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Abstract: The artificial bee colony (ABC) algorithm is a famous swarm intelligence method utilized
across various disciplines due to its robustness. However, it exhibits limitations in exploration
mechanisms, particularly in high-dimensional or complex landscapes. This article introduces the
adaptive exploration artificial bee colony (AEABC), a novel variant that reinspires the ABC algo-
rithm based on real-world phenomena. AEABC incorporates new distance-based parameters and
mechanisms to correct the original design, enhancing its robustness. The performance of AEABC
was evaluated against 33 state-of-the-art metaheuristics across twenty-five benchmark functions
and an engineering application. AEABC consistently outperformed its counterparts, demonstrating
superior efficiency and accuracy. In a variable-sized problem (n = 10), the traditional ABC algorithm
converged to 3.086 × 106, while AEABC achieved a convergence of 2.0596 × 10−255, highlighting
its robust performance. By addressing the shortcomings of the traditional ABC algorithm, AEABC
significantly advances mathematical optimization, especially in engineering applications. This work
underscores the significance of the inspiration of the traditional ABC algorithm in enhancing the
capabilities of swarm intelligence.
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1. Introduction

Optimization algorithms [1] use a technique to find the best solution in a space of
candidate solutions. Since its inspiration by Dervis Karaboga in 2005 [2], the artificial bee
colony (ABC) algorithm has been considered a cornerstone in swarm intelligence (SI). The
ABC algorithm mimics the behavior of foraging honeybees, consisting of three categories:
employed bees, onlookers, and scouts. The algorithm governs the exploration and ex-
ploitation processes, defining the search engine as globally optimal in a search landscape.
Despite its proven efficiency, the ABC algorithm, like many contemporaries, presents some
disadvantages [3]. Researchers have identified key areas, particularly in its exploration
mechanisms, where it performs sub-optimally, particularly in high-dimensional or com-
plex landscapes. This shortcoming has encouraged ongoing research on enhancing the
algorithm’s robustness through modifications and hybridizations with other metaheuristic
approaches [4,5].

The inspiration engine of the artificial bee colony came with a significant issue: the
concept did not consider that in real life, honeybees consider the distance between the
exhausted source of food and the new proposed food source. Employed bees naturally
tend to move to the closest food sources rather than with an equal probability of moving to
the nearest or farthest ones. Ignoring this fact reduced the capability of ABC’s inspiration
engine and mathematical model (discussed in Section 3). Experiments discussed later also
demonstrate this shortcoming.

Optimization has seen significant advancements in developing and applying various
novel algorithms. These algorithms, which draw inspiration from natural phenomena,
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biological processes, and physical laws, provide varied methods for addressing complex op-
timization problems in fields such as engineering [6], finance, optimal design [1], logistics,
control [7], and artificial intelligence [8]. This paper provides an overview of some inno-
vative optimization algorithms applied to the experiments while evaluating the adaptive
exploration artificial bee colony (AEABC) algorithm. One of the critical algorithms is the
Ant Lion Optimization (ALO) [9], developed based on the hunting behavior of antlions. On
the other hand, the Bayesian Optimization Algorithm (BOA) [9] uses Bayesian techniques
to guide the search for optimal solutions, providing a robust strategy for dealing with
complex landscape explorations. The Gray Wolf Optimization (GWO) [10] imitates the
hierarchy of leading and hunting behavior seen in a pack of grey wolves in the environment.
The Particle Swarm Optimization (PSO) [11] is an algorithm inspired by social behavior in
fish and birds. Many researchers have applied it due to its simplicity and effectiveness in
navigating the search space.

Similarly, the Sine Cosine Algorithm (SCA) [12] utilizes mathematical functions to
simulate the explorative moves of search agents. The Whale Optimization Algorithm
(WOA) [13] was developed and inspired by the bubble-net hunting strategy of humpback
whales. Another noteworthy algorithm is Dynamic Differential Annealed Optimization
(DDAO) [14,15], which introduces dynamic elements into the differential optimization
framework to enhance convergence speed and accuracy. The Bat Algorithm (BA) [16]
models the echolocation behavior of bats, while the Firefly Algorithm (FF) [17,18] mimics
the bioluminescent communication of fireflies. The Krill Herd (KH) algorithm [19] simulates
the herding behavior of krill individuals in finding denser areas of food. The Multi-verse
Optimizer (MVO) [20] originates from the theory of multi-verse in physics, representing
multiple possible solutions through universes. The Squirrel Search Algorithm (SSA) [21]
simulates the foraging behavior of squirrels. The gravitational search algorithm (GSA) [22]
uses mass interactions and the law of gravity to perform the search, and the Dolphin
Echolocation (DE) [23,24] simulates how dolphins identify and locate their prey through
echolocation. Furthermore, the Flower Pollination Algorithm (FPA) [25] and the Fast
Evolutionary Programming (FEP) [26] are influenced by the natural pollination process of
flowers and evolutionary strategies, respectively. The State of Matter Search (SMS) [27],
Moth-Flame Optimization (MFO) [28], and the Genetic Algorithm (GA) [29] draw from
physics, the navigational method of moths in nature, and biological evolution principles,
respectively. The Fertilization Algorithm (FO) [30] emulates the process of biological
fertilization, and the Harmony Search (HS) is developed based on the improvisation
process of musicians. Each of these algorithms has unique characteristics and has been
applied successfully to solve specific optimization problems, demonstrating the richness
and diversity of approaches in the optimization field.

This work introduces the adaptive exploration artificial bee colony (AEABC), a novel
variant of the traditional ABC algorithm. Integrating new distance-based parameters into
the bees’ decision-making processes allows AEABC to navigate the search space more
effectively, thereby improving the algorithm’s efficiency and accuracy in finding a global
optimal. This enhancement addresses the deficiencies observed in ABC’s ability to handle
complex mathematical optimization problems. This study performs a rigorous comparative
analysis against 33 efficient metaheuristics across twenty-five benchmark functions and
an engineering application. The results illustrate AEABC’s superior performance, notably
in scenarios involving large-scale optimization problems, where it dramatically outpaces
the traditional ABC. Also, the experiments express the robustness and superiority of the
AEABC algorithm on small-scale and constrained optimization problems. The follow-
ing sections will guide the reader through the theoretical underpinnings of the AEABC,
followed by detailed experimental results and analyses, highlighting the algorithm’s ver-
satility and robustness. By considering both the theoretical and practical aspects, this
work contributes a substantial advancement to the field of mathematical optimization and
demonstrates the applicability of AEABC in critical engineering contexts.
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2. The ABC Algorithm

Dervis Karaboga [31] introduced an optimization method known as artificial bee
colony, which utilizes the SI principles. The algorithm is a metaheuristic that successfully
solves multidimensional optimization issues. The behavior of the honey bee colony’s
foraging mimics that based on a model presented by Tereshko and Loengarov [32]. The
model of the ABC algorithm consists of the following components:

1. Employed bees: Each employed bee (proposed solution) is associated with a specific
food source (solution), which it explores locally to find better positions (solutions).
The employed bee randomly modifies the current solution to generate a new one
in the neighborhood. If this new solution has a higher fitness value (indicating a
more desirable solution), the food source’s position is updated. Employed bees share
information about the food source’s quality with onlooker bees upon returning to
the hive.

2. Onlooker bees: They remain in the hive and receive information from the employed
bees; bees share their information using waggle dance [33]. In optimization, we can
say that onlooker bees are proposed solutions that improve themselves based on the
fitness values of the employed bee solutions.

3. Scout bees: When a food source (proposed solution) fails to improve after several
attempts, it is abandoned. In other words, if a proposed solution does not improve
over a specific number of iterations, then it should be deleted and replaced by a
new randomly generated solution. The associated employed bee then becomes a
scout and begins a random search for a new food source. This mechanism introduces
randomness, helping the algorithm escape local optima and discover new, potentially
more fruitful areas of the search space.

4. Food source: This is the location where nectar resides in multidimensional space; in
optimization, it is a proposed solution that can be improved over iterations.

Bees in the ABC algorithm communicate through shared information about food
source quality (fitness value of the solutions), similar to the “waggle dance” observed in
natural bee colonies. Employed bees returning to the hive signal their food source’s quality,
allowing onlooker bees to make informed choices. This communication enhances the
colony’s search efficiency. In the ABC algorithm, the employed bee solutions communicate
with onlooker solutions via Equation (3). Additionally, bees transition between roles
dynamically: employed bees can become scouts, and scouts can become employed when
discovering new sources. ABC algorithm (Algorithm 1) can be summarized as follows:

Algorithm 1: Pseudocodeof the ABC algorithm

Scout Bee Phase
do
Employed bee Phase
Onlooker bee Phase
If (Employed bee Phase and Onlooker bee Phase) have no improvement
Then, call for Scout bee Phase
Memorize the best solution in the current trial
Until (stop condition)

The low-level structures of the algorithm’s sections interact to influence the global
level. All bees can be considered scouts at the initialization stage, randomly looking for
new source food (solution). Let x be a solution vector:

x = (x1, x2, xi . . . , xm−1, xm) (1)

where m ∈ Rn j = 1. . . m.
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The foraging behavior in the ABC algorithm utilizes the following equation to express
finding new solutions in the search space [2]:

vij = xij + φi(xij − xkj) (2)

where vi is a new solution vector; φi is a randomly generated number between −1 and 1;
and i (i = 1 to n) is the solution index in the (n) number of populations. j is the index of a
variable in a solution, and k is a random number representing different random indexes in
the population of solutions.

The onlooker bees employ a probability function as a function of the fitness value to
choose the optimal option. The roulette wheel selection method [34] provided a means to
accomplish this. The probability of a solution (Pi) should be:

Pi =
fi

n
∑

i=1
fi

(3)

fi =

{
1

1+Oi
Oi ≥ 0

1 + abs(Oi) Oi < 0

}
(4)

where fi is the fitness value, and Oi is the value of the objective function. Initially, all the
bees in the algorithm are considered scouts. However, as the algorithm progresses, these
bees exchange roles between employed and onlookers. The bees whose solution remains
unchanged after several trials must relinquish their employment and convert into scouts.
The abandonment criteria, also known as limit control, play a crucial role in escaping local
minimums and enabling the search for the global minimum in an optimization problem.
The MathWorks website [35] provided the ABC algorithm’s code implementation using
MATLAB R2021a.

3. The AEABC Algorithm

With its three segments, the ABC algorithm does not pay attention to the distance to
the food source. In other words, new solutions emerge using the neighborhood structure
expressed in Equation (2). The random index k in Equation (2) means that a randomly
chosen solution from the population provides the basis for a new solution. Thus, the
original ABC algorithm ignored the bees’ preference for the nearest food source if they
had multiple choices. The far-source food has a lower probability than the probability of
the nearest source food, and the bee leaves its current position for another position with a
higher probability. This probability is calculated based on the distance between the current
position of a bee and the randomly chosen position of another bee in the swarm. This
probability parameter enhances the shared knowledge among the agents of the swarm. In
other words, bees in the swarm share their positions with a random set of other bees, and
that enhances the swarm’s intelligence. We can say the same thing for onlooker bees in
the hive when extracting information from employed bees through waggle dance; they
consider the nearest food source if different employed bees come from various sources. The
proposed algorithm, adaptive exploration artificial bee colony (AEABC), comes to redesign
the original ABC algorithm to include the distance criteria in the mathematical model. In
machine learning, various distance metrics measure the similarity or dissimilarity between
data points, such as the Manhattan or Hamming distance. Euclidean distance can be used
for Cartesian spaces:

d =
∥∥∥xij − xkj

∥∥∥ (5)

where d is the distance between any solution in the population and a solution of random
index k in the population. The distance probability Pd, based on the distance parameter,
can be calculated as follows:

Pd = e−
1
d (6)
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The distance probability significantly impacts the search engine, as revealed in
Section 5. If the random number r ∈ [0, 1] > Pd, then the candidate solution generated by
Equation (2) can be shifted as follows:

Sij = r vij (7)

where Sij is the shifted solution. Table 1 explains how the distance between two solutions
can affect the probability of shifting a solution in a search landscape.

Table 1. Probabilities of shifting a new solution based on its distance from the current population.

d Pd Description Condition: Is (r∈[0,1]>P)

Long distance Pd = e−( 1
High value ) High value of Pd (close to 1)

There is a lower probability that the
current solution shifts according to

Equation (7).

Short distance Pd = e−( 1
Low value ) Low value of Pd (close to 0)

There is a higher probability that the
current solution shifts according to

Equation (7).

4. Designing and Executing the Experiment

Several benchmarks with different complexities provide a basis for comprehensively
examining the AEABC algorithm. Also, the benchmarks supported other metaheuristics,
allowing for their comparisons to the AEABC on a specific benchmark. Table 2 shows
seven unimodal test functions with their variable size (D), search space (Range), and global
minimum (fmin).

Table 2. Unimodal benchmarks.

Symbol Description Dimension Range fmin

F1 f =
n
∑

i=1
x2

i
30 [−100, 100] 0

F2 f =
n
∑

i=1
|xi|+

n
∏
i=1

|xi| 30 [−100, 100] 0

F3 f =
n
∑

i=1

(
i

∑
j−1

xj

)2
30 [−100, 100] 0

F4 f = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5 f =
n−1
∑

i=1

(
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
)

30 [−100, 100] 0

F6 f =
n
∑

i=1
([xi + 0.5])2 30 [−100, 100] 0

F7 f =
n
∑

i=1
ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

Table 3 reveals six multimodal benchmarks with a more complex search landscape
with many local minima/maxima. The benchmarks in Tables 4 and 5 are used to evaluate
the AEABC algorithm on large-scale and small-scale variable sizes, respectively where F1
to F7 refer to the test function number.
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Table 3. Multimodal benchmarks.

Symbol Description Dimension Range fmin

F8 f =
n
∑

i=1
−xi sin

(√
|xi|
)

30 [−500, 500] −418.9829 × 5

F9 f =
n
∑

i=1

[
x2

i − 10 cos(2π xi) + 10
] 30 [−5.12, 5.12] 0

F10 f = −20 exp

(
−20

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

F11 f =
1

4000

n
∑

i=1
x2

i Πn
i cos

(
xi√

i

)
+ 1 30 [−600, 600] 0

F12
f = π

n

{
10 sin

(
πy1

)
+

n
∑

i=1

(
yi − 1

)2[1 + 10 sin2
(

πyi+1
)]

+ (yn − 1)2
}
+

n
∑

i=1
u
(
xi , 10, 100, 4

)
yi = 1 +

xi+1
4

u(xi , u, k, m) =


k(xi − a)m xi > a

0 − a < xi < a
k(−xi − a)m xi < −a

30 [−50, 50] 0

F13 f = 0.1

{
sin2(3πx1

)
+

n
∑

i=1

(
xi − 1

)2[1 + sin2(3πxi + 1
)]

+ (xn − 1)2
[
1 + sin2(2πxn )

]}
+

n
∑

i=1
u
(
xi , 5, 100, 4

) 30 [−50, 50] 0

Table 4. Large-scale benchmarks.

Symbol Description Dimension Range fmin

F14 f =
n
∑

i=1
ix2

i
1000 [−100, 100] 0

F15 f =
D
∑

i=2
i(2x2

i − xi−1)
2 + (x1−1)

2 1000 [−65.535, 65.535] 0

F16 f =
D
∑

i=1
(x2

i − 10 cos(2π xi) + 10) 1000 [−5.12, 5.12] 0

F17 f =
D
∑

i=1

(xi − 100)2

4000
−

D
∏
i=1

cos
(

xi − 100√
i

)
+ 1 1000 [−600, 600] 0

F18 −20 exp

(
−0.2

√
1
D

D
∑

i=1
x2

i

)
− exp

(
i
D

D
∑

i=1
cos(2π xi)

)
+ 20 + e 1000 [−32.768, 32.768] 0

Table 5. Two-dimension benchmarks.

Symbol Description Dimension Range fmin

F19 f (x) = x2
1 + 2x2

2 − 0.3 cos(3π.x1)− 0.4 cos(4π.x2) + 0.7 2 [−100, 100] 0

F20 f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 2 [−10, 10] 0

F21 f (x) = 0.26
(

x2
1 + x2

2
)
− 0.48x1.x2 2 [−10, 10] 0

F22 f (x) = − cos(x1). cos(x2). exp
(
−(x1 − π)2 − (x2 − π)

)
2 [−100, 100] −1

F23 f (x) = (1.5 − x1 + x1x2)
2 +

(
2.25 − x1 + x1x2

2

)2
+
(
2.625 − x1 + x1x3

2

)2 2 [−4.5, 4.5] 0

F24 f (x) = 0.5 +
sin2

(√
x2

1+x2
2

)
−0.5

(1+0.001(x2
1+x2

2))
2

2 [−100, 100] 0

F25 f (x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 +
(
−4 + 4x2

2
)

x2
2 2 [−2, 2] −1.03163

5. Contribution of the Distance Parameter

Applying distance parameters to a specific section of the ABC algorithm is crucial.
Table 6 reveals that applying distance criteria to both employed and onlooker sections
produces the best result versus applying it to one section. The experimental setup for
results in Table 6 was performed for 30 independent runs, with a population size of 50 and
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a maximum number of iterations of 500, while the variable size was changed to 100, 500,
and 10, respectively. The best results in Table 6 are highlighted in bold.

Table 6. Effect of applying distance parameters to a specific section on the ABC algorithm.

Function Variable Size Mean SD d on Employed d on Onlooker

F1

100

1.0723 × 10−239 0 ✓ ✓

1.516 × 10−115 8.308 × 10−115 ✓ X

6.1473 × 10−2 1.0334 × 10−1 X ✓

500

8.6509 × 10−97 4.7383 × 10−96 ✓ ✓

1.4291 × 10−47 7.8273 × 10−47 ✓ X

4.575 × 10−1 8.540 × 10−1 X ✓

10

7.9746 × 10−83 4.3679 × 10−82 ✓ ✓

7.487 × 10−30 4.101 × 10−29 ✓ X

7.552 × 10−1 1.698 X ✓

The results indicate that applying the distance parameter in the ABC algorithm’s
employed and onlooker bee phases significantly enhances its performance, leading to
lower mean values and minimal variability (as shown by the standard deviation). This
effect is consistent across different variable sizes, with the best results occurring when the
distance parameter is applied in both phases. When the distance parameter is applied
only in the employed phase, the algorithm’s performance is still relatively strong, though
not as robust as when used in both phases. Conversely, applying the distance parameter
only in the onlooker phase results in the worst performance, with higher mean values
and greater variability, indicating that the onlooker phase alone is insufficient to capitalize
on the benefits of the distance parameter. These findings underscore the importance of
integrating the distance parameter across multiple phases of the ABC algorithm to achieve
optimal performance, particularly in handling complex optimization tasks.

6. Experimental Results

This section presents how the new optimization algorithm AEABC is examined com-
prehensively by comparing its results with 33 other metaheuristic algorithms. The competi-
tive internal parameters and their source codes in final versions can be free downloaded
at [36,37], and this work is not responsible for tuning these competitive algorithms.

6.1. Time-Based Experiment

AEABC was evaluated on the seven unimodal benchmarks in Table 2 and compared
with ABC, dynamic differential annealed optimization (DDAO) [14], Whale Optimization
Algorithm (WOA), Sine Cosine Algorithm (SCA), Particle Swarm Optimization (PSO),
Gray Wolf Optimization (GWO), Butterfly optimization algorithm (BOA), and Ant Lion
Optimizer (ALO). All the algorithms used 30 independent runs, a population size of 50,
and a maximum runtime of one second for each independent run. The results are shown in

Tables 7 and 8 express how the AEABC algorithm significantly improved its origin
ABC and superior performance with other metaheuristics in the experiment. The AEABC
algorithm consistently outperforms the other metaheuristics on most functions, as shown
in Table 7, especially in terms of best values and standard deviations, indicating both high
accuracy and consistency. Its performance is particularly notable on functions F1, F2, F3,
and F4, where it significantly outclasses all other algorithms. On functions F5, F6, and F7,
while AEABC is still highly competitive, a few other algorithms like GWO, WOA, and BOA
show comparable or slightly better performance in certain cases. Consistency: The low
standard deviations across all functions for AEABC suggest that it is highly reliable and
produces consistent results, which is critical in optimization problems. Competitors: GWO
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and WOA are the closest competitors to AEABC, performing well across most functions
but still generally lagging behind AEABC in terms of best values. AEABC demonstrates
superior performance across a wide range of test functions compared to other metaheuristic
algorithms, making it a highly effective choice for optimization tasks.

Table 7. Evaluating AEABC on unimodal benchmarks.

Algorithm F1 F2 F3 F4 F5 F6 F7

ALO
Best 6.151 × 103 3.210 × 101 9.584 × 103 2.654 × 101 1.245 × 106 5.550 × 103 1.317

SD 2.958 × 103 1.113 × 1010 7.199 × 103 4.653 2.856 × 106 2.623 × 103 1.403

BOA
Best 2.146 × 10−16 1.149 × 10−36 1.341 × 10−7 1.655 × 10−12 2.860 × 101 7.309 × 10−1 7.975 × 10−4

SD 5.378 × 10−15 9.932 × 10−12 9.753 × 10−7 1.216 × 10−11 3.869 × 10−2 4.699 × 10−1 8.289 × 10−4

GWO
Best 8.996 × 10−83 1.334 × 10−48 5.896 × 10−15 1.976 × 10−19 2.496 × 101 2.355 × 10−5 2.056 × 10−4

SD 7.811 × 10−79 2.491 × 10−46 4.247 × 10−10 2.566 × 10−8 8.810 × 10−1 2.621 × 10−1 4.478 × 10−4

PSO
Best 3.880 × 10−10 1.952 × 10−5 1.057 × 101 3.171 × 10−1 1.238 × 101 1.142 × 10−10 3.356 × 10−2

SD 2.004 × 10−6 2.955 × 10−3 1.032 × 101 1.735 × 10−1 5.347 × 101 9.456 × 10−7 3.545 × 10−2

SCA
Best 7.230 × 10−7 2.613 × 10−10 3.019 × 102 3.428 2.782 × 101 3.877 1.485 × 10−3

SD 2.565 × 10−2 9.183 × 10−6 2.114 × 103 8.788 6.807 × 102 7.101 × 10−1 2.838 × 10−2

WOA
Best 1.343 × 10−228 1.828 × 10−142 4.146 × 102 1.579 × 10−6 1.261 × 10−2 1.222 × 10−9 2.770 × 10−5

SD 0.0 2.481 × 10−129 5.808 × 103 2.607 × 101 6.192 2.958 × 10−9 1.383 × 10−3

DDAO
Best 4.980 × 10−5 3.869 × 10−3 1.104 × 10−3 3.915 × 10−3 2.901 × 101 6.439 3.980 × 10−4

SD 1.090 × 101 1.291 4.291 × 101 3.344 × 10−1 1.267 × 101 3.534 4.219 × 10−2

ABC
Best 7.255 3.950 × 10−1 2.341 × 104 4.091 × 101 1.777 × 104 7.264 2.332 × 10−1

SD 2.119 × 101 2.410 × 10−1 4.527 × 103 5.401 7.007 × 104 5.955 1.906 × 10−1

AEABC
Best 1.988 × 10−173 7.755 × 10−119 1.060 × 10−34 3.258 × 10−86 2.784 × 101 2.985 × 10−1 1.309 × 10−5

SD 1.271 × 10−85 1.393 × 10−105 7.106 × 10−10 6.232 × 10−64 2.309 × 10−1 5.818 × 10−2 8.189 × 10−5

Table 8. Evaluating AEABC on multimodal benchmarks.

Algorithm F8 F9 F10 F11 F12 F13

ALO
Best −5.537 × 103 2.337 × 102 1.381 × 101 5.618 × 101 9.461 × 103 1.381 × 106

SD 4.409 × 101 2.110 × 101 9.181 × 10−1 2.300 × 101 2.336 × 106 8.849 × 106

BOA
Best −3.597 × 103 0.0 4.751 × 10−12 0.0 1.675 × 10−1 1.536

SD 4.677 × 102 0.0 5.433 × 10−12 0.0 6.462 × 10−2 3.853 × 10−1

GWO
Best −7.369 × 103 0.0 7.994 × 10−15 0.0 4.014 × 10−6 1.017 × 10−1

SD 5.302 × 102 1.751 × 101 4.580 × 10−15 1.061 × 10−2 1.755 × 10−2 1.664 × 10−1

PSO
Best −8.850 × 103 2.494 × 101 2.806 × 10−6 2.452 × 10−11 5.164 × 10−13 1.584 × 10−11

SD 7.533 × 102 1.147 × 101 1.686 × 10−1 9.501 × 10−3 1.178 × 10−8 4.987 × 10−3

SCA
Best −4.757 × 103 2.793 × 10−7 7.387 × 10−4 7.744 × 10−7 4.028 × 10−1 2.656

SD 2.082 × 102 1.505 × 101 9.586 2.702 × 10−1 3.481 × 101 4.884 × 104

WOA
Best −1.257 × 104 0.0 8.882 × 10−16 0.0 8.898 × 10−4 3.633 × 10−2

SD 5.622 × 102 0.0 2.312 × 10−15 2.177 × 10−3 8.655 × 10−3 9.132 × 10−2

DDAO
Best −5.214 × 103 1.089 × 10−4 5.817 × 10−2 6.800 × 10−4 1.147 3.015

SD 3.388 × 102 4.450 9.099 × 10−1 3.915 × 10−1 3.337 × 10−1 1.463

ABC
Best −5.700 × 103 1.664 × 102 3.005 1.341 5.297 × 104 9.635 × 105

SD 2.439 × 102 1.776 × 101 5.221 × 10−1 1.804 × 10−1 1.025 × 106 2.727 × 106

AEABC
Best −6.428 × 103 0.0 8.882 × 10−16 0.0 4.855 × 10−2 8.790 × 10−1

SD 4.076 × 102 0.0 0.0 0.0 2.540 × 10−2 4.212 × 10−1

Table 8 reveals that AEABC is among the top performers, particularly on functions F9,
F10, and F11, where it achieves near-perfect scores with zero variation. This indicates that
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AEABC is highly effective for certain types of multimodal functions. The zero standard
deviation in functions F9, F10, and F11 highlights AEABC’s consistency and reliability
in optimization. For other functions like F8 and F13, its standard deviation is moderate,
suggesting that while its performance is good, there is some variability. While AEABC is
competitive, especially regarding consistency, algorithms like WOA and GWO sometimes
achieve slightly better best values, particularly for F8 and F12. However, AEABC’s balance
of good performance across functions and low standard deviation makes it a robust choice.
Overall, AEABC demonstrates strong and consistent performance across a range of multi-
modal benchmark functions, making it a competitive algorithm. Its particular strength lies
in its ability to find optimal or near-optimal solutions consistently, even though it might
not always achieve the absolute best performance on every function compared to other top
algorithms like WOA or GWO.

6.2. Comparison Against ABC

This section demonstrates how the AEABC algorithm can outperform its previous
form by examining it in large-scale optimization. The variable size for the functions in
Table 9 is 1000, the run condition was 30 independent runs, the population size is 100, and
1000 is the maximum number of iterations.

Table 9. AEABC against its ancestor on large-scale optimization.

Function
ABC AEABC

Mean SD Mean SD

F1 3.086 × 106 4.975 × 104 2.0596 × 10−255 0

F14 4.616 × 10−16 2.063 × 10−16 4.091 × 10−50 1.9 × 10−49

F15 3.542 × 109 7.708 × 107 6.76 × 10−1 4.081 × 10−3

F16 1.68 × 104 2.132 × 102 0 0

F17 2.758 × 104 6.663 × 102 3.526 × 10−1 1.024 × 10−1

F18 8.881 × 10−16 0 8.881 × 10−16 0

AEABC shows a dramatic improvement in the mean values across all functions
compared to the original ABC algorithm. For functions F1, F14, F15, F16, and F17, the
reductions in error are several orders of magnitude, indicating that AEABC is far more
effective in solving these large-scale optimization problems. AEABC consistently shows
a lower standard deviation across all functions, often reaching zero, suggesting that it
performs better on average and does so with much greater reliability and stability. This
consistency is essential in optimization tasks where predictable performance is crucial. In
function F18, both algorithms perform equally well, suggesting that AEABC does not lose
any effectiveness compared to ABC on simpler tasks, even though it shows significant
improvements in more complex ones. AEABC outperforms its predecessor, ABC, across
almost all tested functions, particularly in accuracy and consistency. The improvements
are most notable in more challenging functions, making AEABC a more powerful tool for
large-scale optimization problems.

6.3. AEABC on F1 and F16

Comparison results were found in the literature [14,21] among a set of metaheuristics
on F1 and F16 benchmarks and used to evaluate the performance of the AEABC algorithm
as shown in Table 10. We have followed the same running conditions for a fair comparison
with 25,000 function evaluations, 30 independent runs, and a variable size of 30. Table 10
shows that AEABC outperforms its competitors, which are Bat Algorithm (BA), Firefly (FF)
optimization, Multi-Verse Optimizer (MVO), Krill Herd (KH) optimization, and Squirrel
Search Algorithm (SSA). The optimal solutions of the test functions F1 and F16 are zero,
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and AEABC converged perfectly to zero, while other algorithms in this experiment could
not converge well.

Table 10. Statistical results of different metaheuristics and AEABC on F1 and F16 benchmarks.

Function Metric PSO BA FF MVO KH SSA DDAO AEABC

F1
Mean 1.35 × 103 3.93 × 104 1.15 × 10−2 7.85 × 10−1 5.75 × 10−2 4.16 × 10−8 0.086 0

SD 6.42 × 102 1.07 × 104 4.32 × 10−3 2.47 × 10−1 5.03 × 10−2 1.43 × 10−7 0.087 0

F16
Mean 1.03 × 102 1.21 × 102 2.50 × 101 1.18 × 102 1.23 × 101 4.90 × 10−7 0.180 0

SD 2.47 × 101 3.93 × 101 6.95 3.39 × 101 5.41 1.50 × 10−6 0.097 0

The AEABC consistently achieves a mean value of 0 for both F1 and F16, meaning it
optimally solves these benchmark functions without any error, which none of the other
algorithms achieve. The standard deviation of 0 for both functions indicates that AEABC’s
performance is perfectly consistent across all runs, a significant advantage over the different
algorithms that exhibit varying degrees of variability. Among the other algorithms, SSA
shows the closest performance to AEABC in terms of low mean values and relatively low
standard deviations. However, it still cannot match AEABC’s perfect results. Algorithms
like PSO, BA, and MVO show significantly worse performance in accuracy (higher mean
values) and consistency (higher standard deviations). AEABC performs vastly superior to
other metaheuristics on the F1 and F16 benchmark functions. Its ability to achieve perfect
optimization with zero error and zero variability makes it the most reliable and effective
algorithm among those compared.

6.4. Results of Large-Scale Benchmarks

In this experiment, AEABC is evaluated on the benchmarks shown in Table 11 and
compared with five metaheuristics: GWO, PSO, GSA, DE, and FEP. The statistical results of
these algorithms were found in the literature [10], while AEABC results were obtained by
following the same run conditions, which are 30 independent runs, a maximum number of
iterations of 500, and a population size equal to 30.

Table 11. AEABC on large-scale optimization problems.

F Metric GWO PSO GSA DE FEP AEABC

F14
Mean 4.042 3.627 5.86 9.98 × 10−1 1.22 9.98 × 10−1

SD 4.253 2.561 3.831 3.3 × 10−16 5.6 × 10−1 2.302 × 10−13

F15
Mean 3.37 × 10−4 5.77 × 10−4 3.673 × 10−3 4.5 × 10−14 5.0 × 10−4 5.793 × 10−4

SD 6.25 × 10−4 2.22 × 10−4 1.647 × 10−3 3.3 × 10−4 3.2 × 10−4 7.948 × 10−5

F16
Mean −1.032 −1.032 −1.032 −1.032 −1.03 −1.032

SD −1.032 6.25 × 10−16 4.88 × 10−16 3.1 × 10−13 4.9 × 10−7 2.868 × 10−9

F17
Mean 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.979 × 10−1 3.98 × 10−1 3.979 × 10−1

SD 3.979 × 10−1 0.0 0.0 9.9 × 10−9 1.5 × 10−7 1.453 × 10−11

F18
Mean 3.0 3.0 3.0 3.0 3.02 3.0

SD 3.0 1.33 × 10−15 4.17 × 10−15 2 × 10−15 1.1 × 10−1 4.134 × 10−4

The AEABC achieves optimal or near-optimal mean values across all large-scale
optimization functions, often matching the performance of other top algorithms like DE,
GWO, PSO, and GSA. The standard deviation for AEABC is minimal across all functions,
indicating that it reliably produces results close to the best-known solutions with slight
variation across multiple runs. In functions like F14, AEABC shows impressive consistency,
outperforming even the best alternatives. While DE slightly outperforms AEABC in one or
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two cases (e.g., F15), it remains highly competitive and often superior to algorithms like
PSO, GWO, and FEP, particularly regarding consistency and reliability. AEABC performs
strongly on large-scale optimization problems, combining high accuracy with remarkable
consistency. It is a robust and reliable algorithm that competes well with, and often
surpasses, other state-of-the-art metaheuristics, making it a highly effective choice for
complex optimization tasks.

6.5. Results of Small-Scale Benchmarks

In this experiment, AEABC is evaluated on the benchmarks shown in Table 12 and
compared with five metaheuristics: GWO, PSO, gravitational search algorithm (GSA),
differential evolution (DE), and Fast Evolutionary Programing (FEP). The statistical results
of these algorithms were found in the literature [10], while AEABC results were obtained
by following the same run conditions in Section 6.4.

Table 12. AEABC on small-scale optimization problems.

F Metric GWO PSO GSA DE FEP AEABC

F19
Mean −3.863 −3.863 −3.863 N/A −3.86 −3.862

SD −3.863 2.58 × 10−15 2.29 × 10−15 N/A 1.4 × 10−5 4.262 × 10−4

F20
Mean −3.287 −3.266 −3.318 N/A −3.27 −3.318

SD −3.251 6.052 × 10−2 2.308 × 10−2 N/A 5.9 × 10−2 5.025 × 10−3

F21
Mean −1.015 × 101 −6.865 −5.955 −1.015 × 101 −5.52 −1.007 × 101

SD −9.14 3.02 3.737 2.5 × 10−6 1.59 3.132 × 10−1

F22
Mean −1.04 × 101 −8.457 −9.684 −1.04 × 101 −5.53 −1.025 × 101

SD −8.584 3.087 2.014 3.9 × 10−7 2.12 6.643 × 10−1

F23
Mean −1.053 × 101 −9.953 −1.054 × 101 −1.054 × 101 −6.57 −1.021 × 101

SD −8.559 1.783 2.6 × 10−15 1.9 × 10−7 3.14 1.103

N/A: Not available.

AEABC consistently performs well across all functions, often achieving mean values
close to the best-performing algorithms. While not the lowest in every case, its standard
deviations are generally moderate, indicating that AEABC provides reliable and consistent
results. Particularly in F20, AEABC matches the best-performing algorithm (GSA) in terms
of mean value but consistently outperforms it. In some cases, particularly in functions
F19 and F21, AEABC’s mean values are slightly less optimal than GWO and DE, and
its standard deviations are higher, suggesting room for improvement in achieving more
consistent performance. While AEABC may not consistently achieve the absolute best
performance, it remains highly competitive, outperforming algorithms like PSO, GSA, and
FEP in most cases. Its overall performance across these small-scale optimization problems
demonstrates its robustness and reliability as an optimization tool. In conclusion, AEABC
is a strong contender in small-scale optimization problems, often producing results close
to or better than many leading metaheuristics. Its performance is characterized by good
accuracy and reasonable consistency, making it a valuable algorithm for solving complex
optimization challenges.

6.6. AEABC on Multimodal Benchmarks

For comprehensive examination, the AEABC algorithm was compared with other
optimization algorithms using their results from the literature [28] shown in Table 13. Using
the same run condition, 30 independent runs, 1000 maximum number of iterations, and
30 population size, the AEABC was compared with six metaheuristics shown in Table 13.
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Table 13. AEABC on multimodal benchmarks.

F
MFO PSO GSA AEABC

Mean SD Mean SD Mean SD Mean Sd

F8 −8.497 × 103 7.259 × 102 −3.571 × 103 4.308 × 102 −2.352 × 103 3.822 × 102 −5.527 × 103 4.323 × 102

F9 8.460 × 101 1.617 × 101 1.243 × 102 1.425 × 101 3.100 × 101 1.366 × 101 0.0 0.0
F10 1.260 7.296 × 10−1 9.168 1.569 3.741 1.713 × 10−1 8.882 × 10−16 0.0
F11 1.908 × 10−2 2.173 × 10−2 1.242 × 101 4.166 4.868 × 10−1 4.979 × 10−2 0.0 0.0
F12 8.940 × 10−1 8.813 × 10−1 1.387 × 101 5.854 4.634 × 10−1 1.376 × 10−1 4.981 × 10−4 9.375 × 10−5

F13 1.158 × 10−1 1.930 × 10−1 1.181 × 104 3.070 × 104 7.617 1.225 2.245 × 10−1 1.736 × 10−1

FPA SMS FA GA
F8 −8.087 × 103 1.553 × 106 −3.943 × 103 4.042 × 106 −3.662 × 103 2.142 × 102 −6.331 × 103 3.326 × 102

F9 9.269 × 101 1.422 × 101 1.528 × 102 1.855 × 101 2.149 × 106 1.722 × 101 2.368 × 106 1.903 × 101

F10 6.845 1.250 1.913 × 101 2.385 × 10−1 1.457 × 101 4.675 × 10−1 1.785 × 101 5.311 × 10−1

F11 2.716 7.277 × 10−1 4.205 × 102 2.526 × 101 6.966 × 101 1.211 × 101 1.799 × 102 3.244 × 101

F12 4.105 1.043 8.743 × 106 1.406 × 106 3,684,008 1.721 × 105 3.413 × 107 1.893 × 106

F13 6.240 × 101 9.484 × 101 1.0 × 108 0.0 5.558 × 106 1.690 × 106 1.080 × 108 3.850 × 106

AEABC consistently achieves the best or near-best average values, especially on
functions F9, F10, F11, and F12, significantly outperforming all other algorithms. This
demonstrates AEABC’s superior ability to optimize complex multimodal functions. The
AEABC often achieves a standard deviation of zero, indicating perfect consistency, par-
ticularly on F9, F10, and F11. This reliability is unmatched by other algorithms, which
show varying degrees of performance. Even in cases where AEABC does not have the best
average (e.g., F8 and F13), it remains highly competitive and offers strong performance
with relatively low variability. The AEABC demonstrates excellent overall performance on
multimodal benchmark functions, frequently outperforming other state-of-the-art meta-
heuristics. Its ability to achieve near-perfect optimization with minimal variability makes it
a highly reliable and effective algorithm for complex optimization tasks.

6.7. Small-Scale Optimization

This section presents the evaluation of the AEABC on small-scale optimization prob-
lems expressed in Table 5, where all of them have variable size D = 2. This experiment
was achieved by 30 independent runs and 25,000 function evaluations, compared with
six optimization algorithms. The statistical results of the competitors in Table 14 were
adopted from the literature [14], while the results of AEABC were obtained using the
abovementioned run conditions.

Table 14. Statistical results of AEABC and other metaheuristics on two-dimensional benchmarks.

Function PSO BA MVO KH DDAO AEABC

F19
Best 4.4298 × 10−14 1.6438 1.0021 × 10−5 2.8890 × 10−8 9.64105 × 10−7 0

SD 2.7559 × 10−10 1.1194 × 102 3.7081 × 10−4 2.9457 × 10−7 0.018695917 0

F20
Best 1.3482 × 10−14 3.0619 × 10−11 4.2336 × 10−9 5.9289 × 10−12 4.4529 × 10−5 9.431 × 10−7

SD 2.3629 × 10−10 5.4689 × 10−10 6.5125 × 10−7 3.1189 × 10−10 0.01952182 5.491 × 10−5

F21
Best 8.6209 × 10−17 1.4036 × 10−12 2.0125 × 10−10 2.1689 × 10−14 5.66862 × 10−12 0.0

SD 1.5676 × 10−12 4.8089 × 10−11 1.1549 × 10−8 1.2854 × 10−11 9.8777 × 10−7 0.0

F22
Best −1 −1 −1 −1 −0.99843 −1.0

SD 2.8316 × 10−11 1.8257 × 10−1 1.8257 × 10−1 1.8257 × 10−1 −0.80388 4.139 × 10−5

F23
Best 1.3624 × 10−14 2.8649 × 10−11 9.2179 × 10−9 4.4607 × 10−13 9.06 × 10−5 7.950 × 10−9

SD 1.6315 × 10−1 3.1004 × 10−1 1.9334 × 10−1 3.0481 × 10−10 0.003105 1.327 × 10−5

F24
Best 0 9.7159 × 10−3 2.1517 × 10−6 1.2317 × 10−7 1.7525 × 10−9 0.0

SD 4.7621 × 10−3 1.0699 × 10−1 3.3529 × 10−3 4.1334 × 10−6 1.6223 × 10−6 0.0
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Table 14. Cont.

Function PSO BA MVO KH DDAO AEABC

F25
Best −1.03163 −1.03163 −1.03163 −1.03163 −1.03157 −1.032

SD 8.2049 × 10−11 2.4904 × 10−1 1.6383 × 10−7 6.3582 × 10−10 −1.03066 2.120 × 10−8

AEABC consistently achieves optimal or near-optimal best values across all functions
in this experiment. In many cases (F19, F21, F24, and F25), it reaches the perfect solution
(zero error) with no variability. Perfect Consistency: For several functions (F19, F21, and
F24), AEABC demonstrates zero standard deviation, consistently finding the optimal
solution in every run, outperforming all other reliable algorithms. Even in cases where
AEABC does not achieve a perfect solution (e.g., F20 and F23), it still demonstrates strong
performance, with low mean errors and relatively low standard deviations compared
to other algorithms. In conclusion, AEABC performs exceptionally on small-scale, two-
variable test functions, often outperforming other state-of-the-art metaheuristics in accuracy
and consistency. This makes AEABC a highly reliable and effective algorithm for solving
small-scale optimization problems.

7. Statistical Analysis

The Wilcoxon rank-sum test was used to evaluate the statistical significance of the
performance differences between the adaptive exploration artificial bee colony algorithm
and other metaheuristic algorithms in Tables 7 and 8 across multiple benchmark functions
(F1 to F13). The purpose of this statistical analysis is to assess whether the observed
performance differences are statistically significant or due to random variations. The
results are summarized in three parts: Table 15 (for test functions F1–F5), Table 16 (for test
functions F6–F10), and Table 17 (for test functions F10–F13). In each case, the Wilcoxon
statistics and p-value are reported, which indicate the direction and significance of the
performance differences.

Table 15. Wilcoxon test results for F1–F5.

Algorithm Metric F1 F2 F3 F4 F5

ALO
Statistic −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.653 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11

BOA
Statistic −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.638 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 3.175 × 10−11

GWO
Statistic −6.653 × 100 −6.653 × 100 −5.130 × 100 −6.653 × 100 5.736 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.894 × 10−7 2.872 × 10−11 9.673 × 10−9

PSO
Statistic −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.653 × 100 −2.218 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.658 × 10−2

SCA
Statistic −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.017 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 1.774 × 10−9

WOA
Statistic 6.653 × 100 6.653 × 100 −6.653 × 100 −6.653 × 100 6.653 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11

DDAO
Statistic −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.653 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11

ABC
Statistic −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.653 × 100 −6.653 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11
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Table 16. Wilcoxon test results for F6–F10.

Algorithm Metric F6 F7 F8 F9 F10

ALO
Statistic −6.653 × 100 −6.653 × 100 5.396315278 −6.652991439 −6.652991439

p-value 2.872 × 10−11 2.872 × 10−11 6.80234 × 10−8 2.87195 × 10−11 2.87195 × 10−11

BOA
Statistic −6.653 × 100 −6.653 × 100 −6.652991439 0 −6.652991439

p-value 2.872 × 10−11 2.872 × 10−11 2.87195 × 10−11 1 2.87195 × 10−11

GWO
Statistic 1.493 × 100 −6.579 × 100 6.224243101 −4.435327626 −6.652991439

p-value 1.354 × 10−1 4.734 × 10−11 4.83886 × 10−10 9.19324 × 10−6 2.87195 × 10−11

PSO
Statistic 6.653 × 100 −6.653 × 100 6.224243101 −6.652991439 −6.652991439

p-value 2.872 × 10−11 2.872 × 10−11 4.83886 × 10−10 2.87195 × 10−11 2.87195 × 10−11

SCA
Statistic −6.653 × 100 −6.653 × 100 −6.120752124 −6.652991439 −6.652991439

p-value 2.872 × 10−11 2.872 × 10−11 9.31347 × 10−10 2.87195 × 10−11 2.87195 × 10−11

WOA
Statistic 6.653 × 100 −5.219 × 100 6.652991439 0 −4.878860388

p-value 2.872 × 10−11 1.800 × 10−7 2.87195 × 10−11 1 1.06701 × 10−6

DDAO
Statistic −6.653 × 100 −6.653 × 100 −5.677219361 −6.652991439 −6.652991439

p-value 2.872 × 10−11 2.872 × 10−11 1.36902 × 10−8 2.87195 × 10−11 2.87195 × 10−11

ABC
Statistic −6.653 × 100 −6.653 × 100 1.907190879 −6.652991439 −6.652991439

p-value 2.872 × 10−11 2.872 × 10−11 0.056495874 2.87195 × 10−11 2.87195 × 10−11

Table 17. Wilcoxon test results for F11–F13.

Algorithm Metric F11 F12 F13

ALO
Statistic −6.653 × 100 −6.653 × 100 −6.653 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11

BOA
Statistic 0.000 × 100 −6.653 × 100 −2.927 × 100

p-value 1.000 × 100 2.872 × 10−11 3.419 × 10−3

GWO
Statistic −1.109 × 100 6.195 × 100 6.653 × 100

p-value 2.675 × 10−1 5.841 × 10−10 2.872 × 10−11

PSO
Statistic −6.653 × 100 6.653 × 100 6.653 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11

SCA
Statistic −6.653 × 100 −6.653 × 100 −6.638 × 100

p-value 2.872 × 10−11 2.872 × 10−11 3.175 × 10−11

WOA
Statistic −4.435 × 10−1 6.653 × 100 6.653 × 100

p-value 6.574 × 10−1 2.872 × 10−11 2.872 × 10−11

DDAO
Statistic −6.653 × 100 −6.653 × 100 −6.653 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11

ABC
Statistic −6.653 × 100 −6.653 × 100 −6.653 × 100

p-value 2.872 × 10−11 2.872 × 10−11 2.872 × 10−11

Across functions F1 to F5, AEABC outperforms most algorithms with highly significant
p-values (2.872 × 10−11) in all cases, indicating a robust difference in performance in favor
of AEABC. Overall, the Wilcoxon rank-sum test results highlight that AEABC demonstrates
superior performance compared to many of the competing metaheuristic algorithms across
the majority of benchmark functions. However, specific cases such as GWO and WOA
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on functions F5, F8, F9, and F13 suggest that these algorithms may perform better on
certain types of optimization problems. These findings provide valuable insights into
AEABC’s strengths and weaknesses, offering direction for future improvements to enhance
its robustness across a broader range of functions.

8. Practical Application

For extensive examination, this section employs statistical results from the litera-
ture [10] for the welded beam design problem. This work followed the same run condition
mentioned in the original work to have a fair comparison and to give the reader a broader
insight into the proposed algorithm. This engineering problem is represented in Figure 1,
which has four variables, and the objective is reducing the fabrication cost. The problem is
well expressed in [10]. The problem can be described as follows:
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Table 18 reveals the performance of the AEABC and the other ten algorithms in this
study [10]. The adopted algorithms for this reference study are gray wolf optimizer GWO,
gravitational search algorithm GSA [22], genetic algorithm GA [38,39], harmony search
HS [40], random (Richardson’s random method), Simplex method, Davidon–Fletcher–
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Powell, APPROX [41]. The results of 30 independent runs and 500 iterations reveal that
AEABC has a lower fitness value than other metaheuristics.
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Figure 1. The welded beam design problem. Figure 1. The welded beam design problem.

Table 18. Comparing the AEABC optimum solution with other methods from [10] on welded
beam design.

Algorithm
Optimum Variables

Optimum Cost
h l t b

AEABC 0.1071 5.4402 8.8660 0.1 0.8981

GWO 0.2056 3.4783 9.0368 0.2057 1.7262

APPROX 0.2444 6.2189 8.2915 0.2444 2.3815

GSA 0.1821 3.8569 10.000 0.2023 1.8799

HS 0.2442 6.2231 8.2915 0.2443 2.3807

GA [38] N/A N/A N/A N/A 1.8245

Random 0.4575 4.7313 5.0853 0.66 4.1185

GA [42] N/A N/A N/A N/A 2.38

Simplex 0.2792 5.6256 7.7512 0.2796 2.5307

GA [39] 0.2489 6.1730 8.1789 0.2533 2.4331

David 0.2434 6.2552 8.2915 0.2444 2.3841
N/A: not available.

Also, AEABC’s performance was compared with the results of CGWO and others [32],
and it had the best performance, as shown in Table 19.

Table 19. Comparing the performance of AEABC with other algorithms adopted by [43].

Algorithm Worst Mean Best SD

AEABC 1.1505 1.0394 0.8981 0.0642

GWO 2.9136 2.8594 1.9421 2.6908

CPSO 1.7821 1.7488 1.7280 1.29 × 10−2

CDe N/A 1.7681 1.7334 N/A

GA4 1.9934 1.7926 1.7282 7.47 × 10−2

CGWO 2.4357 2.4289 1.7254 1.3578

SC 6.3996 3.0025 2.3854 9.60 × 10−1

UPSO N/A 2.8372 1.9219 0.683

GA3 1.785835 1.7719 1.7483 1.12 × 10−2

N/A: Not available.
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AEABC demonstrates the best overall performance, achieving the lowest best cost
and maintaining a low mean and worst cost, along with a very low standard deviation.
This indicates that AEABC is the most cost-effective and reliable algorithm, consistently
producing near-optimal solutions with minimal variation. The comparison underscores
AEABC’s superiority over other state-of-the-art algorithms in solving the welded beam
design problem, making it an excellent choice for complex engineering optimization tasks.

9. Exploration and Exploitation in AEABC

The adaptive exploration artificial bee colony (AEABC) algorithm introduces a novel
distance-based parameter to enhance the balance between exploration and exploitation,
two crucial phases in optimization. Exploration involves searching for new regions of
the solution space to avoid local optima, while exploitation refines existing solutions to
achieve better convergence. In traditional ABC, the neighborhood search process does not
consider the distance between solutions when generating new candidates. The AEABC
algorithm addresses this limitation by introducing a distance-based probability, which
governs the likelihood of shifting solutions based on their distance from each other. This
distance is calculated using the Euclidean metric (Equation (5)), and the shift is determined
(Equation (6)).

Exploitation in AEABC is enhanced by prioritizing solutions in close proximity. When
the distance d between two solutions is small, the probability Pd approaches 0, leading to a
higher chance of refining nearby solutions (Equation (7)). This increases the likelihood of
local search intensification, helping the algorithm converge more effectively. Conversely,
if d is large, the probability Pd is close to 1, and the current solution is less likely to shift,
allowing broader exploration of the search space. Table 1 further explains how this prob-
ability mechanism functions, illustrating how long or short distances between solutions
influence the likelihood of a solution shift. The results in Table 6 also demonstrate AEABC’s
enhanced exploitation capabilities. For example, in function F1 with a variable size of 100,
applying the distance parameter to the onlooker bees leads to a substantial reduction in
standard deviation (e.g., 8.31 × 10−115). This indicates that the algorithm converges more
consistently when prioritizing the exploitation phase, as onlooker bees focus on refining
nearby food sources. The distance-based probability Pd enables AEABC to dynamically
adjust its behavior, enhancing exploration during the early stages of optimization and
shifting toward exploitation as the algorithm progresses. This adaptability is key to avoid-
ing premature convergence while ensuring rapid convergence once high-quality solutions
are identified.

10. Conclusions

The artificial bee colony (ABC) algorithm, renowned for its simplicity and efficiency,
has been widely applied across various domains as a robust swarm intelligence approach.
However, this article introduces a significant advancement to the original ABC through
the development of the adaptive exploration artificial bee colony (AEABC) algorithm.
Unlike mere hybridization or combination with other algorithms, AEABC reimagines the
fundamental mechanisms of ABC by incorporating a crucial new parameter: the distance
between food sources. This adjustment reflects a more realistic modeling of the foraging
behavior observed in natural bee colonies, enhancing the algorithm’s exploration and
exploitation capabilities. The performance of AEABC was evaluated against 33 state-of-
the-art metaheuristic algorithms across 25 benchmark functions, where it consistently
demonstrated superior efficiency and accuracy. The results showed improvement over the
traditional ABC algorithm, validating the effectiveness of this innovative approach. AEABC
achieved remarkable consistency in producing optimal solutions, often outperforming its
counterparts in mean performance, best and worst-case scenarios, and standard deviation,
reflecting its reliability and robustness.

Furthermore, AEABC’s application to a useful engineering problem underscored its
practical utility, outperforming leading algorithms in producing cost-effective and reliable
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solutions. This success highlights AEABC’s potential as a powerful tool for solving real-
world optimization problems. In conclusion, the AEABC algorithm represents a robust and
straightforward approach to optimization. This work enhances the ABC algorithm and
opens new avenues for future research, encouraging the exploration and reinvention of
existing algorithms with innovative, nature-inspired ideas.
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