synthesized images x̂ based on a combination of latent features z. Ideally,
if the input sample x belongs to the model scope S f , then G generates an image from the
same distribution; on the other hand, when an OMS input is presented, the Generator
combines different features based on the Encoder’s latent feature representation z in the
generated image. The Latent Space Wrapper L extracts this representation z, which can
contain information from different layers of the Encoder and its softmax prediction x̂. In the
last step, the OMS binary classification is addressed by a multi-input OMS Monitor Mθ .
The Monitor receives three inputs: the original input image x, the reconstructed image x̂,
and the latent feature representation z. Conceptually, our OMS monitor can be seen as a
mapping OMS(θM, θG, θE, θL) : X → {0, 1}. Algorithm 1 presents the description of the
inference process.

Algorithm 1 TRYGEN OMS detection pipeline during inference

Require: |X | < +∞
for x ∈ X do

ŷ, z = Eθ(x) ▷ ŷ ∈ NC, z ∈ RD, x ∈ R3×M×N

x̂ = Gθ(ŷ, z) ▷ x̂ ∈ R3×M×N

ô = Mθ(x, z, x̂) ▷ ô ∈ {0, 1}
end for

Preconditions for OMS Problem-Solving

Based on the theoretical and practical expertise we gathered during experimentation,
we identified the following properties that the OMS pipeline needs to fulfill:

• The input space X cannot be infinite, as described in [14].
• The influence of the regularization of the Encoder’s feature space on the Generator’s

performance should be investigated; for this, we use Dropout [1] as well as latent
feature space normalization [32], which calculates a class-related cosine distance and
maximizes it during the training of the Encoder.

• The Generator needs to have high reconstruction capability for samples within the
Encoder’s scope S f , but needs to lose this ability for samples outside of the scope S f ;
to achieve this, during the generator’s training, we minimize the classification loss
between the Encoder’s prediction on the original and the generated images from the
model scope.

• In order to compare the contribution of our multi-input OMS pipeline, we investigate
the performance fluctuation of the Monitor through a sensitivity analysis.

• To increase robustness, we use Dropout directly on the inputs provided to the OMS
monitor, namely, x, x̂, and z.

In general, the Encoder can be any deep neural network that has been trained on the
operational domain X ; its implementation must allow for access to intermediate layers.
The Generator has to follow an inverse information flow with respect to the Encoder; in our
case, the generator produces synthetic images x̂ with the same resolution as the input
image x, allowing us to directly evaluate the image fidelity with the Fréchet Inception
Distance (FID) [33] and the Inception Score (IS) [34]. There are no further constraints on the
implementation of the Generator, and its architecture can be similar to that of a Generative
Adversarial Network (GAN) [35] or Latent Diffusion model [36]. What distinguishes our
approach from its predecessors is that the OMS monitor contains learnable parameters and
receives synthetic images generated from the Encoder’s approximated density function,
referred to as the Generator.
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Figure 3. Our proposed TRYGEN pipeline for OMS detection contains the following building blocks:
the Encoder E, Generator G, Latent Space Wrapper L, and OMS monitor O. Each block in this
diagram is simplified, and can be replaced with more complex or deeper models in order to adapt to
a specific domain.

4. Experiments

We designed our evaluation setup based on the methodologies presented in [6,9].
However, instead of using pretrained networks, we explored the influence on the OMS
performance by training custom ResNet models with different numbers of parameters
and layers.

4.1. In Model Scope and Out-of-Model Scope Datasets

We chose CIFAR-10 [37] as our initial dataset, following common practice in the OOD
and OMS community. We split all datasets uniformly: 70% were used for the training set,
20% for validation, and the remaining 10% for testing purposes.

The OMS dataset consists of semantic shifts, covariate shifts, adversarial attacks,
and FP samples. We built the set of semantic shifts using publicly available datasets,
namely, MNIST [38], fashion-MNIST [39], k-MNIST [40], SVHN [41], and DTD [42]. To test
our pipeline’s robustness against covariate shifts in the data, we introduced various mod-
ifications to the original CIFAR-10 dataset. These modifications were applied until the
Encoder failed to recognize otherwise correctly classified IMS samples. The applied modi-
fications included blurring, brightness adjustments, image rotations, and noise addition.
Lastly, we introduced imperceptible malicious perturbations to the IMS data, also known
as adversarial attacks [43]. These perturbations are designed to be undetectable by human
observers. Our approach involved leveraging the Fast Gradient Sign Method (FGSM) [44],
Projected Gradient Method (PGD) [45], DeepFool [46], and AutoAttack [47]. The imple-
mentation in the Torchattacks [48] library was used in our case. FP samples, which were
identified after the training of the Encoder was completed, formed the default OMS dataset.
Consequently, the identified TP samples formed the IMS (S f ) dataset. A selection of ran-
dom samples and transformations from all datasets can be seen in Figure 4. Furthermore,
a summary of all the methods used to construct the OMS datasets is highlighted in Table 1.
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Table 1. Summary of all the methods employed in our experiments to construct the OMS datasets.

IMS OMS
Semantic Covariate Adversarial

CIFAR-10
MNIST blurring FGSM

fashionMNIST brightness PGD
kMNIST rotation DeepFool

DTD noise AutoAttack
SVHN

Figure 4. The first row shows examples of the semantic shifts from Table 1, introduced in the
same order as described in Table 1. Additionally, the Encoder’s predictions for each image are
shown. The second row presents examples of covariate shifts performed on the original image in the
first column of the corresponding row. The final row shows the adversarial attacks applied to the
original images.

4.2. Training

Our OMS monitoring pipeline consists of four main components: the Encoder E, Gen-
erator G, OMS monitor O, and Latent Space Wrapper L. Each component is trained
independently, which ensures a plug-and-train monitoring system that can be applied to
any pretrained encoder (e.g., a ResNet).

4.2.1. Encoder

To establish the foundation for the IMS dataset, we commenced by training the Encoder,
which defines the IMS dataset as per Equation (3). We employed ResNet models [49] with
18, 34, 50, and 101 layers, leveraging the CIFAR-10 dataset divided by the guidelines
outlined in Section 4.1. Each model underwent training with the Adam optimizer [50], for a
total of 500 epochs, employing a learning rate of 0.001 and following a cyclic learning rate
scheduler, all while utilizing a batch size of 1024. The Categorical Cross Entropy was used
as loss function. Additionally, we applied various data augmentation techniques available
in PyTorch [51], including random horizontal flipping, random cropping, and random
affine transformations.

Many OMS detection methods assign a score to an input sample based on its represen-
tation in the feature space. Given the infinite variations in OMS data, we have to rely on
the IMS feature space generated by our Encoder. Should this feature space representation
of our IMS data lack relevance, it may falsely contribute to the detection of OMS examples.
As a result, we applied regularization techniques related to the latent feature space. This
involved implementing a dropout mechanism with a probability of 0.2 for zeroing out and
incorporating a Spatial Feature (SF) regularizer. The SF regularizer calculates both inner
and outer cosine class similarities. During the training, it maximizes the inner similarity
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while minimizing the outer similarity. For a visual comparison of the feature spaces before
and after regularization, we refer to Figure 5, which showcases the Uniform Manifold
Approximation and Projection (UMAP) [52] results.

car
truck
FPs

(a)

car
truck

(b)

car
truck

(c)

Figure 5. (a) Clustered features from the test set, which contains numerous FPs (orange dots).
The presence of FPs causes a sparse and enlarged feature space. The compact feature space in (b) was
achieved by eliminating the FPs. Nonetheless, some samples remain close to or within the other class
cluster, even though the Encoder has classified them correctly. In (c), the compactness of the inner
class subtly changes after applying the Feature Regularizer, making the higher distance between the
clusters for the “car” and “truck” classes even more visible.

4.2.2. Generator

We begin with a theoretical description of the Generator’s role, using the vanilla GAN
architecture as an example. The GAN architecture is comprised of two main components:
the Generator G, and the Discriminator D. The Discriminator is trained to differentiate
between an original image x and a synthetic image created by the Generator G(z). This is
reflected in its loss function, which is Ex∼pdata(x)[log(D(x))] +Ez∼pz(z)[log(1 − D(G(z)))].
Concurrently, the Generator aims to produce images that fool the Discriminator, optimizing
its loss function Ez∼pz(z)[log(1 − D(G(z)))]. The Generator uses a latent vector z as input,
typically sampled from a normal distribution with mean = 0.0 and standard deviation = 1.0.
During training, the vanilla GAN model attempts to minimize the KL divergence [53]
between the IMS data distribution pS f (x) and the implicit data distribution pG(z) of the
Generator. This often leads to learning instability and difficulty in capturing structural and
geometric features [54], spurring the development of enhanced GAN architectures such
as Convolutional GAN [55], Self-Attention GAN [56], BigGAN [57], and Style GAN [58]
along with improved training setups such as Wasserstein GAN with gradient penalty [54]
and Spectral Normalization [59].

In our pipeline, the Generator aims to densely approximate the IMS distribution
pS f (x). Its task is to reconstruct the input x given its latent feature space representation
z and the predicted class ŷ = E(x) of the Encoder E. More specifically, the Generator
learns pS f (x|ŷ, z). It should be noted that as we can use y in place of ŷ during training
with the IMS dataset, we can use pS f (x|y, z) here. Our goal is to minimize the distance
between pS f (x) and pS f (x|ŷ, z); however, instead of using random noise, we utilize the
latent feature space from the Encoder E. Consequently, we minimize the classification loss
Lcls(G, E) = CCE(y, E(G(z))) = −∑C

c=1 yc log(ŷc), where CCE(y, E(G(z))) is the Categor-
ical Cross-Entropy (CCE) loss between ground truth label y and the classified generated
image E(x̂) = E(G(z)). In our case, the representation of z can correspond to the latent
feature space of one or more layers. The complete training loss function for the Generator
G is detailed in Equation (5):
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LGenerator(G, D, E) = Ex∼pdata(x)[log(D(x))]

+Ez∼pz(z)[log(1 − D(G(z)))]

− αEy∼P(y)

[
C

∑
c=1

yc log(ŷc)

] (5)

where Ey∼P(y) denotes the expected value over the probability distribution of the true labels
y, C is the number of classes, yc is a ground truth indicator, ŷc is the predicted probability,
and α is a scaling factor for training stability that is empirically set to 0.1.

We applied the aforementioned training approach to all three models: WGAN [54], Big-
GAN [57], and the Class-Conditional Latent Diffusion Model [36] (CCLDM). To summarize,
the following hyperparameters were explored in terms of image fidelity and contribution
to OMS detection:

• The generator’s architecture and size,
• The dimension of the latent feature space z,
• The method used for class/feature embedding,
• The combination of intermediate layers used to build the latent feature space z,
• The implementation of the Latent Space Wrapper L,
• Integration of a CCE between the ground truth label y and the classified generated image.

For the first two GAN-based models (WGAN and BigGAN), we used the training
loss described in Equation (5) and followed the hyperparameter settings from the original
papers. In the case of the CCLDM model, the class embedding information was directly
concatenated with the denoising parameters and the original image. During training,
the original image with added noise was reconstructed and the Mean Squared Error
between the original and denoised image was minimized. The main component of the
diffusion architecture was the denoising U-Net [60] model.

By incorporating the latent features z extracted by the encoder as class-conditioning
information, we encourage our generator to synthesize images of the same class with
similar features learned during the Encoder’s training. This hypothesis is guided by the
expectation that even in the event of an adversarial attack, where the sample falls outside
of the model’s scope, the Generator will still reconstruct an image containing features from
the IMS distribution. To achieve this, we explored the hyperparameter space and evaluated
which combinations were the most effective for OMS detection.

4.2.3. Latent Space Wrapper

As previously mentioned, we use information from the Encoder’s latent feature space.
As this feature space can stem from any arbitrary deep neural network, we have to devise a
mechanism that will aggregate the information from different feature maps of the model
and produce a single latent representation z. We deploy both a non-trainable approach
by applying Average and Max-Pooling layers directly to the intermediate layers, and a
trainable approach with convolutional layers, for which we use a stride with the same size
as the kernel. Our Latent Space Wrapper adapts to the size of each given layer and its
parameters are tuned during the training of the Generator, as shown in Figure A1 in the
Appendix A.

4.2.4. Out-of-Model Scope Monitor

In the final phase, we train the OMS Monitor. The primary task of the OMS Moni-
tor is to perform binary classification based on the similarities between its three inputs.
Specifically, the Monitor predicts whether or not the input from the Encoder is OMS.

During the training of the OMS Monitor, we constructed the OMS datasets using
the methods and combinations described in Section 4.2. It is worth mentioning that if
we solely consider FPs as examples of OMS, then the size of the OMS dataset is con-
tingent upon the performance of the Encoder. In scenarios where the Encoder achieves
100% accuracy, the OMS dataset would consist of an empty set of images. This underscores
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the dependency between the size of the OMS dataset and the performance of the Encoder,
justifying the need to integrate supplementary OMS data. To address potential issues with
dataset imbalance during training, we employed the Focal Loss [61] and weighted random
sampling techniques.

Notably, we did not apply any data augmentation to the IMS dataset. This precaution
was taken to prevent samples from inadvertently being categorized as OMS. Building on
the training setup of the Encoder, we applied dropout before each linear layer and used
Binary Cross-Entropy as the loss function.

4.3. Evaluation of the Encoder and Generator

For the Encoder, we trained different ResNet models with 18, 34, 50, and 101 layers.
All models consisted of four blocks which served as binding points to our Latent Space
Wrapper. The accuracy results of the Encoders on each dataset are presented in Table 2.

Table 2. Accuracy of Encoder-ResNet on different dataset splits; “Dropout” describes a model with a
dropout2d layer after each ReLU activation. The best accuracy was achieved by ResNet-34.

ResNet train. val. Test Dropout FR

18 98.94 88.64 87.01 88.69 74.06
34 99.48 89.88 88.18 88.99 73.51
50 98.89 89.19 87.73 87.76 72.12

101 98.35 89.10 86.71 77.72 70.09
Bold: the best results.

As elaborated in detail in Section 4.2, the generator was trained on the IMS dataset.
The highest classification accuracy on the generated images (ACCE(G(z))) was achieved by
the bigGAN model with a latent feature space dimension of 64, combining the features
extracted from ResNet34 blocks 1 and output from the softmax layer. This model reached
91.80% for the training set and 91.96% for the validation set. Image fidelity and image
variance were evaluated using the Frechet Inception Distance (FID) [33] and Inception
Score (IS) [34], which correlate well with human judgment. The same model achieved an
FID of 28.04% and IS of 7.92%. To increase the evaluation set, all samples from the IMS
dataset were included in the assessment, as recommended in the original FID paper.

The best model for each Generator architecture can be found in Table 3. Because we
conditioned the training loss from Equation (5) using ACCE(G(z)), our model finds the
optimum between image fidelity and the accuracy of the Encoder. Consequently, our
generator achieves lower IS and higher FID scores than reported in the original papers.

Table 3. FID, IS, and ACCE(G(z)) achieved only by the best Generators with ResNet-34. The best
model was the bigGAN model, which we further used as a Generator in the OMS monitoring pipeline.

Model G ↑ IS ↓ FID ↑ ACCE(G(z)) |z| Layers Combination E-Regularization Learnable L

W-GAN 5.71 38.21 70.50 64 L1 + L2 + L3 + L4 with Dropout False-Avg Pool
bigGAN 7.92 28.04 91.96 64 L1 + L2 + L3 + L4 with Dropout False-Max Pool
CCLDM 8.01 19.87 89.89 128 L1 + L2 + L3 + L4 with Dropout False-Max Pool

Bold: the best results.

As mentioned at the beginning of Section 4.2.2, several hyperparameters influence the
Generator’s performance, and consequently that of the Monitor as well. The influence of
the dimension of the latent feature z on ACCE(G(z)) is highlighted in Figure 6a. A sensitivity
analysis of different combinations of layers further shows that the most relevant features
are contained in the deeper layers. As can be seen in Figure 6b, a generator trained on
combinations of features extracted from multiple layers outperforms a generator trained
only on features from one specific layer.
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Figure 6. (a) Variations of latent feature space dimensions for the bigGAN generator; the best
ACCE(G(z)) was achieved with a dimension of the latent feature space equal to 64. (b) Features from
layers L1 + L2 + L3 + L4 and the Latent Space Wrapper with Max-Pooling layers assured the highest
ACCE(G(z)) in the case of a combination search for the optimal layers.

Although the highest classification accuracy on CIFAR-10 was achieved by ResNet-34,
as highlighted in Table 4, for the OMS detection task the combination of the Generator and
ResNet-18 showed similar results. The deployment of more complex encoders with higher
numbers of layers did not improve the performance of the Generator. On the contrary,
as can be seen in Table 5, applying dropout during training of the Encoder improved the
Generator’s performance. The final overview, presented in Table A2 in the Appendix A,
summarizes all of the hyperparameters and techniques related to the Generator’s training.

Table 4. ACCE(G(z)) on the IMS test set for all Encoders and all Generator architectures. The bigGAN
architecture in combination with ResNet-34 produced the highest accuracy; the WGAN and CCLDM
models achieved unsatisfactory results, and were not used for further experiments.

Model E WGAN bigGAN CCLDM

18 69.14 90.15 79.60
34 70.50 91.96 78.69
50 65.12 85.25 73.50

101 63.87 86.74 68.28
Bold: the best results.

Table 5. Influence of different regularization techniques applied to the ResNet-34 Encoder on the
performance of the bigGAN Generator (zdim = 64, LatentWrapper with maxPool).

Regularization ↑ IS ↓ FID ↑ ACCE(G(z))

no regularization 6.57 30.01 90.61
dropout 7.92 28.04 91.96
feature regularization 5.84 35.85 86.38

Bold: the best results.

4.4. Evaluation of Out-of-Model Scope Detection

In the case of the OMS Monitor, we are dealing with a binary classification problem
involving the identification of two classes. However, it is common for the volume of OMS
data to be larger than the IMS data in real-world applications as well as in experimental
setups [62]. As noted in Section 2.3, we employ metrics that consider a tradeoff between
TPs and FPs to address this issue, and calculate the balanced accuracy instead of the
vanilla accuracy. Achieved results can be seen in Table 6.
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Table 6. Results of the Precision, Recall, and F1-Score evaluated on the OMS and IMS test sets. As can
be seen in the “Support” column, the size of the OMS dataset is approximately 14× larger than the
IMS dataset.

↑ Precision ↑ Recall ↑ F1-Score Support OMS + IMS

67.42 98.76 80.14 67,014 + 4914

As mentioned in Section 4.2, we trained the OMS Monitor on each IMS and OMS
training set presented in Table 1 and validated it on all the IMS and OMS validation and
test sets. In our experiments, we explored various combinations of OMS datasets to discern
the individual impact of each dataset on the OMS detection instances. The results are
presented in Table 7.

Table 7. Our OMS detection pipeline achieved an overall balanced accuracy of 99.52% on [1] + [2] + [3].
We further evaluated each test set separately, achieving results close to 100%. Notably, the accuracy
in recognizing adversarial attacks [2] reached 98.58%.

Training OMS Testset Balanced Accuracy in [%]
Datasets [1] Covariate [2] Adversarial [3] Semantic [1] + [2] + [3] Combined

covariate 98.95 93.04 97.99 97.93
adversarial 99.18 98.58 97.28 97.96
semantic 97.18 83.50 99.73 95.56
combined 99.21 92.25 97.76 99.52

Bold: the best results.

4.5. Sensitivity Analysis of the Out-of-Model Scope Monitor

Sensitivity analysis in machine learning involves the systematic evaluation of a model
by removing or modifying its components in order to understand their impact on its
performance. In the context of our OMS Monitor, the key elements under consideration are
the original input x, the latent feature representation z, and the generated image x̂, all of
which serve as inputs to the OMS monitor.

The results presented in Table 8 show the contributions of each input to overall OMS
detection. The accuracy drops by 25.20% after removing the original input image x, proving that
the primary source of relevant information for the OMS monitor still lies with the original input
data. On the other hand, incorporating the feature space and generator increases the overall
classification accuracy by approximately 4%. This subtle improvement can be explained by
insufficient approximation of the IMS distribution pS f (x). Specifically, the best bigGAN model
achieved an accuracy of 91.96% on the IMS training set. Images identified as FP by E(G(z))
could be considered for removal from the original IMS training set; however, this action would
only superficially boost the ACCE(G(z)) to 100% while shrinking the training set of valid IMS
samples, thereby impairing the Monitor’s ability to generalize.

Table 8. Results of the OMS Monitor sensitivity analysis; the results were achieved by setting the
corresponding input [1], [2], or [3] to zero.

Deactivated Branch Delta acc. [%]
to No Deactivation

[1] Input image x −25.20
[2] Feature space z −4.32
[3] Generated image x̂ −3.20
[1] + [2] −37.36
[2] + [3] −22.94
[1] + [3] −32.43

No deactivation 97.56
Bold: the best results.
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5. Results and Discussion

Our novel OMS Monitoring pipeline represents an advancement in the development
of functional safety monitors. It effectively detects samples that were not part of the training
setup, preventing actions that could lead to severe consequences. As demonstrated in
Section 4.4, our OMS Monitoring pipeline, inspired by the HW-Malfunction detection,
achieves a balanced accuracy of 99.52% on OMS samples from previously unseen test sets.
Furthermore, it exhibits the highest AUROC of 99.46% among all evaluated monitors and
metrics. As was presented in Table 7, our pipeline excels in detecting adversarial attacks
designed to deceive the potentially safety-critical Encoder. The overall detection accuracy
is achieved by incorporating OMS distribution shift methods during OMS Monitor training.
However, it is important to note that detecting false positives, which were excluded from
the original dataset, remains the most challenging aspect of OMS detection. This behavior
is not unique to our monitoring pipeline and is consistent across SOTA methods, as shown
in Table 9. Our method achieves the best results as quantified by the Area Under the
Receiver Operating Characteristic and the probability of a negative (OMS) example being
misclassified as positive (IMS) when the TPR of the model is set to achieve 95%, that is,
FPR95TPR. Our weaker performance in AUPR compared to the current SOTA methods can
be explained by the optimization process of the OMS Monitor via Binary Cross-Entropy,
which rewards both TP and TN. This dichotomy can result in a slight decrease in precision,
as seen in Table 10.

Table 9. Results on the combined IMS+OMS test set incorporating other SOTA methods.

Monitor ↑ AUROC ↑ AUPR ↓ FPR95TPR

MSP [13] 61.28 95.50 100
ODIN [28] 73.32 97.71 100
Mahalanobis [16] 93.74 99.52 39.50
KLMatching [63] 66.17 95.81 83.70
MaxLogit [29] 61.44 95.49 100
EnergyBased [24] 61.30 95.42 100
Entropy [64] 61.60 95.55 100
DICE [65] 61.60 95.50 100
RMD [66] 81.49 98.16 63.93
ReAct [30] 62.05 95.53 99.98
ViM [10] 74.22 97.80 99.80
SHE [67] 56.13 95.19 100

TRYGEN (ours) 99.46 93.94 3.42
Bold: the best results.

Table 10. Confusion matrix, with terms reflecting the OMS binary classification.

Total Population Predicted cls.
71,928 Positive (IMS) Negative (OMS)

Tr
ue

cl
s. Positive (IMS) ↑ TP: IMS as IMS ↓ FN: IMS as OMS

4701 213

Negative (OMS) ↓ FP: OMS as IMS ↑ TN: OMS as OMS
2289 64,725

In Section 4.3, we have thoroughly discussed the contribution of the Generator to
the OMS Monitoring pipeline. The approximation of the IMS distribution of the Encoder
improved mainly due to the incorporation of the classification loss on the reconstructed
images and by utilizing the Latent Space Wrapper. Consequently, the OMS training showed
improved stability as well as better accuracy. A notable drawback of using the diffusion
architecture as the Generator throughout our experiment was the high inference time
caused by the iterative diffusion process. Even though the FID and IS scores of the diffu-
sion model were better than those of bigGAN, the bigGAN model achieved the highest
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ACCE(G(z)), which, as mentioned in Section 4.2.2, is more relevant in the context of the
OMS detection task.

6. Conclusions

Our TRYGEN OMS monitoring pipeline allows any pretrained Encoder to be inte-
grated, regardless of the working domain. We have demonstrated the potential for robust
OMS sample detection, with our main focus on utilizing the Generator as a universal
approximator of the Encoder’s latent space. Thanks to our improvements, the proposed
OMS detection pipeline was able to achieve high accuracy of 98.58% in detecting various
adversarial attacks, and additionally reached the highest AUROC of 99.46% and lowest
FPRTPR of 3.42% among all tested methods. We hope that the potential of our novel
monitoring pipeline will open doors to further topics and future work, including:

• Adjustment of our OMS detection pipeline to other tasks in computer vision and other
fields of machine learning such as natural language processing.

• Research into the possibility of approximating the intermediate encoder layers and
using end-to-end training, which we found to be inapplicable in the current research
due to our the definition of IMS.
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ODIN Out-of-Distribution Detector for Neural Networks
AUROC Area Under the Receiver Operating Characteristic
AUPR Area Under the Precision–Recall curve
FP False Positive
FN False Negative
TN True Negative
TNR True Negative Rate
TPR True Positive Rate
GAN Generative Adversarial Networks
FSGM Fast Gradient Sign Method
PGD Projected Gradient Method
UMAP Uniform Manifold Approximation and Projection
CCE Categorical Cross-Entropy
CCLDM Class-Conditional Latent Diffusion Model
WGAN Wasserstein GAN
IS Inception Score
FID Frechet Inception Distance

Appendix A

Appendix A.1. Latent Space Wrapper

Figure A1 depicts a non-trainable computational graph. Within the computational
process, we scale each layer’s input to the dimension of the tensor z with a given feature
map of dimensions (C, M, M). The left part of the graph depicts the latent feature space
reduction through Average and Max-Pooling layers. The right branch provides an example
of applied layers when the number of channels C is smaller than the required feature
space dimension of z. In this chart, operations such as upscaling and reshaping, which are
necessary for achieving the desired output tensor shape, are not visualized. The trainable
Wrapper replaces the Maximum Pooling layers with Convolutional layers, and uses the
calculated K as the kernel size and stride.

for L in Layers (C,M,M)

C > zi

K = C//zi

MaxPool2d
[k : (M,M), s : 1]

(C, 1, 1)

AvgPool3d
[k : (K, 1, 1), s : 1]

(zi, 1, 1)

K = zi//C

log2(n) = K

K = (M2//K)
0.5

K = M//(K//2)0.5

MaxPool2d
[k : (K,K), s : K]

(zi, 1, 1)

MaxPool2d
[k : (K,K), s : K]

Upsample
[scale factor : 2]

(zi, 1, 1)

concatenate

(NLayers, zi, 1, 1)

AvgPool3d
[k : (NLayers, 1, 1), s : 1]

(1, zi, 1, 1)

yes no

yes no

Figure A1. Diagram representing a computational graph of a non-trainable latent space wrapper.
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Appendix A.2. Performance of the Generator

During training, the Generator G minimizes the reconstruction loss between the origi-
nal xi and the generated image x̂i. This implies that the weights θG capture an approximated
function inverse to our model E. Consequently, the reconstructed image x̂i is the outcome
of Gθ(zi, ŷi), where zi generally represents a combination of aggregated feature spaces from
various layers. As we want to enhance the robustness of our OMS detection pipeline using
the reconstructed image x̂i from the Generator, it is important to ensure that it has the
best possible performance. Therefore, we conducted several additional experiments with
learnable and non-learnable latent space wrappers, with the results shown in Table A1.
The most robust performance was achieved by extracting the features via Max-Pooling
layers. All techniques and their influence are further summarized and listed in Table A2.

Table A1. Variations of the learnable and non-learnable latent space wrapper for the bigGAN
generator only, showing the differences in IS, FID, and ACCE(G(z)).

|z| = 64 ↑ IS ↓ FID ↑ ACCE(G(z))

avgPool 7.87 29.22 90.78
maxPool 7.92 28.04 91.96
learnable 6.89 32.07 78.45

Bold: the best results.

Table A2. Summary of all hyperparameters and techniques along with their influence on training the
Generator; FS stands for feature space.

Method/Hyper-Parameter ↑ ACCE(G(z)) Reference Reasoning

Encoders depth Small Table 4
Deploying more complex ResNet models on the CIFAR-10 dataset
did not improve the accuracy of the encoder, nor did it enhance
the performance of the decoder.

Encoders FS regularization Middle Table 5
Training with Dropout and Feature regularization influences FS
compactness and consequently improves the Generator’s training
performance.

Generators Architecture High Table 3
Similar results were achieved by the bigGAN model and
the Stable Diffusion model with latent class embedding. Compared
to bigGAN, the performance of the WGAN model was lower by 21%.

FS dimension Middle Figure 6a
The grid search method settled around the dimension of size 64, with
smaller and higher feature space dimensions resulting in lower ACCE(G(z)).

FS layers combination Middle Figure 6b
Combining features from more than one and deeper layers
resulted in higher ACCE(G(z)).

Trainable Latent Wrapper Small Table A1
The best results were achieved by fine-tuning the latent wrapper with
Max-Pooling layers. The combination with a trainable Conv2d
layer did not improve ACCE(G(z)).
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