
Citation: Usman, M.; Cao, W.; Huang,

Z.; Zhong, J.; Ji, R. OTM-HC:

Enhanced Skeleton-Based Action

Representation via One-to-Many

Hierarchical Contrastive Learning. AI

2024, 5, 2170–2186. https://doi.org/

10.3390/ai5040106

Academic Editor: Demos T. Tsahalis

Received: 11 September 2024

Revised: 22 October 2024

Accepted: 29 October 2024

Published: 1 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

OTM-HC: Enhanced Skeleton-Based Action Representation via
One-to-Many Hierarchical Contrastive Learning
Muhammad Usman 1,2 , Wenming Cao 1,2 , Zhao Huang 3, Jianqi Zhong 1,2 and Ruiya Ji 4,*

1 College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China;
usmanmuhammad2022@email.szu.edu.cn (M.U.); wmcao@szu.edu.cn (W.C.);
zhongjianqi2017@email.szu.edu.cn (J.Z.)

2 Guangdong Key Laboratory of Intelligent Information Processing & Shenzhen University,
Shenzhen 518060, China

3 Department of Computer and Information Science, Northumbria University, Newcastle NE1 8ST, UK;
zhao.huang@northumbria.ac.uk

4 Department of Computer Science, Queen Mary University of London, London E1 4NS, UK
* Correspondence: r.ji@se24.qmul.ac.uk

Abstract: Human action recognition has become crucial in computer vision, with growing applications
in surveillance, human–computer interaction, and healthcare. Traditional approaches often use broad
feature representations, which may miss subtle variations in timing and movement within action
sequences. Our proposed One-to-Many Hierarchical Contrastive Learning (OTM-HC) framework
maps the input into multi-layered feature vectors, creating a hierarchical contrast representation
that captures various granularities within a human skeleton sequence temporal and spatial domains.
Using sequence-to-sequence (Seq2Seq) transformer encoders and downsampling modules, OTM-
HC can distinguish between multiple levels of action representations, such as instance, domain,
clip, and part levels. Each level contributes significantly to a comprehensive understanding of
action representations. The OTM-HC model design is adaptable, ensuring smooth integration with
advanced Seq2Seq encoders. We tested the OTM-HC framework across four datasets, demonstrating
improved performance over state-of-the-art models. Specifically, OTM-HC achieved improvements
of 0.9% and 0.6% on NTU60, 0.4% and 0.7% on NTU120, and 0.7% and 0.3% on PKU-MMD I and II,
respectively, surpassing previous leading approaches across these datasets. These results showcase
the robustness and adaptability of our model for various skeleton-based action recognition tasks.

Keywords: skeleton-based action representation learning; unsupervised learning; hierarchical
contrastive learning; one-to-many

1. Introduction

Recognizing human actions is extremely important in various domains such as human–
computer interaction, intelligent surveillance, video content analysis, game control, and oth-
ers [1–3]. In recent years, significant advancements have been observed in 3D skeleton-
based action recognition using deep learning networks [4–6]. However, acquiring a more
critical representation of skeletons remains unresolved in skeleton-based action recognition.
To address this, a significant number of studies [5,7–11] have been carried out that employ a
fully supervised approach to train a network. However, such approaches required substan-
tial annotated 3D skeleton sequential data, demanding high costs and computational time.
Unsupervised learning, on the other hand, has emerged as a promising alternative, allow-
ing models to learn from data by leveraging intrinsic correlations without requiring labeled
samples. Recently, there has been an emerging trend in the field of action recognition learn-
ing known as unsupervised skeleton-based action representation learning (SKARL) [12–14].
This unsupervised SKARL scheme has gained remarkable attention due to its potential to
alleviate the burden of manual annotation.
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Existing efforts in action representation learning using SKARL fall into three distinct
categories: encoder–decoder-based methods [11,14], contrasting learning methods [15–17],
and hybrid methods [18,19]. The encoder–decoder frameworks initially transform the input
skeleton sequence into hidden features, which encompass skeleton reconstruction [11],
skeleton colorization prediction [20], and forecasting skeleton displacement prediction [21].
However, the contrasting learning techniques typically include the augmentation of an
input skeleton sequence, resulting in two augmented instances. The objective is to train an
encoder that produces more comparable representations for instances with the same skele-
ton while ensuring those instances with different skeletons have dissimilar representations.
On the other hand, the hybrid approaches incorporate the features of encoder–decoder and
contrasting learning. The initial approach of unsupervised SKARL [15] involved the adap-
tation of momentum contrast learning (MoCo) [22], originally designed for recognizing
images without supervision, which were adapted for identifying skeletal movements with-
out supervision. Subsequently, several enhanced contrastive learning methodologies were
introduced, which included the incorporation of uncertainty modeling for skeletons [23],
the investigation of additional positive pairings [22], and the use of advanced skeleton-
specific enhancements [16]. Contrastive learning methods typically begin by transforming
skeleton sequences denoted as X into features at the instance level that conduct holistic
instance-level contrast. Although the effectiveness of contrastive learning approaches has
been demonstrated, it is worth considering that holistic instance-level contrast may not
fully optimize the hierarchical structures inherent in human skeletons. A skeleton sequence
is commonly interpreted as either a temporal sequence of complete skeleton frames or a
spatial arrangement of skeleton joints. The frames or joints are fundamental elements in the
temporal or spatial domains. These can be further organized into larger-scale structures,
such as frame clips in the temporal domain or body parts in the spatial domain.

In this paper, we introduce a novel contrastive learning model termed OTM-HC (One-
to-Many Hierarchical Contrast) to enhance unsupervised SKARL, drawing inspiration
from the hierarchical organization of the human skeletal structure. The OTM-HC model
(as presented in Figure 1) strategically combines three input modalities, offering respective
advantages. The first input is the skeleton sequence X , where skeleton sequences are collected
that represent the subject’s movements. The collected data are derived from both the tem-
poral and spatial domains. Capturing temporal and spatial data allows for a more detailed
and nuanced analysis of dynamic patterns and movement characteristics. The second input
is the velocity calculation (vel). We calculate velocity data from the original skeleton sequence
to enhance the model’s understanding of dynamic components, visually representing how
actions evolve and transform over time. This emphasizes the model’s proficiency in decod-
ing and identifying dynamic elements, a critical aspect of tasks related to human motion
analysis. In a harmonized integration, the two inputs above are meticulously merged
through concatenation. This fusion endows the model with an enhanced and adaptable
feature representation. Input three is the reference skeleton sequence X, an identical duplicate
of the initial data retained for reference, debugging, or future use. Third, input incorpora-
tion is also useful for method control and preventing mislearning. By merging these inputs
through hierarchical contrastive learning, OTM-HC improves upon traditional methods by
capturing multi-level action representations. Specifically, the hierarchical approach allows
the model to process data at instance, domain, clip, and part levels, which enables it to
capture both fine-grained and high-level details of human movements. Unlike previous
flat contrastive learning models, OTM-HC’s hierarchical structure allows it to separate and
recognize actions with higher granularity, making it more robust and adaptable to complex
action recognition tasks. In summary, OTM-HC offers the following contributions:

1. The OTM-HC enhances hierarchical encoder networks for skeleton sequences by
incorporating advanced Seq2Seq encoders with unified downsampling modules.
This model effectively captures complex temporal and spatial details, ensuring full
congruence with advanced Seq2Seq transformer encoders.
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2. The OTM-HC is a contrastive-learning-based model designed to enhance unsuper-
vised SKARL by incorporating three inputs: skeleton sequences (X), velocity data
(Vel), and reference skeleton sequences (X). These inputs capture actions’ static and
dynamic features, enriching the OTM-HC ability to identify comprehensive patterns
and further strengthening unsupervised SKARL.

3. Comprehensive experiments on the four datasets show the uniqueness of OTM-HC
and set a new benchmark for unsupervised SKARL, showing the strong transferability
of the learned representations.
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Figure 1. The proposed OTM-HC methodology employs a one-to-many hierarchical contrastive
learning model, utilizing three key inputs: original skeleton sequences, velocity data, and reference
skeleton sequences. This approach efficiently develops unsupervised action representations, focusing
on both static and dynamic aspects of skeletal actions.

The rest of the paper is organized as follows: Section 2 reviews the existing studies
in related work. Section 3 introduces our proposed model for unsupervised action rep-
resentation learning. Section 4 details the experimental environment and the employed
methodologies. Section 5 discusses the insights from the ablation study. Section 6 encapsu-
lates our findings in the conclusion.

2. Related Work
2.1. Skeleton-Based Action Recognition

In computer vision research, recognizing actions based on skeletal information is a
fundamental and complex study area. Motion recognition algorithms depending on skeletal
structure are typically implemented by leveraging geometric interconnections among
skeleton joints [24–27]. Contemporary approaches greatly emphasize deep neural networks;
for instance, in [28], a hierarchical recurrent neural network (RNN) is used for processing
body key points. In addition, attention-based techniques suggest different pathways of
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automatically identifying significant skeleton joints [29–32] and video frames [30,31] to
improve adaptive learning of the concurrent manifestation of skeleton joints. Recurrent
neural networks frequently encounter the issue of gradient vanishing [33], which can
lead to challenges in optimization. Recently, the interest has been in graph convolution
networks (GCNs) [34,35] for skeleton-based action recognition. This approach introduces
spatial–temporal graph convolution networks to extract spatial and temporal structural
characteristics from skeleton data. Building upon the success of the transformer model,
as reported in [17,36], recent studies [37,38] have started employing its proficient capabilities
in sequence processing for tasks involving skeleton data.

2.2. Contrastive Learning

The study in [15] initiated the application of contrastive learning techniques within
the domain of unsupervised SKARL. Various techniques [39–42] utilize a representation
learning method that compares positive and negative pairs. The technique aims to enhance
the similarity between representations of positive pairs while increasing the dissimilarity
between representations of negative pairs. The primary area of attention is to explore the
construction of pairs to get resilient representations. The simple framework for contrastive
learning (SimCLR), as suggested by [43], employs various data augmentation techniques,
including random cropping, Gaussian blur, and color distortion, to generate positive sam-
ples. In the study [43], a memory module with a queue structure is implemented to store
negative samples. This queue undergoes regular updates throughout the training proce-
dure. Notably, contrastive learning has attracted considerable interest among researchers in
unsupervised SKARL. The momentum contrast (MoCo) method enables contrastive learn-
ing through a singular stream approach [22]. To leverage the knowledge from the other
streams, a multiview contrastive learning approach is introduced in [44], while multiple
models to acquire knowledge from various representations of skeletons are studied in [45].
The study in [16] introduced targeted spatial and temporal augmentations for skeleton data,
aiming to enhance the spatio-temporal consistency in the learned representations, wherein
three different types of encoders are used to make contrasts across various architectures.
In another study by [23], skeleton sequences were converted into a probabilistic embedding
space. They measured similarity based on how close these probabilistic distributions were
to each other.

2.3. Hierarchical Human-Skeleton-Based Modeling

Many successful attempts have been made to explore the hierarchical representation
of human skeletons; these include several studies like [6,26,46], where hand-crafted designs
are employed to represent the spatial hierarchical structure. However, they did not examine
the temporal hierarchical structure, which is crucial for capturing the dynamic aspects
of human actions over time. In [19], temporal hierarchical cues are highlighted at the
frame, clip, and video levels to enhance their methodology. The Hierarchical Transformer
framework helps us model spatial and temporal features [46], and they are further inspired
by hierarchical transformer’s (Hi-TRS’s) self-supervised hierarchical pre-training scheme,
which captures these connections at multiple levels [19]. Previous works have modeled
human skeletons with hand-crafted designs, focusing primarily on the spatial hierarchical
structure while neglecting the temporal dimension, highlighting key limitations in these
approaches. Conversely, our modified approach represents both temporal and spatial
hierarchical structures, facilitating easier implementation and leading to a more compre-
hensive understanding of action dynamics. Additionally, unlike prior models that depicted
skeletons solely at the instance level, our proposed scheme captures the representation of
skeletons across multiple levels: instance, domain, clip, and part.

3. The Proposed Framework

The flowchart of the proposed OTM-HC model, illustrated in Figure 2, contains two
primary components: (A) a hierarchy-based encoder network that effectively captures
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comprehensive information from temporal and spatial domains, resulting in hierarchical
multi-level representations and (B) One-to-Many hierarchical contrastive learning, a method
that improves the contrastive learning process by facilitating one-to-many comparisons
across four levels. This approach aligns with the hierarchical structure of human skele-
ton systems, providing an efficient and unsupervised learning environment. In contrast,
the flexibility of graphic representation is enhanced by employing the attention mecha-
nisms [29,47,48]. These mechanisms are designed to dynamically identify unique attributes
by analyzing spatial arrangements and temporal variations within the data. Next, the two
main components of OTM-HC are discussed in detail.
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Figure 2. (A) The OTM-HC model is built around a hierarchical encoder network, which seamlessly
integrates a Seq2Seq encoder with innovatively designed Unified Downsampling Modules (UDM).
(B) OTM-HC employs a hierarchical one-to-many contrast approach, conducting contrastive learning
across four levels, utilizing a shared encoder within the same branch.

3.1. A Hierarchy-Based Encoder Network

The hierarchy-based encoder network is composed of temporal and spatial branches,
each tailored to fulfil a distinct role in processing the concatenated input data, which
consists of the skeleton sequence X and the calculated velocity (vel). The temporal branch is
tasked with encoding data from the temporal domain, with a specific focus on capturing the
dynamics of time across various levels of granularity, leading to the creation of clip-level
representations. On the other hand, the spatial branch is dedicated to processing spatial
domain information, generating part-level representations by encoding at multiple spatial
granularities. These clip-level and part-level representations are then utilized to construct
domain-level and instance-level representations. The architectural design of this network
effectively combines the temporal and spatial characteristics of the input data, thereby
enabling robust feature extraction for downstream tasks such as action recognition and
retrieval analysis.

3.1.1. Clip-Level Representation

In the context of a skeleton sequence denoted by X ∈ RT×J×3, where T denotes the
number of frames and J represents the number of joints, with each joint defined by three
spatial coordinates, the initial step involves transforming the sequence into a time-major
format. This results in a sequential list of frames Xc = {xc

i }T
i =1, ∈ RT·3J , where xc

i denotes
the i-th frame, representing a complete human skeleton. A frame embedding transforms
the input into a C-dimensional dense feature space using two fully connected layers. To be
more specific, a transformed feature is generated from this process xc

i and is obtained as:

xc
i = W2(σ(W1xc

i + b1)) + b2. (1)
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where the transformation matrices are W1 ∈ RC·3J and W2 ∈ RC·C, the bias vectors are
b1 ∈ RC and b2 ∈ RC, and the ReLU activation function is denoted by σ. This embedding
encapsulates the distinct frame-level attributes of each alignment, maintaining information
on joint positions within an organized feature space. Moreover, the aggregate representation
of all predicted attributes is expressed as Xc

1 = {xc
i }T

i =1 ∈ RT·C. These characteristics are
designated as the basic frame representation for ease of reference. However, frame-level
features individually are insufficient for capturing the temporal relationships necessary
for representing dynamic events. We propose dividing the sequence into many temporal
segments, enabling the model to analyze movement variations across different timescales.
The first step involves creating clips with varying temporal granularities, after which
Seq2Seq encoders are employed to capture and represent temporal dependencies within
each clip.

3.1.2. Segment Creation

A unified downsampling module (UDM) is introduced to generate clips with varying
temporal granularities, which effectively combines consecutive frame or clip data sequen-
tially, creating increasingly coarse-grained clips. The organizational structure of UDM is
illustrated in Figure 2 and can precisely be described by the following equation:

U(·) = MaxPool1D[ln(σ(GCNConv(·)))] (2)

where GCNConv denotes a one-dimensional graph convolutional operation with a kernel
size of 5 and a stride size of 1. The symbol σ represents the ReLU activation function, which
applies non-linearity by filtering out negative values from the GCNConv output, thereby
retaining only positive activations. LN stands for Layer Normalization, and MaxPool1D
refers to a one-dimensional max pooling with a kernel size of 2. A one-dimensional
convolutional layer allows for collecting contextual information nearby, while max pooling
helps aggregate this information. UDM can be configured in series to produce clips with a
more coarse-grained structure. Additionally, frames are treated as individual clips with
a granularity of 1 for descriptive purposes. Although the resulting feature vectors differ
in detail, they are expected to exhibit similarities in their predominant sense because they
represent related actions or features. These shared characteristics reflect underlying patterns
or behaviours common to the overall structure of the activity, which the UDM captures.
Using UDM, it is straightforward to obtain clips with higher granularity, as shown in the
following equation:

Xc
n+1 = U(Xc

n). (3)

We can obtain clips with various temporal granularities by applying UDM L − 1 times in
series, such as Xc

1, Xc
2, . . . , Xc

L.

3.1.3. Temporal Maximum Pooling

The temporal relationship for each granularity level of clips is further simulated using
a Seq2Seq encoder. To elaborate, the clips Xc

n are input into a Seq2Seq encoder transformer,
followed by a temporal max pooling layer (TMaxP) for feature aggregation. As a result,
the clip-level feature vc

n at the granularity of n is produced as:

vc
n = TMaxP(Seq2Seq(Xc

n)). (4)

This method leverages the outputs from all time steps of the Seq2Seq encoder. Thus, when
provided with a set Xc

1, Xc
2, . . . , Xc

L of L granularities, we can derive the ultimate clip-level
representation, denoted as Vc, which encompasses L feature vectors:

Vc = {vc
1, vc

2, . . . , vc
L}. (5)
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3.1.4. Part-Level Representation

The process of acquiring the part-level representation is similar to obtaining the clip-
level representation. Therefore, we primarily focus on specifying the distinct choices at
the part level. Here, we take the skeleton sequence X ∈ RT·J·3 and transform it into a
space-major domain list of joints Xp = {xp

i }i∈J,∈ RJ·3T , where xp
i represents the i-th joint,

essentially a progression of a joint over time. Similarly, a joint embedding is employed
to derive the first joint representation, XP

1 ∈ RJ·C. We utilize the Unified Downsampling
Module (UDM) to capture diverse spatial granularities by aggregating nearby joints into
increasingly larger body segments. In this context, UDM combines adjacent joints or
components to form larger-sized parts. Sequentially using UDM L − 1 times enables us
to obtain components with varying spatial resolutions Xp

1 , Xp
2 , . . . , Xp

L. Each level’s spatial
dependencies are then encoded using a Seq2Seq encoder combined with max pooling,
resulting in the final part-level representation Vp = {vp

1 , vp
2 , . . . , vp

L}. Pooling operations at
each granularity reduce noise by focusing on the most significant movements within each
part, yielding a robust feature representation.

3.1.5. Domain-Level and Instance-Level Representation

We currently have a clip-level representation encompassing diverse temporal reso-
lutions, symbolized as Vt, along with a part-level representation that captures a range of
spatial resolutions, indicated as Vs. These multi-granular representations are systematically
integrated to construct the domain-level and instance-level representations. The temporal-
domain representation, vt, is derived from synthesizing all L feature vectors at the clip level.
Similarly, the spatial-domain representation, vs, is obtained by combining all corresponding
feature vectors from the part level:

vt = F(Vc) = F(vc
1, vc

2, . . . , vc
L),

vs = F(Vp) = F(vp
1 , vp

2 , . . . , vp
L),

(6)

where F(·) denotes the fusion operator applied across several feature vectors, with concate-
nation being on the method used in our implementation. Furthermore, the integration of
temporal-domain and spatial-domain representations into the instance-level representation
vi is accomplished by concurrently combining them:

vi = F(vt, vs). (7)

It is important to note that while several hierarchical representations have been devel-
oped [5,19], the ultimate skeletal sequence representation relies solely on the instance-level
representation vi. As explained in a subsequent section, alternative representations convey
the one-to-many hierarchical contrasts.

3.2. One-to-Many Hierarchical Contrasts

We introduce an innovative method beyond traditional instance-level contrast in
a one-to-many hierarchical contrastive approach. The method extends the contrastive
analysis to multiple feature levels within the data, encompassing instance-level, domain-
level, clip-level, and part-level features. To achieve this, our approach draws inspiration
from the evolving MoCo framework, as detailed in [43]. Our approach utilizes a query and
a key encoder, operating alongside a dynamic dictionary queue and a moving averaged
update mechanism. Moreover, following the scheme in [49], we employ a two-layer
multilayer perceptron for feature projection before contrastive analysis. We maintain
the same notation for the projected features as the original work for clarity and brevity
in our descriptions. We use a hat symbol ( ˆ ) to signify features derived from the key
encoder and m to denote features from the queue. This one-to-many hierarchical contrastive
methodology represents a significant advancement in contrastive learning, enabling a more
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comprehensive understanding of data patterns and relationships across multiple levels
of abstraction.

3.2.1. One-to-Many Instance-Level Contrast

Following the study conducted by [50], we employ the noise contrastive estimating
loss InfoNCE [51] as a means of contrast. The contrastive loss is calculated at the instance
level as follows:

Linstance = −log
exp(vi.v̂i/τ)

exp(vi.v̂i/τ) + ∑mj
i∈Mi exp(vi.mi

j/τ)
, (8)

where τ represents the temperature hyper-parameter and the term mij refers to the jth
negative sample from the first-in-first-out queue Mi, which contains previously projected
features at the instance level.

3.2.2. One-to-Many Domain-Level Contrast

At the domain level, it is postulated that a skeleton sequence demonstrates parallelisms
in representations across both temporal and spatial domains. This assumption is based
on the idea that temporal and spatial representations provide distinct yet complementary
insights into the same skeleton sequence and should, thus, align with high-level semantics.
To realize this, we introduce a hierarchical contrastive loss function that targets two cross-
domain feature sets, representing temporal-spatial (vt-vs) domain features, respectively.
This loss function is designed to encourage the network to align the temporal and spatial
features of the same skeleton sequence while facilitating the differentiation of features from
different skeleton sequences:

Ldomain = −log
exp(vt.v̂s/τ)

exp(vt.v̂s/τ) + ∑ms
j∈Ms exp(vt.ms

j /τ)

−log
exp(vs.v̂t/τ)

exp(vs.v̂t/τ) + ∑mt
j∈Mt exp(vs.mt

j/τ)
. (9)

3.2.3. One-to-Many Clip-Level Contrast

It is crucial to note that the clip-level representation comprises multiple feature vec-
tors, each varying in temporal granularity. Although these vectors differ in detail, they
should exhibit similarities in their predominant sense. Consequently, we consider clip-level
attributes affirmatively across various granularity levels within the same input instance.
For implementation purposes, the anchor sample is considered the clip-level feature at a
granularity of 1 and is deemed positive with other granularities of the same input. The con-
trastive loss at the clip level is calculated using the InfoNCE method, which includes a
greater number of positive pairs:

Lclip = −log
∑L

l=1 exp(vc
1.v̂c

l /τ)

∑L
l=1 exp(vc

1.v̂c
l /τ) + ∑mc

j∈Mc exp(vc
1.mc

j /τ)
, (10)

3.2.4. One-to-Many Part-Level Contrast

The contrastive loss at the part level is computed based on the representation of
individual parts, similar to the approach used for clip-level contrast. It is expressed as:

Lpart = −log
∑L

l=1 exp(vp
1 .v̂p

l /τ)

∑L
l=1 exp(vp

1 .v̂p
l /τ) + ∑mp

j ∈Mp exp(vp
1 .mp

j /τ)
. (11)



AI 2024, 5 2178

Ultimately, the network is trained by minimizing the cumulative losses described
above. The calculation for deriving the total loss is specified as follows:

Ltotal = Linstance + Ldomain + Lclip + Lpart.

4. Experimental Environment
4.1. Datasets

NTU-60 [42]. NTU-RGB+D is a widely used human interaction dataset featuring
multiple views and subjects. It is one of the most popular datasets for skeleton-based tasks,
including more than 56,880 action samples from NTU-60, which covers 60 different action
categories. We follow two suggested protocols: (a) Cross-Subject (xsub), where the data for
training and testing are collected from different subjects to ensure a cross-subject approach,
and (b) Cross-View (xview), where the data used for training and testing are gathered from
various camera perspectives.

NTU-120 [5]. NTU-120 covers 120 action categories and includes more than
114,480 action examples. Two recommended protocols are adopted: (a) Cross-Subject
(xsub), where the training and testing data are obtained from 106 different subjects, and
(b) Cross-Setup (xset), where the data for training and testing are gathered from 32 differ-
ent setups.

PKU Multi-Modality [52]. PKU-MMD is an extensive dataset that provides a compre-
hensive 3D analysis of human actions, consisting of nearly 20,000 scenarios and 51 action
labels. The dataset is divided into two subsets: Part I, a simplified version, and Part II,
which presents more complex data due to significant variations in perspective and utilizes
a cross-subject protocol.

4.2. Implementation Details

To ensure an equal comparison, we utilize the data augmentation techniques outlined
by [16], which include shearing, joint jittering, and temporal cropping. Shearing and joint
jittering are spatial transformations: shearing randomly rotates the poses of the skeleton,
while joint jittering randomly shifts the joints around their original positions. Temporal
cropping improves sequential data by randomly selecting a starting frame and resampling
it to a predefined length at different intervals. We employ a Seq2Seq Transformer encoder,
using a one-layer Transformer for S2S encoding. Note that the encoders for all granularities
within a branch are shared. We set the model dimension C and encoder output size to 512 to
balance computational efficiency with representational capacity. The output dimension for
MLP projection is set to 128, allowing for compact feature embeddings during contrastive
learning. The dynamic dictionary queue size is 2048, providing diverse negative samples,
while the temperature value τ is set to 0.2 to sharpen distinctions between positive and
negative pairs. For optimization, we use SGD with a momentum of 0.9 and a weight
decay of 0.0001 to stabilize convergence and reduce overfitting. The model is trained for
450 epochs with an initial learning rate of 0.01, decayed by a factor of 0.1 at epoch 350. We
employ a mini-batch size of 64, balancing memory efficiency with convergence stability.
Performance is measured using Top-1 Accuracy for classification tasks.

4.3. Quantitative Evaluation

Two common evaluation techniques, cross-subject (xsub) and cross-view (x-view),
are implemented on NTU-60 and NTU-120 datasets. In reference [13], the x-sub analysis
findings are presented on the PKU-MMD I and II datasets. The metric of highest accuracy,
denoted as Top-1 accuracy, is commonly employed to evaluate performance.

4.4. Comparison with the Previous State-of-the-Art Methods

In this study, our objective is to precisely compare the robustness of the OTM-HC
approach against a range of contemporary unsupervised methods that currently define the
state-of-the-art. The analyzed methods include encoder–decoder models, contrastive learn-
ing techniques, and innovative hybrid models. Specifically, our analysis encompasses meth-
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ods such as ISC [16], MS2L [13], Colorization [20], H-Transformer [46], GL-Transformer [21],
SkeAttnCLR [45], ActCLR [44], Predict & Cluster [12], AimCLR [17], HYSP [53], HaLP [54],
Masked Colorization [55], and Hico-T [56]. Our evaluation framework focuses on two tasks
central to the current research: skeleton-based action recognition and retrieval. These tasks
have been the focal points of several notable studies, including MS2L [13] and Skeleton-
Contrastive [16], among others. It is crucial to emphasize that to tackle these downstream
tasks effectively, each model undergoes an initial phase of unsupervised training conducted
without reliance on labeled data, highlighting the genuinely unsupervised nature of the
models. Once this foundational training phase is complete, the models are well-prepared
for subsequent evaluative tasks.

4.4.1. Joint-Based Action Recognition

In this task, an additional linear classifier, specifically a fully connected layer, is
integrated into the skeleton sequence representation derived from the pre-training model
corresponding to the target dataset. The classifier is initially trained on the preceding
dataset. Following the methodologies of previous studies [13,17,57], the pre-training model
is kept in a frozen state, with the primary focus of training being on the linear classifier.
Table 1 summarizes the performance achieved on the NTU-60, NTU-120, PKU-MMD I,
and PKU-MMD II datasets. The OTM-HC models we propose consistently show superior
performance compared to earlier techniques across various categories, often by a significant
margin. Among the four datasets, the OTM-HC models exhibit the lowest performance
on PKU-MMD II. This is attributed to the greater challenges presented by this dataset,
primarily due to increased noise from variations in viewpoint [17]. Even on this challenging
dataset, our state-of-the-art model outperforms the existing methodologies. These results
underscore the usefulness of the proposed OTM-HC framework for unsupervised skeleton-
based action recognition.

4.4.2. Joint-Based Action Retrieval

Here, we simulated the conditions described in [16,17]. When dealing with an action
query, the training samples are examined to identify the most similar action, using cosine
similarity as the metric. The results for the NTU-60 and NTU-120 datasets are presented in
Table 2. Our OTM-HC model, which employs a single transformer encoder, consistently
prevails over the existing methods. These findings prove that the action representation
derived from the OTM-HC model exhibits a higher level of discrimination.

Table 1. Comparisons to the best state-of-the-art methods for the downstream task of skeleton-based
action recognition across four different datasets. A plus sign (+) indicates that the results incorporate
multiple modalities, such as joint, bone, and motion views. In contrast, other results use only a single
joint view as input. The best result is highlighted in bold, while the second-best result is underlined.

Method Type Encoder
NTU-60 NTU-120 PKU-MMD I PKU-MMD II

x-Sub x-View x-Sub x-Setup x-Sub x-Sub

ISC (2021)[16] Contrastive Learning GRU&CNN&GCN 76.3 85.2 67.1 67.9 80.9 36.0
MS2L (2020) [13] Hybrid Learning GRU 52.6 - - - 64.9 27.6
Colorization (2021) [20] Encoder–Decoder GCN 75.2 83.1 - - - -
H-Transformer (2021) [46] Encoder–Decoder Transformer 69.3 72.8 - - - -
GL-Transformer (2022) [21] Encoder–Decoder Transformer 76.3 83.8 66.0 68.7 - -
AimCLR (2022) [17] Contrastive Learning GCN 74.3 79.7 63.4 63.4 87.8+ 38.5+

SRCL (2022) [58] Contrastive Learning GCN 76.7 82.5 67.1 67.5 - -
HYSP (2023) [53] Contrastive Learning GCN 78.2 82.6 61.8 64.6 83.8 -
HaLP (2023) [54] Contrastive Learning GRU 79.7 86.8 71.1 72.2 - 43.5
SkeAttnCLR (2023) [45] Contrastive Learning GCN 80.3 86.1 66.3 74.5 87.3 52.9
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Table 1. Cont.

Method Type Encoder
NTU-60 NTU-120 PKU-MMD I PKU-MMD II

x-Sub x-View x-Sub x-Setup x-Sub x-Sub

ActCLR (2023) [44] Contrastive Learning GCN 80.9 86.7 69.0 70.5 - -
Hico-T (2023) [56] Contrastive Learning Transformer 81.1 88.6 72.8 74.1 89.3 49.4
Masked Colorization (2024) [55] Contrastive Learning DGCNN 79.1+ 87.2+ 69.2+ 70.8+ 89.2+ 49.8+

Our work OTM-HC Contrastive Learning Transformer 82 89.2 73.2 74.8 89.9 50.1

Table 2. This study aims to compare state-of-the-art algorithms for skeleton-based action retrieval
using two datasets: NTU-60 and NTU-120. The best result is highlighted in bold, and the next best
result is underlined.

Methods Encoder
NTU-60 NTU-120

x-Sub x-View x-Sub x-Set

AimCLR (2022) [17] GCN 62.0 - - -
Predict&Cluster (2020) [12] GRU 50.7 76.3 39.5 41.8
ISC (2021) [16] CNN 62.5 82.6 50.6 52.3
HaLP (2023) [54] GCN 65.8 83.6 55.8 59.0
SkeAttnCLR (2023) [45] Transformer 69.4 76.8 46.7 58.0
Hico-T (2023) [56] Transformer 68.3 84.8 56.6 59.1

Our work OTM-HC Transformer 70.74 85.44 57.1 61.07

4.5. Visualization Results

The t-SNE (t-distributed Stochastic Neighbor Embedding) visualizations were utilized
to project high-dimensional joint stream data into a 2D space, revealing the clustering
patterns within the NTU60 and NTU120 datasets. This technique highlights how well the
model separates different action classes. We optimized the t-SNE perplexity by minimizing
the Davies-Bouldin Index (DBI), ensuring clearer cluster separation. This approach allowed
us to observe distinctive patterns and relationships, emphasizing the model’s robustness in
capturing complex human activities, as depicted in Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 3. Cont.
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Figure 3. t-SNE visualizations of feature embeddings derived from the one-to-many hierarchical
contrast model on the NTU-60 and NTU-120 datasets, focusing on the joint stream. The distinct
clusters reveal the model’s ability to capture global action patterns and fine-joint-specific nuances.
These visualizations illustrate how the model effectively balances the representation of local move-
ment details with global structural patterns, enhancing its capability to differentiate complex human
actions. (a) NTU60 x-sub; (b) NTU60 x-view; (c) NTU120 x-sub; (d) NTU120 x-set.

5. Ablations Studies

We thoroughly examine all the improvements made to the proposed OTM-HC model.
We perform ablation studies on the NTU-60 dataset, specifically within the framework of
the skeleton-based action recognition downstream task. In these experiments, we use a
transformer as the standard encoder for our model.

5.1. Efficiency of One-to-Many Hierarchical Contrast

The results of the one-to-many hierarchical comparison across various features at
different levels, namely, instance, domain, and clip & part levels—are presented in Table 3.
All models utilize the hierarchical encoder network. The instance level represents individual
sample features, while the domain level aggregates features across broader categories,
and the clip & part level captures finer-grained segmentation within each action sequence.
Notably, the model employs instance-level contrast using the same contrastive learning
methods as CrosSCLR [57] and AS-CAL [15]. Including domain-level and clip & part-level
one-to-many contrasts leads to improved outcomes, demonstrating the effectiveness of
the one-to-many hierarchical contrast approach. Performance is evaluated using Top-1
Accuracy, which measures the model’s classification accuracy by comparing the highest-
probability predictions with the ground truth.

Table 3. Performance of one-to-many hierarchical contrast on multi-level characteristics. All variants
apply different loss functions to a shared representation that captures multiple levels of detail. The
best result is highlighted in bold.

Instance
Level

Domain
Level

Clip & Part
Level

W/OTM-HC x-Sub x-View

yes yes yes NO 80.5 88.3
yes yes yes yes 82 89.2

5.2. Efficiency of Different Fusion Methods

We also examine various fusion methods for combining two branches: element-wise
sum, Hadamard product, and weighted sum. The findings are presented in Table 4,
indicating that the concatenation operation yields the most favourable outcomes.
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Table 4. The evaluation of our model performance utilizing various fusion techniques on the NUT-
60 dataset. The best result is highlighted in bold.

Fusion Methods x-Sub x-View

Hadamard product 79.81 86.05
weighted sum 80.72 87.94

Element-wise sum 80.62 87.83
Concatenation 82 89.2

5.3. Success of Different UDM Structures

It is important to note that the Unified Downsampling Module (UDM) operates
through a Graph Convolution Layer (GCNConv), followed by a max-pooling process.
As shown in Table 5, an experiment was conducted where max-pooling was replaced with
mean-pooling. The results revealed that the mean-pooling approach produced perfor-
mance comparable to the max-pooling method. Additionally, it is observed that omitting
GCNConv in these two models leads to a consistent decline in performance. These out-
comes underline the importance of incorporating the GCNConv technique within the UDM
framework. According to reference [16], our models consistently surpass the current best
model in terms of UDM structures. This further validates the effectiveness of our proposed
OTM-HC architecture.

Table 5. The performance of our model with varying UDM arrangements on the NTU-60 dataset
is evaluated.The best result is highlighted in bold.

Arrangments x-Sub x-View

GCNConv + Adaptive-MAxpooling 80.2 88.1
GCNConv + max-Pooling 82 89.2
Conv1d + mean-pooling 80.8 88.4

Max-pooling 78.8 87.3

5.4. Effectiveness of Skeleton Sequence Views

We report the performance solely based on the collective perspective of skeletons
as input. For a comprehensive comparison, we also explored different perspectives on
skeleton sequences and a three-stream fusion approach involving joints, motions, and bones,
as previously investigated in [17,57]. Regarding fusion, our methodology aligns with the
parameters set forth by [57]. The results are briefly displayed in Figure 4. The models we
have developed constantly demonstrate superior performance compared to their rivals,
with noticeable margins, further confirming our suggested methodology’s efficiency.

5.5. Different Level Representation

We conducted the ablation study for each hierarchical level in our model by focusing
on the instance, domain, clip, and part levels. By systematically disabling each level
and observing the impact on performance, we demonstrated the significant contributions
of each component. As shown in Table 6, although each level independently enhances
performance, the combination of all three levels produces the optimal results. Following this
scheme, the accuracy of the NTU-60 x-sub and x-view protocols is improved to 82 and 89.2,
respectively, signifying the complementary nature of these hierarchical representations.
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Figure 4. This study compares performance by utilizing various views of skeletal sequences, specifi-
cally focusing on x-sub and x-view, within the context of the NTU-60 dataset.

Table 6. Comparative analysis of performance metrics across different levels of abstraction.

Instance Level Domain Level Clip & Part Level
NTU-60

x-Sub x-View

✓ ✓ ✓ 82 89.2
✓ - - 80.3 88.1
✓ ✓ - 80.9 88.6

6. Conslusions

In summary, we proposed a new contrastive learning framework, OTM-HC, for un-
supervised SKARL that can learn more discriminative representation in unsupervised
circumstances and possesses strong transferability by combining multiple-level represen-
tation and hierarchical contrast. In addition, through an extensive series of experiments,
we have validated the effectiveness of OTM-HC, signifying its success in state-of-the-art
performance when dealing with unsupervised SKARL tasks. Given the simplicity and
effectiveness of OTM-HC, we believe OTM-HC can be utilized as a new robust baseline for
unsupervised SkARL. Future research may investigate adaptive domain weighting and
domain-specific tuning to enhance the framework for diverse real-world applications.
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