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Abstract: This study analyzes the nonlinear optical properties exhibited by graphene, focusing on the
nonlinear absorption coefficient and the nonlinear refractive index. The evaluation was conducted
using the Z-scan technique with a 532 nm wavelength laser at various intensities. The nonlinear
optical absorption and the nonlinear optical refractive index were measured. Four machine learning
models, including linear regression, decision trees, random forests, and gradient boosting regression,
were trained to analyze how the nonlinear optical absorption coefficient varies with variables such as
spot radius, maximum energy, and normalized minimum transmission. The models were trained with
synthetic data and subsequently validated with experimental data. Decision tree-based models, such
as random forests and gradient boosting regression, demonstrated superior performance compared to
linear regression, especially in terms of mean squared error. This work provides a detailed assessment
of the nonlinear optical properties of graphene and highlights the effectiveness of machine learning
methods in this context.

Keywords: nonlinear optical properties; Z-scan technique; nonlinear refractive index; synthetic data;
mean squared error

1. Introduction

With recent technological advancements, material characterization has become crucial
for effective implementation. Nonlinear optical (NLO) properties have captured researchers’
interest due to their potential in various applications [1]. Among the NLO effects of interest
are third-order effects, which are described by the nonlinear optical absorption coefficient
(β) and the nonlinear refractive index (n2) [2]. These coefficients can vary depending on
inherent characteristics of the sample studied and the optical irradiation used.

Graphene is a form of carbon consisting of a single layer of atoms arranged in
a hexagonal structure. This two-dimensional arrangement gives it unique properties that
make it attractive for various technological and scientific applications. Among its no-
table features are its high thermal and electrical conductivity, as well as its flexibility and
strength [3]. In terms of optical properties, graphene exhibits exceptional characteristics:
nearly 97% transparency, high electrical conductivity, and a nonlinear response to light,
including two-photon absorption, saturation effects, and nonlinear dispersion [4].

Graphene has been studied using the Z-scan technique with lasers of various wave-
lengths and in combination with other compounds [2]. A study on graphite oxide (GO)
thin films using the open-aperture Z-scan technique revealed that GO exhibits saturable
absorption when irradiated with a 532 nm Q-switched Nd:YAG laser. The nonlinear ab-
sorption coefficient was calculated, indicating its potential for applications in Q-switched
mode-locked laser systems [5]. A study found that combining graphene oxide with gold
nanorods enhances their NLO properties [6].
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Reduced graphene oxide (rGO) is obtained by removing some oxygen groups, result-
ing in a structure closer to pure graphene with improved electrical conductivity. Research
highlights the differences between GO and rGO due to their distinct structural and elec-
tronic properties, which significantly impact their NLO behavior. This comparison pointed
out the potential optimization of these materials for specific applications [7]. Moreover, stud-
ies on nanocomposites of GO and rGO with ZnO have revealed valuable linear and NLO
properties, making these materials promising candidates for optoelectronic applications [8].
Investigations into the synthesis methods of rGO further demonstrate significant changes
in third-order NLO properties, underscoring the importance of material preparation in
tuning optical responses [9].

Recent advancements in machine learning have further enhanced the study of NLO
properties. One study utilized Gradient Boosting Decision Trees (GBDTs) to synthesize
and optimize carbon dots with tunable third-order nonlinear susceptibility, observing
nonlinear switching behavior under varying laser energies [10]. Another study employed
deep learning models based on the ResNet-152 architecture to analyze complex NLO
diffraction patterns, improving data interpretation through advanced neural networks [11].
An additional study developed a machine learning regression model for predicting the
band gap of multi-element NLO crystals, offering precise estimations critical for designing
materials with tailored optical properties [12]. Collectively, these studies highlight the
transformative impact of machine learning on the understanding and prediction of NLO
behavior in advanced materials.

Nonlinear optics offers applications in technology and engineering. It enables fre-
quency generation, such as second- and third-harmonic generation, which creates light
with shorter wavelengths; two-wave mixing can produce new frequencies for tunable
lasers. In optical signal processing, it facilitates light modulation for data transmission in
communication networks. It is also used in optical limiters and switches to control light
transmission, and in the development of specialized light sources and tunable lasers [13].

The objective of this research is to conduct experimental measurements of the nonlinear
optical refractive index and the nonlinear absorption coefficient in graphene using the Z-scan
technique. To achieve this, experimental measurements were carried out, and four machine
learning models were trained: linear regression, decision tree regression, random forest
regression, and gradient boosting regression, using simulated data to determine the NLO
absorption coefficient. Subsequently, analytical calculations based on experimental tests were
performed to establish a benchmark, and the trained models were validated with experimental
data to assess their performance and accuracy in predicting the optical parameters.

2. Materials and Methods
2.1. Sample Preparation

The graphene sample was synthesized using the mechanical exfoliation technique.
This technique, also known as the “scotch tape” method, is a process for obtaining
two-dimensional materials such as graphene from original three-dimensional crystals
like graphite [14]. The method involves separating individual layers of the original material
using mechanical forces [15].

In practice, adhesive tape is applied to a piece of graphite and then removed, pulling
along some layers of graphite. These obtained layers are placed on a silicon dioxide (SiO2)
substrate to facilitate their study in nonlinear optics.

This synthesis technique is notable for being a simple and low-cost process. However,
its main limitation is that it is primarily used for research purposes and is not suitable for
large-scale production [16].

The Raman spectroscopy of thin graphene layers is shown in Figure 1. It can be
observed that the D band appears at approximately 1300 cm−¹, while the G band is located
near 1600 cm−¹. The prominence of the D band, which is associated with defects in the
sample, is particularly noteworthy and can be attributed to the synthesis method used,
which involved deposition without precise control over the thickness of the layers. In
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contrast, the G band is characteristic of carbon atoms with sp² hybridization, representing
a key signal that should be present in any carbon-based material.
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Figure 1. Raman spectroscopy of thin layers of graphene.

2.2. Experimental Setup

In order to determine β and n2 of a graphene monolayer, the Z-scan method was
employed [2]. This technique involved moving the material along the propagation axis
of a laser beam and measuring the transmission of the beam through the material at
different positions [17].

Figure 2 shows the elements employed in the Z-scan technique. A laser with a 532 nm
wavelength (Continuum SL II-10, Cambridge, MA, USA) with 4 ns pulses was used. The
beam is reflected by a mirror (Newport, model 5105, CA, USA) toward a converging
lens (Newport, model KBX064, CA, USA) with a focal length of 10 cm. The sample was
displaced over a range of 8 mm, passing through the focal point. The transmitted beam
values are collected by a photodetector (Newport, model 818E-10-25-S, CA, USA) and
recorded by a detector (Newport, model 2936-R, CA, USA).

AI 2024, 5, FOR PEER REVIEW 4 
 

 
Figure 2. (a )  Schematic setup of the Z-scan experiment. (b )  Photo of the Z-scan experimental 
setup. 

The mathematical model [18] representing the transmittance of the Z-scan with an 
open aperture is given by 

( )
0

2
( ) 1

2 2 1
effI L

T z
x

β
= −

+
 (1) 

where 0I  is the peak irradiance that depends on the energy, ( )01 / αL
effL e α−= −  is the ef-

fective length, L is the thickness of the sample, α is the linear coefficient absorption, and 
𝑥𝑥 is defined as 

0x Z Z= , where 0z  is the Rayleigh length expressed as 2
0 0 /z πω λ= , 

with 𝜔𝜔0 being the spot radius and λ  the wavelength used. 
The Z-scan technique generates a series of transmittance points as a function of the 

position 𝑧𝑧 of the laser beam as it passes through the sample. To calculate β, it is necessary 
to normalize the data obtained along the scan and determine the minimum transmittance 
value, which typically occurs at 0z = , when the beam is focused. By solving for β from 
the corresponding equation and evaluating at 0z = , we obtain 

( )
0

2 2 1 (0)

eff

T
I L

β
−

=  (2) 

If the Z-scan setup is with a closed aperture, we describe then the following relation: 

( )( )0 2 2

4( , ) 1
9 1

xT z
x x

∆Φ
∆Φ = −

+ +
 (3) 

where 0∆Φ  is the maximum on-axis nonlinear phase shift, 𝑥𝑥 is defined as 0x /z z= , 

and 0z  is the Rayleigh length given by 2
0 0 /z πω λ= . Here, 0ω  is the spot radius and 

λ  is the wavelength used. The maximum nonlinear phase shift 0∆Φ  is related to the 

peak irradiance 0I  and 2n  is estimated by the following expression: 

0 0 effk n L∆Φ = ∆  where 0 2 0n n I∆ =  (4) 

In the experimental setup of the Z-scan, the incorporation of a mirror allows the laser 
beam energy to be expanded, thus helping to prevent unwanted thermal effects. Although 
using low energy in the laser beam is effective, continuous measurements can lead to heat 
buildup in the sample. For this reason, a cooling period is implemented between each 

Figure 2. (a) Schematic setup of the Z-scan experiment. (b) Photo of the Z-scan experimental setup.



AI 2024, 5 2206

The mathematical model [18] representing the transmittance of the Z-scan with
an open aperture is given by

T(z) = 1 −
βI0Le f f

2
√

2(x2 + 1)
(1)

where I0 is the peak irradiance that depends on the energy, Le f f =
(

1 − e−αL
0

)
/α is the

effective length, L is the thickness of the sample, α is the linear coefficient absorption, and
x is defined as x = Z/Z0, where z0 is the Rayleigh length expressed as z0 = πω2

0/λ, with
ω0 being the spot radius and λ the wavelength used.

The Z-scan technique generates a series of transmittance points as a function of the
position z of the laser beam as it passes through the sample. To calculate β, it is necessary
to normalize the data obtained along the scan and determine the minimum transmittance
value, which typically occurs at z = 0, when the beam is focused. By solving for β from the
corresponding equation and evaluating at z = 0, we obtain

β =
2
√

2(1 − T(0))
I0Le f f

(2)

If the Z-scan setup is with a closed aperture, we describe then the following relation:

T(z, ∆Φ0) = 1 − 4∆Φx
(x2 + 9)(x2 + 1)

(3)

where ∆Φ0 is the maximum on-axis nonlinear phase shift, x is defined as x = z/z0, and
z0 is the Rayleigh length given by z0 = πω2

0/λ. Here, ω0 is the spot radius and λ is the
wavelength used. The maximum nonlinear phase shift ∆Φ0 is related to the peak irradiance
I0 and n2 is estimated by the following expression:

∆Φ0 = k∆n0Le f f where ∆n0 = n2 I0 (4)

In the experimental setup of the Z-scan, the incorporation of a mirror allows the laser
beam energy to be expanded, thus helping to prevent unwanted thermal effects. Although
using low energy in the laser beam is effective, continuous measurements can lead to heat
buildup in the sample. For this reason, a cooling period is implemented between each
measurement. Additionally, short paths of 8 mm are chosen, and the irradiance region is
varied in each measurement to ensure the repeatability of the results.

2.3. Dataset Generation

Four machine learning regression models were implemented: linear regression, de-
cision tree regression, random forest regression, and gradient boosting regression. These
models were selected for their simplicity, ease of use, and ability to make accurate predic-
tions. Linear regression is well known and widely used in various problems due to its
intuitive understanding and straightforward implementation.

On the other hand, decision tree-based models, such as decision tree regression, offer
additional advantages, such as resistance to overfitting, making them ideal for smaller
datasets [19]. These models require less data to train effectively and have significantly
lower computational costs compared to neural network-based models. Furthermore, ran-
dom forest regression improves accuracy and robustness by combining multiple decision
trees [20], while gradient boosting regression optimizes performance by building models
sequentially and correcting errors from previous models [21].

The use of neural networks can present certain challenges. For instance, they require
large amounts of data to generalize correctly [22], which are not always available. They
also typically demand extensive hyperparameter tuning, which can be a labor-intensive
and time-consuming process. Neural networks are often considered “black boxes”, making
it difficult to interpret their results and understand how decisions are made [23].
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To train any machine learning model, it is necessary to have a large amount of data,
whether experimental or synthetic. Using the transmission relation (Equation (1)), we can
generate the necessary data to train machine learning models and then validate the results
with experimental data.

The aim is to estimate the β magnitude based on three variables: the spot radius (ω),
the minimum transmission value T(z) when z = 0, and the maximum irradiance value. The
latter is a function of the detector energy, so the maximum energy Emax will be used. The
function is given by

β = β(ω, Tmin, Emax) (5)

A Python script was used to create the dataset. The variables were randomly generated
within an estimated range, according to Table 1. The transmission values were calculated
using the minimum value of the function T(0).

Table 1. Variation of parameters for dataset generation.

Minimum Value Maximum Value

β[cm/GW] 6.0 × 10−5 9.0 × 10−4

ω[mm] 1 5
Emax[J] 1.5 × 10−4 8.0 × 10−4

The dataset has a size of 4000 instances, which is sufficient to train the machine learning
models. The data are saved and shown in Table 2, where the values of the absorption
coefficient, maximum energy, minimum transmission, and spot radius can be observed.

Table 2. Fragment of the dataset generated with values for training the models.

T(0) ω [mm] Emax [J] β [cm/GW]

0.930 2.8 0.00031 0.00031
0.955 4.4 0.00030 0.00050
0.881 4.5 0.00049 0.00087

3. Results and Discussion
3.1. Z-Scan Measurements

We calculate NLO properties of graphene monolayers knowing the value of α

(1.37 × 105 cm−1). To calculate α, we employed the Beer–Lambert law, which helped
us to obtain it as a function of sample thickness [24]. When the sample is thin, the lin-
ear coefficient absorption is high, and this happens because the energy cross is absorbed
in a small area by the thinness of the sample [25]. We found that the linear absorption
coefficient can be higher with a thinner sample. The graphene sample that we studied
has a thickness of 1.7 nm, and the high linear absorption coefficient happens because the
sample needs to absorb whole-energy light in less area. When we quantify the linear optical
properties and the thickness of the sample, we can evaluate the effective length Le f f , which
we determined to be 1.68 nm. This result is important to confirm that the graphene sample
has a low absorbance percentage, which is around 2.3% [26].

The transmission values as a function of distance are shown in Figure 3. The experimental
values are represented by black circles and black squares for two different intensities, while
the theoretical values are shown with a solid green line and a dashed blue line. The behaviors
differ due to the nonlinear characteristics of the sample as a function of the transmitted
beam energy. The energies used were 0.35 mJ (black circles) and 0.22 mJ (black squares).
The nonlinear absorption coefficient was calculated according to Equation 2 for each of the
intensities. The resulting values of β are 5.39 × 10−4 cm/GW and 9.31 × 10−5 cm/GW for
the respective intensities. It can be observed that absorbance depends on the energy supplied
to the sample, with higher energy leading to larger multiphoton absorption by the graphene,
significantly decreasing the transmittance. Other characteristics might also contribute to
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the sample’s behavior, such as the sample’s structure, resulting in inhomogeneous effects at
different laser intensities even with the same wavelength.
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Figure 3. Normalized transmission values of a graphene monolayer at two different powers. The
experimental data are represented as black circles and black squares. The green solid line and blue
dashed line represent the theoretical model.

A Z-scan with a closed aperture was performed to evaluate the optical properties of
graphene. The experimental results are shown in Figure 4, where the experimental data
are represented by black circles and the theoretical approximation is depicted with a solid
green line. Figure 4 illustrates how the transmission behavior through graphene varies with
the distance from the focus. This experiment is useful for determining the NLO refractive
index of graphene, which has been found to be n2 = 3.23 × 10−12 cm2/GW. This value
provides insight into the ability of graphene to induce a change in the refractive index in
response to the optical field intensity.
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Table 3 presents a comparison of the NLO absorption coefficient of the materials
studied in this work with similar materials reported in the literature. The β values for GO,
rGO, GO-ZNO, and rGO-ZNO were obtained from previous studies and are presented in
units of cm/GW, while the n2 values are reported in cm2/GW. Additionally, the results for
the reference materials S-rGO and H-rGO are included, along with the values obtained for
monolayer graphene from the present study, highlighting both β and n2.

Table 3. Comparison of β and n2 of the present study material with similar materials from literature.

Sample β (cm/GW) n2 (cm2/GW) Reference

rGO 8.3 × 10−5 14.3 × 10−12 [8]

GO-ZNO 3.6 × 10−4 22.9 × 10−12 [8]

rGO-ZNO 8.4 × 10−4 31.9 × 10−12 [8]

S-rGO (10 mg)-ZnO 5.8 × 10−5 - [27]

S-rGO (30 mg)-ZnO 11 × 10−5 -

H-rGO (10 mg)-ZnO 7.5 × 10−5 - [27]

H-rGO (30 mg)-ZnO 15 × 10−5 -

ZnP-GO 2.80 × 10−5 - [28]

ZnP-rGO 6.58 × 10−5 -

rGO/ZnO S 4.66 × 10−5 3.39 × 10−11 [9]

rGO/ZnO C 19.10 × 10−5 3.40 × 10−11 [9]

Monolayer graphene 5.39 × 10−4 3.23 × 10−12 Present work

Monolayer graphene 9.31 × 10−5 - Present work

3.2. Machine Learning

A synthesized dataset of 4000 instances was generated, each with different values
of minimum transmittance, maximum energy, and spot radius. From the generated data,
3200 instances were used for training and 800 for testing.

Figure 5 shows the behavior of the NLO absorption coefficient with respect to its
variables. It is observed that the NLO absorption coefficient with respect to the laser beam
radius in Figure 5a exhibits a quadratic relationship. This behavior is consistent with
the transmission Equation (1), as the terms involving the beam radius are quadratic [18].
Therefore, β increases as the radius increases.

On the other hand, Figure 5b shows a behavior of 1/E, where E is the supplied energy.
This makes sense because, upon reviewing Equation 2, the function β is related to the
intensity of the laser beam, which in turn is linked to the energy through the relationship
I0 = E·t/π·ω. Thus, I0 is linearly proportional to the energy of the beam. The graph
shows that the material cannot absorb all the assigned energy, causing the NLO absorption
coefficient to gradually decrease.

Figure 5c demonstrates a linear relationship between the NLO absorption coefficient
and the normalized minimum transmission. These data define the normalized depth of the
transmission graph.

The beam radius directly influences the function’s opening, the minimum transmission
affects the valley value, and the maximum energy provides a scale relative to the energy
values supplied to the sample.
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3.2.1. Decision Tree Regression

Decision tree regression is performed through decision-making. It refers to making
decisions in the form of branches, thereby forming a tree that is built from the root until
an estimated value is obtained. Some hyperparameters that can be modified include the
data size per node and leaf, as well as the depth of the tree [29].

Figure 6 shows the performance of decision trees. The solid lines represent the error
with the synthesized training data, while the dashed lines represent the error with the
synthesized test data. It can be observed that as the tree depth increases, the error decreases
exponentially. It can be estimated that the model performs well with an average depth of
13. As for other hyperparameters, such as the number of data points per node and leaf, no
notable improvement is observed.
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3.2.2. Random Forest Regression

The random forest follows the same logic as decision trees, with the difference that it oper-
ates on a larger scale. In other words, while a decision tree involves single branches, a random
forest implements multiple decision trees, thus reducing the MSE [30]. A particularity is that
each tree is independent of the others, so errors are not corrected among them [20].

Figure 7 shows the mean squared error vs. the number of trees used. Two types
of graphs are visible: dotted lines represent error with respect to synthesized test data,
and solid lines represent error with respect to synthesized training data. In all cases,
hyperparameters for data in nodes and leaves also vary.

The graph shows better performance with 200 decision trees and a node size of 2 data
and a leaf size of 1 dat. Although the error graph might appear more distant compared to
the decision trees, it should be emphasized that the error magnitude is much smaller in
random forests, so this model is expected to perform much better.
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3.2.3. Gradient Boosting Regression

This learning model uses a structure similar to that of random forests, i.e., it imple-
ments several decision trees. However, unlike random forests, this model takes into account
the error of the previous tree, using that error and improving it for the base of the next tree.
It can be said that while in random forests, the trees are individual, in this model, the trees
communicate with each other, significantly improving performance [21].

In Figure 8, it is observed that the error decreases significantly with 200 trees imple-
mented. Adding depth to each tree and changing the learning rate results in different
curves. Here, the optimal model is 200 decision trees with a depth of 15 and a learning rate
of 0.01, as the training and test data are very close and cannot be separated.
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3.2.4. Implementation

The previously mentioned models were trained using 3200 data points and evaluated
with 800 data points. A linear regression was included to check the behavior.

Figure 9 shows the four models implemented for predicting the NLO absorption
coefficient. On the x-axis is the predicted value by the model in question, and on the y-axis
is the actual value from the training data. Ideally, where the predicted and actual data are
the same, they should plot a straight line at a 45-degree angle.

As the data are completely statistical, we must consider that the closer the data are to
the dotted line, the better the regression model will perform.

As can be observed in Figure 5, the data do not behave linearly, so any linear solution
will result in high error in the predictor data and, therefore, will not be suitable for this
type of problem. This can be seen in Figure 9a in the first graph, where the data appear
scattered and even show negative values.

Nonlinear problems can indeed be solved with other machine learning methods.
Decision tree-based models perform better when predicting the absorption coefficient.
However, it is observed that the data are still scattered when using decision trees Figure 9b
and gradient boosting Figure 9d.

With the random forest model (Figure 9c), the data appear more concentrated on the
diagonal, indicating that this model performs better compared to the other three. This may
be due to the depth of the trees and the fact that the trees are independent, unlike gradient
boosting, where the trees are sequential and account for the errors of the previous trees.
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Figure 9. Predicted data for β (y-axis) versus synthesized test data for β (x-axis) separated by
the models used. (a) Linear regression; (b) decision tree regression; (c) random forest regression;
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Figure 10 shows the MSE of the four machine learning models. We know that linear
methods will not work with problems that do not exhibit this behavior, leading to excessive
error and inefficient models. Decision tree-based models perform better, and it is noted
that the random forest model is optimal for this problem, with the least error, which
is reflected in Figure 9.
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3.2.5. Testing with Experimental Data

Using the Z-scan technique, experimental results were obtained with which we can
evaluate the models. The experimental results are shown in Table 4. The columns represent
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the values that were inputs for the learning models, and the value of the NLO absorption
coefficient was evaluated by comparing the estimated value with the experimental value.

Table 4. Experimental data values.

Spot Radius [mm] Maximum Energy [J] Normalized
Minimum Value

Experimental Value
of β [cm/GW]

2.5 × 10−2 3.661 × 10−4 8.594 × 10−1 4.44 × 10−4

2.1 × 10−2 2.663 × 10−4 9.203 × 10−1 2.49 × 10−4

1.3 × 10−2 3.209 × 10−4 9.387 × 10−1 6.01 × 10−6

2.2 × 10−2 3.632 × 10−4 7.774 × 10−1 5.25 × 10−4

2.2 × 10−2 3.596 × 10−4 7.383 × 10−1 6.53 × 10−4

1.0 × 10−2 2.484 × 10−4 9.276 × 10−1 5.51 × 10−5

1.6 × 10−2 2.459 × 10−4 9.019 × 10−1 1.93 × 10−4

1.6 × 10−2 2.413 × 10−4 9.131 × 10−1 1.75 × 10−4

2.0 × 10−2 2.827 × 10−4 8.508 × 10−1 3.95 × 10−4

Figure 11 shows the four models used and how their predictions compare. It can
be seen that all four models perform well in estimating the NLO absorption coefficient.
However, it is worth noting that due to the limited amount of experimental data, there
is not a significant dispersion, and it cannot be determined whether the model works
correctly. This is noticeable in linear regression Figure 11a, where the data are very close
to the diagonal, but when observing the behavior with synthesized test data in Figure 9a,
there is a large dispersion of the data.
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(d) gradient boosting regression.

Different plots show better performance in making predictions; the optimal model
seems to be the random forest regression (Figure 11c), where the values are observed to be
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on the diagonal, providing a very small margin of error compared to the other models. The
error can be seen in Figure 12, where it is verified that the model that generated the lowest
error in estimating the NLO absorption coefficient is the random forest regression.
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It is worth noting that the model with the worst performance was the gradient boosting
model. In the plots in Figure 11, it can be observed that this model has a greater dispersion
with respect to the diagonal, which is confirmed by the error graph (Figure 12). This may
be due to the amount of data generated, and as mentioned earlier, the model uses a nested
decision tree method that takes into account the errors of the previous tree. If these errors
were not corrected, the error grew abruptly, which could be a disadvantage for the model
in future applications with limited data.

4. Conclusions

This study highlights the significant NLO properties of monolayer graphene, empha-
sizing its β and n2 magnitudes. The Z-scan measurements, both open- and closed-aperture,
provided critical insights into the interaction of laser light with graphene under different
intensities, demonstrating that higher energies lead to more pronounced multiphoton ab-
sorption effects. The observed discrepancies between experimental and theoretical values
suggest that other nonlinear phenomena and material characteristics, such as structural
effects, significantly influence graphene’s optical response.

Comparisons with similar materials, such as GO, rGO, and their composites with ZnO,
revealed that monolayer graphene exhibits comparable or superior NLO performance.
This underscores its potential in optical applications where strong nonlinear responses are
desired, such as optical limiters, modulators, and sensors.

Furthermore, machine learning models were employed to predict the NLO absorp-
tion coefficient based on key experimental parameters, demonstrating that random forest
and gradient boosting regression provided the most accurate predictions. These models
allowed for a deeper understanding of how β varies with spot radius, maximum energy,
and normalized minimum transmission, establishing a more comprehensive approach to
characterizing NLO materials. The gradient boosting regression model excelled due to its
iterative error correction, proving to be a powerful tool for modeling complex nonlinear
relationships in optical materials.

The integration of experimental techniques with advanced data analysis and machine
learning provides a solid framework for the characterization of NLO materials. This
approach not only enhances the prediction of the optical properties of graphene but also
offers a scalable methodology for other nanomaterials of interest.

Future work could refine the models by incorporating additional variables, such as the
crystal structure and defects of the material, as well as exploring the influence of different
wavelengths. Furthermore, the application of deep learning techniques for analyzing large
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volumes of data could reveal complex patterns and optimize the design of new materials.
These efforts could lead to the development of more efficient optical devices and highly
sensitive sensors, expanding the applications of graphene.
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