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Abstract: App reviews provide crucial feedback for software maintenance and evolution, but man-
ually extracting useful reviews from vast volumes is time-consuming and challenging. This study
investigates the effectiveness of six Naïve Bayes variants for automatically filtering useful app re-
views. We evaluated these variants on datasets from five popular apps, comparing their performance
in terms of accuracy, precision, recall, F-measure, and processing time. Our results show that Ex-
pectation Maximization-Multinomial Naïve Bayes with Laplace smoothing performed best overall,
achieving up to 89.2% accuracy and 0.89 F-measure. Complement Naïve Bayes with Laplace smooth-
ing demonstrated particular effectiveness for imbalanced datasets. Generally, incorporating Laplace
smoothing and Expectation Maximization improved performance, albeit with increased processing
time. This study also examined the impact of data imbalance on classification performance. Our
findings suggest that these advanced Naïve Bayes variants hold promise for filtering useful app
reviews, especially when dealing with limited labeled data or imbalanced datasets. This research
contributes to the body of evidence around app review mining and provides insights for enhancing
software maintenance and evolution processes.

Keywords: app review classification; naïve bayes variants; text mining; software maintenance;
machine learning; expectation maximization; laplace smoothing; imbalanced data; information
retrieval; user feedback analysis

1. Introduction

It is predicted that the app market will be a $200B industry with more than ten million
apps hosted on Online Application Distribution Platforms (OADPs) [1]. This is due to rapid
increases in the usage and popularity of smart devices worldwide [2]. App developers use
relevant OADPs such as Google Play (https://play.google.com/store) or Apple App store
(https://www.apple.com/nz/ios/app-store/) to launch their app for end-users to access
on their mobile devices. In addition, OADPs provide feedback from end-users in the form
of reviews [3].

The majority of feedback points towards requests for new features, bugs, or sug-
gestions for improvements to the app [4], which is useful for software maintenance and
product evolution. However, OADPs host many reviews [3], accessible to the public in
informing future decisions concerning potential app use. Thus, in meeting the expectations
of end-users, app developers benefit if they extract and address the necessary useful re-
views reflecting end-users’ concerns about their app [5]. Such knowledge greatly helps app
developers in their user-driven software quality assessments, marketing, and maintenance
processes [3,5]. However, manually obtaining valuable reviews from large review datasets
demands substantial levels of cognitive load, effort, and time.

The manual review extraction process also lacks scalability. In fact, the burden of
manual review extraction may be compounded due to non-essential information present in
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the app reviews [6]. Avoiding non-useful reviews that do not depict app concerns (i.e., non-
essential information) is crucial, as such reviews can be misleading to app developers [7].
For instance, consider non-useful reviews such as ‘The app is ok!’ and ‘a good app’. Usually,
there are numerous such irrelevant reviews found in the app review repository of an app [6].
App developers must focus on filtering the useful reviews between these inconsequential
ones to address the most pressing user concerns. For instance, word cloud analysis of the
most frequent words reflecting app concerns mentioned by the end-users can be used. In
such analysis, if the non-useful reviews are not removed, the word cloud analysis would
be biased towards irrelevant words such as ‘app’, ‘ok’, and ‘good’ over the words reflecting
app concerns such as ‘inaccurate’, ‘update’, or ‘crash’.

Filtering out non-relevant reviews assures the quality of information (i.e., useful
reviews) that needs to be manually or automatically processed by app developers to gain
actionable knowledge [7]. For instance, with regards to the previously mentioned word
cloud analysis, if only useful reviews were extracted and analyzed, then the app developers
would be able to achieve a prioritized list of words (i.e., words occurring in descending
order of their frequency) that would reflect significant app concerns [8]. Thus, the majority
of app developers are shifting towards automated IR approaches for extracting useful
reviews [9].

We explored such approaches in this work, where deficiencies were observed [10,11].
Most significant in our observations was that previous approaches, which were designed
to extract or filter useful reviews, missed crucial reviews [10]. Further, while the Naïve
Bayes method is one of the best suited for software engineering research and applications
involving data filtering [12], we have not seen published attempts focused on assessing
the performances of particular variants of this method for the filtering of app reviews. To
address this gap in knowledge, we formulate the following research questions:

RQ1. What are the performances of Naïve Bayes variants when extracting useful reviews?

RQ2. Are there differences in outcomes for different Naïve Bayes implementations, particularly
when considering data imbalances?

These research questions guide our investigation into the effectiveness of Naïve Bayes
variants for filtering useful app reviews. Through this study, we provide contributions to
the body of evidence around app review mining and software maintenance. Firstly, we
empirically evaluated Naïve Bayes variants and benchmarked their performances, includ-
ing various measures of accuracy and the time taken for filtering (i.e., via classification)
useful reviews. Second, we differentiate useful from non-useful reviews for five datasets,
ultimately providing recommendations for the conditions under which various Naïve
Bayes variants may be selected for the review extraction process.

Naïve Bayes variants were selected for this study due to their proven effectiveness
in software engineering research and applications involving data filtering [12]. Their
computational efficiency and ability to handle imbalanced datasets make them particularly
suitable for real-time app review analysis. Overall, our contributions provide insights (and
recommendations) for an important software engineering problem.

The remaining sections of this paper are organized as follows. Section 2 presents
studies concerning the mining of valuable reviews. Section 3 outlines the methods and
ideas that help in creating the versions of the Naïve Bayes experimental setup for the
evaluation of the variants of Naïve Bayes. Section 4 provides the results of our experiments.
We document our discussions and the implications of our findings in Section 5 before
considering this study’s limitations in Section 6. Finally, we present concluding remarks in
Section 7.

2. Related Work

App reviews expressed in the form of natural language are a common mechanism
for gathering end-user feedback [3] for software maintenance and evolution after apps
are released online [5]. Due to the nature of app reviews, traditional information retrieval
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approaches lack the ability to conduct filtering based on the contextual meaning of the
review contents [4]. Keertipati et al. [10] have identified features from filtered reviews with
ratings < 3, thus missing out on the features requiring attention that were mentioned in
reviews with higher ratings. Similarly, Fu et al. [11] conducted sentiment analysis with
logistic regression to extract the reviews reflecting negative end-user sentiments assuming
that negative reviews indicate serious app problems, missing out on useful positive reviews.
In a different study, Shah et al. [13] assessed the Bag-of-Words (BoW) approach against
Convolutional Neural Network (CNN) for extracting app features and found the former
approach to perform better. However, given that BoW is a simple approach, it tends to
overfit the learning data [14].

Similarly, Johann et al. [15] have utilized the parts of the speech pattern evaluation ap-
proach to identify and extract app features. However, this approach requires manual efforts
to extract app features after the parts of speech pattern evaluation have been initiated. Gao
et al.’s [16] work highlights some of the disadvantages of various techniques such as Point-
wise Mutual Information (PMI), Adaptively Online Latent Dirichlet Allocation (OLDA),
and Anomaly Discovery (AD). For instance, PMI is assessed as highly biased towards
infrequent content expressed in the reviews, the absence of discriminatory information
along with generally large sample sizes of reviews affect the performance of OLDA, and
the complexity of the AD method makes it difficult to identify the appropriate threshold
parameters necessary for tuning this method to produce accurate results. Furthermore, AD
often frequently generates false positive results [16]. Nevertheless, it is to be noted that app
developers usually prefer the full form of useful reviews over specific app features as these
reviews portray detailed information related to requests, bugs, or recommendations related
to the app features [17] (e.g., description of what is wrong with the feature).

Furthermore, the IR approaches mentioned above miss out on crucial information
or capture unwanted information that reflect irrelevant or noisy data [18]. For example,
consider the useful review that is filtered (extracted) on the basis of a lower rating (<3) and
negative sentiment, “(i) Very angry, this app is useless, uninstalling, will try in my next life
perhaps lol!!”, and another review labeled non-useful by the filtering process because of its
higher rating (>3), “(ii) Great app, works fine but the user interface appears broken at Home Page
on Nexus 7 ”. Review (i) may be termed futile by app developers, as it does not provide any
useful information that may lead to app improvement (i.e., an actionable insight). However,
review (ii) may lead to the fixing of a user interface issue, which would be useful to app
developers. Therein lies the challenge of discriminating between useful and non-useful
reviews based on such subjectivities.

Certain research studies from the app domain have utilized classification as an
approach to extract app reviews of interest (i.e., useful reviews) to address the above-
mentioned challenge. This method groups app reviews with similar attributes into distinct
categories (e.g., Pricing, Rating, and so on) based on a manually derived taxonomy from
domain expertise, as the literature review shows all classification methods for app reviews
depend on domain knowledge obtained through extensive research or domain experts.
For instance, Panichella et al. [19] adopted r by domain experts. For instance, Panichella
et al. [19] have inherited a taxonomy from the taxonomy proposed by Pagano et al. [4]
and have evaluated the classification performance of SVM (Support Vector Machines),
Naïve Bayes, Decision Trees, and Logistic Regression. Pagano et al. [4] manually created
categories forming a taxonomy for classifying app reviews. Similarly, Maalej et al. [9] man-
ually created four categories for app review classification using methods such as keyword
lookup, Decision Trees, Naïve Bayes, and Maximum Entropy.

Beyond the approaches mentioned above, rule-based linguistic approaches are as-
sessed as valuable for filtering useful reviews. For instance, Iacob et al. [20] identified a set
of language rules to extract app feature requests from reviews. Similarly, Sutino et al. [21]
have come up with extraction rules that are based on different concepts of similarity to
extract app features. However, the rule-based extraction approaches are only limited
to app features (excluding bugs and suggestions for improvements). Hence, rule-based
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approaches similar to these are combined with suitable machine learning methods to ad-
dress such drawbacks, and may help with scalability challenges. For example, Huang
et al. [22] have developed a probabilistic classifier that learns from a training set of man-
ually pre-labeled requirements to predict suitable labels (i.e., availability, look and feel,
legal, maintainability, operational, performance, scalability, security, and usability) of the
remaining set of non-functional requirements.

In recent research, Panichella et al. [23] have developed a tool named ‘Requirements-
Collector’, which automates the task of requirements specification and user feedback analysis
through means of classification using a predefined taxonomy that was manually derived.
The authors have utilized and evaluated the performance of machine learning (Sequential
Minimal Optimization, F-measure: 0.77) and deep learning (F-measure: 0.33) methods
toward automation of tasks. However, the machine learning or deep learning approach
that is used here (similar to some others) requires a vast amount of pre-classified training
data to attain substantial levels of prediction accuracy [24].

Nonetheless, Multinomial Naïve Bayes is a well-known supervised machine learning
method empirically proven to be suitable for text-related software engineering applications,
as it operates with the knowledge of word frequency information extracted from a text
corpus [25,26]. Accordingly, this method significantly outperforms other machine learning
methods [25]. We reviewed the Naïve Bayes techniques and principles specialized in text
classification operations [27,28], identifying six variants that have potential for filtering
useful reviews.

However, these variants have not been investigated for their utility in extracting
app reviews, a gap that needs to be addressed in supporting the software engineering
community’s maintenance and evolution efforts. Hence, in this study, we formulate
the design and configuration of basic Naïve Bayes variants that are specialized in text
classification. We then utilize Laplace Smoothing and Expectation Maximization to develop
additional variations of the Naïve Bayes method prime objective of examining the Naïve
Bayes variants proposed in this research is to help app developers in the accurate extraction
of valuable reviews for software maintenance and development and extend academic
knowledge around the application of IR approaches in software engineering.

The performance of app review filtering methods is of prime importance to app
developers in their drive to target the correct and most pressing app maintenance and
evolution tasks [29]. To measure the performance (RQ1) of Naïve Bayes variants, we utilize
accuracy, precision, recall, and F-measure metrics [24,30]. In addition to these metrics, we
also examine the time taken by each variant for learning and prediction purposes [24]. Since
app developers must promptly address valuable reviews, time becomes a crucial factor in
the assessment of information retrieval methods. We use various statistical procedures to
examine differences (RQ2), while controlling for data imbalances in our datasets.

It is to be noted that the studies reviewed in this Section have various experimental
setups (i.e., research methods, data for testing, validation procedures, and outcomes), and
have used non-identical metrics when evaluations were performed. For example, Keertipati
et al. [10] have used the rating as a criterion to filter reviews for prioritizing app features
in those reviews but have not reported accuracy and time statistics for their filtering
approach. In another study, recall and Matthews Coefficient Constant (MCC) metrics
were used to validate the filtering approach, which was restricted to specific app features
(i.e., unigrams of interest) and not to entire app reviews [11]. Similarly, some studies are
confined to the identification of functional and non-functional requirements, where each
review is assigned one out of many labels (i.e., non-binary classification) through means
of classification approaches. Such works provide limited details on accuracy and time
metrics [16–19]. However, the differences in outcomes reported for these works are fitting,
given the differences in the objectives and experimental settings.
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3. Methods and Concepts

This section introduces the methods and ideas that helped us create the respective
variants of Naïve Bayes. The main goal of the variants is to automatically filter (through clas-
sification) valuable and irrelevant reviews present in a vast app reviews corpus expressed
in natural language.

An initial collection of valuable and irrelevant reviews can be manually recognized
using a predefined set of filtering rules proposed in [12]. Rules pertaining to valuable
reviews reflect feature requests (e.g., ‘please add feature A’), issues or bugs related to
the app (for example, ‘the app crashes at the checkout screen’), or suggestions for app
improvements (for example, ‘I suggest you increase the font size for a better view’). On
the other hand, irrelevant reviews contain unnecessary and unwanted information (e.g.,
‘this app is useless, uninstalling asap!’). Once the specific variant of Naïve Bayes has
been trained, it can separate valuable reviews from irrelevant reviews by classifying each
review into the appropriate category. Thus, for the given problem of classifying useful and
non-useful reviews, the purpose of the specific Naïve Bayes variant is to allocate a set of
reviews to one of the two defined categories (useful and non-useful reviews, wherein each
category is expected to contain reviews with properties reflecting the filtering rules).

In the learning (training) phase, the Naïve Bayes variant is utilized to generate a
classifier that forecasts the categories of new reviews during the classification (predic-
tion/testing) phase. In the following sub-sections, we describe how unstructured reviews
are transformed into suitable vocabulary to be used as input for various Naïve Bayes
variants through the application of text pre-processing. Then, an overview of Naïve Bayes
machine learning methods is provided. This is followed by the ideas of Laplace Smoothing
and Expectation Maximization. It is worth noting that these are well-known concepts in
the machine learning domain that are used as part of information retrieval approaches in
software engineering applications (e.g., [31]).

3.1. Pre-Processing of Reviews

Initially, several text pre-processing steps are followed to convert reviews into subse-
quent word vectors [32]. We perform review pre-processing by eliminating whitespaces,
numbers, special characters (e.g., $, #), and punctuation marks (e.g., !, ?) present in the
reviews before converting them into lowercase [33]. Finally, we perform the removal of
stop words (e.g., is, and) followed by lemmatization of the pre-processed reviews to create
the full dictionary form of words in the pre-processed reviews [34]. The aforementioned
steps are typical text preprocessing methods used by researchers to avoid the creation of
unreliable noisy outcomes and, at the same time, shortlist the reliable features (words) for
learning and prediction purposes [9]. For instance, the stop words elimination process
removes the most common insignificant words such as ‘the’, ‘a’, ‘on’, ‘is’, and so on that do
not reflect unique information that can be used by any machine learning algorithm [33].
Finally, these pre-processed reviews form the Vocabulary (V) that gives essential word
frequency data for the Naïve Bayes variants [27].

3.2. Multinomial Naïve Bayes

Multinomial Naïve Bayes is a customized version of the basic Naïve Bayes method,
which is specialized for text classification [27]. This method works on the principle of
maximum likelihood estimates. This means it uses the information on word frequen-
cies extracted from a text corpus for the required learning and prediction tasks. For the
given problem statement, the objective of the Multinomial Naïve Bayes is to compute the
probability of a review belonging to a particular category (cn), which is given as:

P (cn) = Nreviews (r = cn)/Nreviews (1)
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Nreviews indicates the number of reviews present in the app reviews corpus, and
Nreviews (r = cn) shows the number of reviews in a category cn. The maximum likelihood
estimation is given as:

P (wi|cn) = count (wi, cn)/∑w∈V count (w, cn) (2)

P (wi|cn) denotes the conditional probability of the word wi given the probability of
category cn that is expressed as the ratio of the total occurrences of a word wi in category
cn to the total words w in the reviews of category cn. Thus, the fraction of times word
wi appears among all words (V) in the reviews of category cn. Thus, Multinomial Naïve
Bayes constructs a word space for category cn by forming a dictionary of words from
the reviews of category cn by utilizing the frequency of each word w. Finally, using
Equations (1) and (2), the category of a review R can be determined using:

CMAP (R) = argmaxcn (P (cn) ∗ Πi P (wi|cn)) (3)

CMAP (R) denotes the most probable category termed as maximum a posteriori (MAP),
i.e., most likely category cn for a review R, which is given as the arguments of the maxima
over all the categories of the priori times the likelihood. Based on this, we provide the
learning phase for Multinomial Naïve Bayes for classifying app reviews into relevant
categories [24] in Algorithm 1.

Algorithm 1. Learning phase of Multinomial Naïve Bayes for performing predictions

Begin
1. From the manually classified pre-processed app reviews, extract Vocabulary (V)
2. Calculate P(cn) terms

2.1 For each cn in C do:
2.1.1 reviewsn ← all reviews with category = cn
2.1.2 P(cn)← |reviewsn|/|Total reviews|

3. For every word wi, given every category cn
3.1 Calculate P(wi|cn) (maximum likelihood estimates)

3.1.1 Word spacen ← words belonging to reviewsn
3.1.2 For each word wi in the Vocabulary (V)

3.1.2.1 ni ← Total occurrences of wi in Word spacen consisting of a total of n words
3.1.2.2 P(wi|cn)← ni/n

End

3.3. Complement Naïve Bayes

In this sub-section, we discuss the Complement Naïve Bayes, which is a modified ver-
sion of the Multinomial Naïve Bayes. Complement Naïve Bayes deals with the limitations
of Multinomial Naïve Bayes’s to perform well when trained with imbalanced data [35], i.e.,
the training data do not comprise of approximately equal proportion of reviews belonging
to different types of categories. Complement Naïve Bayes addresses this drawback by
estimating the probability of a category cn using training data from the other category(ies)
cn (except cn). In the case of Complement Naïve Bayes, the initial probability is computed
using Equation (1). Dissimilar to Multinomial Naïve Bayes, Complement Naïve Bayes
computes the likelihood of a word wi by considering its occurrences in categories cn other
than cn (i.e., computing the likelihood of wi occurring in other category(ies)). Hence, the
maximum likelihood estimation is given as:

P(wi|cn ) = count(wi, cn )/ ∑w∈V count(w, cn ) (4)

P (wi|cn) denotes the probability of the word wi given it belongs to category(ies) cn.
It is given as the ratio of the total number of times a word wi occurs in category(ies) cn
to the total number of words w in the reviews of category(ies) cn. Thus, in contrast to
Multinomial Naïve Bayes, the Complement Naïve Bayes creates a word space for category
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cn by creating a dictionary of words belonging to the reviews of category(ies) cn by utilizing
the frequency of w. Finally, using Equations (1) and (4), the category of a review R can be
determined using:

CMAP (R) = argmincn (P (cn) ∗ Πi (1/(P (wi|cn)))) (5)

CMAP (R) denotes the most likely category cn for a review R, which is given as the
argument of the minimum likelihood estimates of the category calculated as prior times the
inverse likelihood. Based on this, we provide the learning phase for Complement Naïve
Bayes for classifying the app reviews into the relevant categories [35] in Algorithm 2.

Algorithm 2. Learning phase of Complement Naïve Bayes for performing predictions

Begin
1. From the manually classified pre-processed app reviews, extract Vocabulary (V)
2. Calculate P (cn) terms

2.1 For each cn in C do:
2.1.1 reviewsn ← all reviews with category = cn
2.1.2 P (cn)← |reviewsn|/|Total reviews|

3. For every word wi, given every category cn
3.1 Calculate P (wi-|cn) (maximum likelihood estimates)

3.1.1 Word spacen ← words belonging to reviews of category(ies) cn
3.1.2 For each word wi in the Vocabulary (V)

3.1.2.1 ni ← Total occurrences of wi in Word spacen consisting of a total of n words
3.1.2.2 P (wi|cn)← ni/n

End

3.4. Laplace Smoothing

From Equations (2) and (4), it is evident that the parameters that generate the maximum
likelihood estimate are unable to handle any zero probabilities effectively [36]. For example,
if a word has not been observed in the learning phase, both Naïve Bayes (Multinomial
and Complement) methods would generate a zero-probability value for that word, which
subsequently impacts classification accuracy. This issue is addressed by applying Laplace
Smoothing to the parameters [28,37], which instructs the parameters to add 1 to handle
the zero counts of words efficiently, thus allowing the particular Naïve Bayes method to
monitor the word count in identifying the relevant category. Therefore, such a strategy is
crucial, particularly when the specific Naïve Bayes method encounters a word during the
classification phase (prediction/testing) that was not present during the learning (training)
phase. Thus, we modify the parameters of the Multinomial and Complement Naïve Bayes
methods that perform the maximum likelihood estimation to incorporate the Laplace
smoothing functionality for handling information related to missing word wi. For the
Multinomial Naïve Bayes method, using Equation (2), we generate its new parameter that
performs maximum likelihood estimation based on Laplace smoothing, given as:

P (wi|cn) = (count (wi, cn) + 1)/(∑w∈V (count(w,cn) + |V|)) (6)

Similarly, for Complement Naïve Bayes, using Equation (4), we generate its new pa-
rameter that performs maximum likelihood estimation using Laplace smoothing, given as:

P (wi|cn ) = (count (wi, cn )+1)/(∑w∈V (count (w, cn) + |V|)) (7)

It is to be noted that, as a count of one has been added to the numerator, the size of
the vocabulary (|V|) is added to the denominator, indicating the addition of one for every
vocabulary word in the denominator. Based on Equations (6) and (7), the learning phases
of Multinomial Naïve Bayes (refer to Section 3.2) and Complement Naïve Bayes (refer to
Section 3.3) can be updated accordingly.
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3.5. Expectation Maximization

Both methods highlighted in Sections 3.2 and 3.3 are supervised learning methods
and thus need a significant amount of manually labeled reviews to train a classifier that
can accurately predict the category of a new review. Accordingly, manually labeling
(categorizing) adequate amounts of reviews can be a time-consuming task prone to potential
errors, as it must be manually performed by app developers. Semi-supervised learning
approaches assist in addressing this drawback by lessening the labeling effort required from
app developers. One of the common semi-supervised learning concepts comprises learning
from labeled as well as unlabeled information, and Expectation Maximization (EM) is an
example of one such concept [38,39]. EM primarily consists of two steps: Expectation (E)
and Maximization (M). The Expectation step predicts and generates the missing information
based on the current maximum likelihood estimation parameters set by the method in
question (Multinomial Naïve Bayes), while the Maximization step iteratively recalculates
the parameters, thereby maximizing the overall likelihood [40].

Hence, EM enables the Multinomial Naïve Bayes method to run repeatedly until the
parameters that estimate the total likelihood become constant [41]. We utilize the EM
strategy to develop the semi-supervised version of the Multinomial Naïve Bayes method
discussed in Sections 3.2 and 3.4. The EM concept for this study was devised based on the
algorithm mentioned in [40,41]. The primary steps of EM involve training the Multinomial
Naïve Bayes method on known review categories and then using the learned information
to predict the categories of uncategorized reviews. Hence, these predictions can later be
transformed into categories and, therefore, can be utilized for subsequent training of the
Multinomial Naïve Bayes method using the uncategorized reviews with the previously
generated categories.

Finally, the entire procedure is repeated until the value of the Multinomial Naïve Bayes
method’s total likelihood stabilizes (likelihood is calculated using the whole collection
of app reviews). The detailed explanation of the process mentioned above is as follows:
consider app reviews set AR consisting of reviews where each review R is labeled with a
category C (useful or non-useful). The main goal of EM is to determine the categories of
uncategorized reviews using the Multinomial Naïve Bayes method’s prediction mechanism.
In every cycle, EM calculates the relevant probabilistic category and assigns it to the
uncategorized review, that is P (cn|Ri), which is estimated to be 0 or 1. Here, cn denotes the
category, and Ri indicates the particular review. The categorized reviews having a specific
category (x) are known prior; hence, P (cx|Ri) = 1 and P (cy|Ri) = 0 for x ̸= y. Using the
information of categorized reviews and P (cn|Ri), a new version of the Multinomial Naïve
Bayes classifier is generated, which works in a recurring fashion until P (wi|cn) and P (cn)
become constant. We provide the pseudo-code of the EM concept [41] in Algorithm 3.

Algorithm 3. Expectation Maximization concept for semi-supervised learning

Begin
1. Train the Multinomial Naïve Bayes method mNB using the manually categorized set of reviews R.
2. Expectation (E):

2.1 For each review Ri in the review set AR
2.1.1 Using the method mNB, calculate P(cn|Ri)

3. Maximization (M):
3.1 Train an updated version of mNB from R ∪ AR by calculating P(cn) and P(wi|cn)

4. Repeat steps 2 and 3 until mNB’s parameters (maximum likelihood estimators) become constant.
5. Return mNB after completion of step 4.
End

That said, as the Complement Naïve Bayes method does not allow for generative
interpretations, hence creating its EM variant is not feasible [35].
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3.6. Summary of Naïve Bayes Variants

In this subsection, we review the Naïve Bayes variants because of the methods (refer
to Sections 3.2 and 3.3) and concepts (refer to Sections 3.4 and 3.5) that were documented
prior. Table 1 provides an overview of the particular Naïve Bayes variants. The main goal
in developing these variants is to investigate their performance related to the prediction
of review categories for a set of reviews related to an app. To begin, we first formulate
the Naïve Bayes variants of the Multinomial Naïve Bayes method. Based on the method
described in Section 3.2 and the concepts discussed in Sections 3.4 and 3.5, there are four
possible variants concerning the Multinomial Naïve Bayes method. We present the first
Naïve Bayes variant (I) that incorporates the functionality of the Multinomial Naïve Bayes
method discussed in Section 3.2.

Table 1. Naïve Bayes variants for experimental evaluation.

Variant Name Description

I Multinomial Naïve Bayes This variant is the Multinomial Naïve Bayes
method described in Section 3.2.

II
Expectation

Maximization—Multinomial
Naïve Bayes

The Expectation Maximization concept
described in Section 3.5 has been incorporated
in I. Thus, this variant is the semi-supervised
version of I.

III Multinomial Naïve Bayes
with Laplace smoothing

The Multinomial Naïve Bayes method has
been incorporated with the concept of Laplace
smoothing as described in Section 3.4. Thus,
this variant is the post version of I.

IV

Expectation
Maximization—Multinomial

Naïve Bayes with Laplace
smoothing

The Multinomial Naïve Bayes method has
been incorporated with the concept of Laplace
smoothing as well as Expectation
Maximization. Thus, this variant is the
semi-supervised version of III and the post
version of II.

V Complement Naïve Bayes This variant is the Complement Naïve Bayes
method described in Section 3.3.

VI Complement Naïve Bayes
with Laplace smoothing

The Complement Naïve Bayes method has
been incorporated with the concept of Laplace
smoothing. Thus, this variant is the post
version of V.

Next, as the EM mechanism enables the Multinomial Naïve Bayes method to deal with
unlabeled reviews, we generate the second variant (II) of Naïve Bayes, which is a semi-
supervised version of I. Third, based on Sections 3.2 and 3.4, we introduce the third variant
(III) that incorporates Laplace Smoothing with the Multinomial Naïve Bayes method, thus
making it a post (i.e., extended) version of I. Finally, we generate the fourth variant (IV) that
incorporates the EM mechanism in III, thus making IV the semi-supervised version of III
and a subsequent version of II. Next, we highlight the variants of the Complement Naïve
Bayes method. Based on the method described in Section 3.3, we develop the Naïve Bayes
variant (V) that implements the functionality of the Complement Naïve Bayes method.
Next, based on Sections 3.3 and 3.4, we introduce the variant (VI), which incorporates
Laplace smoothing in V, thus making VI a post version of V.

3.7. Experimental Setting

In this study, the Naïve Bayes variants described in Table 1 were implemented using
the Python (https://www.python.org/) programming language with suitable libraries
provided by the Natural Language Tool Kit (NLTK) (https://www.nltk.org/) numpy
(https://numpy.org/) and the scikit-learn (https://scikit-learn.org/stable/) packages.

https://www.python.org/
https://www.nltk.org/
https://numpy.org/
https://scikit-learn.org/stable/
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Python and its suitable libraries allow researchers to develop complex algorithms efficiently,
as programming in Python is easy to understand and implement. Additionally, Python is
flexible as it can be integrated with other languages and has extensive community support.
Our own implementation was used to carry out an experimental evaluation of all six Naïve
Bayes variants on datasets comprising app reviews belonging to five different apps obtained
from the Google Play Store (i.e., public software repository). These datasets belonged
to TradeMe, MyTracks, VodafoneNZ, ThreeNow, and Flutter apps. These five datasets
belonging to the popular categories of Google Play Store were selected to demonstrate
the general applicability of the proposed filtering approach (refer to Appendix A Table A1
for more details on these datasets) [25,42]. All datasets consisted of reviews submitted
by end-users written in natural language. TradeMe consisted of 4559 reviews, MyTracks
dataset included 4003 reviews, VodafoneNZ had 6583, ThreeNow consisted of 3683 reviews,
and the Flutter dataset consisted of 3483 reviews.

Using the set of rules defined in [12] (refer to Section 3), app reviews from the datasets
were manually categorized through labeling before reliability checks were performed [43].
The labels associated with the app reviews indicated whether the particular app review was
useful or non-useful. The inherited rules associated with the specific label are described
in Table 2. Here, the first column indicates the label, the second column indicates the
rules associated with the particular label and the third column shows the examples of app
reviews that are covered by the relevant rule.

Table 2. Rules for Manually Tagging App Reviews as Valuable or Irrelevant.

Label Rule App Review Examples

Useful

Request

• Requests to add or modify
features

• Request to remove
advertisements or notifications

a. Please make the user interface
more friendly and simple.

b. The advertisements play
continuously, they need to
be stopped.

c. I need a feature to compare
several products.

Bug

• Bug that generates incorrect or
unexpected output

• Bug that affects the performance
of the app

• Bug that causes app failure

a. The app lags a lot after new
update and does not respond to
many touch inputs!

b. The images of the products fail to
load on the main screen.

c. The app crashes after the
butterflies and forest comes on the
screen, poor job by app
developers!

Suggestion

• Suggestions that indicate a need
for app improvement

a. I wish there were more skins to
choose from.

b. Suggestion to include a $5 free
voucher add-on.

c. The app interface would look great
in a black and white theme.

Non-Useful Irrelevant and unwanted information

a. This app is useless.
b. I have changed my rating from 4 to

2 star.
c. This app is great, I love it!

Following the suggested validation practices of the software engineering field, this
task was undertaken to empirically evaluate the performance of six Naïve Bayes variants
based on human judgments and evaluations [43,44]. A cross-validation (i.e., comparison
of results generated from human decisions with the results generated by the respective
Naïve Bayes variant) approach is deemed reliable, and the human feedback in such cases
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acts as the concrete ground truth [43,44]. Based on the manual labeling task and after
performing the necessary reliability assessments, the TradeMe dataset contained 1154 (25%)
valuable reviews and 3405 (75%) irrelevant reviews, making it imbalanced (imbalance
scale: 0.7) [45,46]. MyTracks dataset included 1638 (41%) valuable reviews and 2365 (59%)
irrelevant reviews (imbalance scale: 0.3), whereas VodafoneNZ consisted of 1120 (17%)
valuable reviews and 5463 (83%) irrelevant reviews, making it imbalanced (imbalance scale:
0.8) [47]. ThreeNow consisted of 1760 (48%) useful reviews and 1923 (52%) non-useful
reviews (imbalance scale: 0.1), and the Flutter dataset included 2433 (70%) valuable reviews
and 1063 (30%) irrelevant reviews, making it imbalanced (imbalance scale: 0.7) [45,46]. It is
to be noted that we followed the guidelines mentioned in [45,46] to derive the necessary
imbalance scales. The measure of the imbalance scale is holistic in terms of the imbalanced
categories (i.e., balance to imbalance or vice-versa). It is calculated based on the number of
reviews in both classes and not as a percentage (%). For instance, if app 1 has 30 non-useful
reviews and 70 useful reviews, the imbalance scale is calculated as 1 − (30/70) = 0.67
(which is rounded to 0.7). If app 2 has 9 non-useful reviews and 91 useful reviews, then
the imbalance scale is computed as 1 − (9/91) = 0.9. Similarly, if app 3 has 23 non-useful
reviews and 32 useful reviews, then the imbalance scale is computed as 1− (23/32) = 0.3. As
can be seen from the examples, the higher imbalance scale represents the dominating class
(i.e., useful or non-useful). For approximately equally proportionate cases, the imbalance
scale is lower. Hence, values closer to 0 indicate a lower imbalance and values closer to
1 indicate a larger imbalance.

Of note is that these app reviews were independently labeled valuable or irrelevant
by the three authors (refer to Table 2 and [12] for rules). To perform the reliability assess-
ments, we utilized Fleiss’ Kappa, an extended version of Cohen’s Kappa, which supports
the evaluations of three or more human assessors [48]. The Fleiss coefficients were 0.68
(substantial agreement), 0.74 (substantial agreement), 0.71 (substantial agreement), 0.65
(substantial agreement), and 0.78 (substantial agreement) for TradeMe, MyTracks, Voda-
foneNZ, ThreeNow, and Flutter datasets, respectively [49]. Follow-up discussions were
conducted among the authors to resolve any disagreements and reach a consensus for a
reliable manual labeling process that led to 100% agreement.

The objective of app review classification using the specific Naïve Bayes variant is to
accurately identify the type of each review, i.e., to predict the label—useful or non-useful.
As mentioned above, the performance results of the classification task were evaluated
using the standard definitions of accuracy, recall, precision, F-measure, and time metrics.
Accuracy, defined as a metric, determines the correctness of the particular Naïve Bayes,
defined as the number of correctly classified reviews out of the total classified reviews. In
the field of machine learning the accuracy metric is interpreted as the sum of true positives
and true negatives to the total number of entries [30]. Next, we evaluate the precision
metric, which indicates the true positives to the total number of true positives and false
positives [30]. Recall is defined as the correctly classified valuable reviews to the total
number of reviews that were useful. Therefore, recall indicates the true positives to the total
number of true positives and false negatives [30]. Finally, F-measure is calculated as the
harmonic mean of precision and recall, which confirms the robustness of the variants [30].
Furthermore, the time metric measures the time (in seconds) required for a particular
Naïve Bayes variant to learn from a set of manually labeled reviews (training data) to
predict the category of unknown reviews (test data) [50]. The computer used for our
experiments had 14 GB RAM and a CORE i5 CPU. For each experiment, we randomly
divided the respective dataset into a training set (90%) used to train the relevant Naïve
Bayes variant for reviews and a testing set (10%) used to evaluate their performance in
classifying undisclosed reviews. Each experiment was conducted 100 times using ten-fold
cross-validation (i.e., k = 10) to obtain average scores for the metrics mentioned above [51].
This process is commonly used by researchers to verify the stability of the methods [52].
That said, the same pattern of results was observed for every execution of our algorithms
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(all 100), and thus, even a single- or ten-times execution of our methods would support our
stated conclusions.

We measure the performances of the various Naïve Bayes approaches to answer
RQ1. We then experimented with the different Naïve Bayes implementations, particularly
considering data imbalances when answering RQ2. These results are provided in the
next section.

4. Results

RQ1. What are the performances of Naïve Bayes variants when extracting useful reviews?

We display the results of the experiments performed on the five datasets in Table 3,
wherein we present the average results of 100 ten-fold cross-validation operations per-
formed on the TradeMe, MyTracks, Vodafone NZ, ThreeNow, and Flutter datasets according
to the metrics listed in Section 4. It is to be noted that in examining statistically significant
differences among our outcomes, we ran the Shapiro–Wilk test to examine the distribution
of the results produced by each Naïve Bayes variant for normality assumption [53], find-
ing no evidence confirming normality (p-value < 0.01). Consequently, we conducted the
Kruskal–Wallis non-parametric test to detect potential statistically significant differences
between the results of the Naïve Bayes variants [53]. On finding statistically significant
differences (p-value < 0.01), pairwise Wilcoxon testing was carried out to assess pairwise
comparisons, with corrections for multiple comparisons [54], finding statistically significant
differences for all comparisons (p-value < 0.01).

That said, diverse performances shown by the Naïve Bayes variants can be observed
in Table 3. Initially, we tested the six Naïve Bayes variants on the TradeMe dataset and
evaluated their performances accordingly. Overall, Variant I showed the lowest accuracy
(59.3%) and F-measure (0.57) compared to others, while VI demonstrated the highest
accuracy (80.2%) and F-measure (0.65). Variant VI also needed the least amount of time
for learning and prediction (0.10 s), whereas Variant II took the most time (0.29 s). Next,
we tested the six variants on the MyTracks dataset and evaluated their performances
accordingly. Overall, Variant I had the lowest accuracy (68.1%) and F-measure (0.71)
compared to others, while Variant IV exhibited the highest accuracy (89.2%) and F-measure
(0.89). That said, Variant VI required the least time for learning and prediction purposes
(0.10 s), while Variant II required the most time (0.30 s).

Similarly, we tested the six variants on the Vodafone NZ dataset and evaluated their
performances accordingly. Overall, Variant I showed the lowest accuracy and F-measure
(56.9% and 0.43, respectively), while Variant VI was seen to exhibit the highest accuracy
and F-measure (79.6% and 0.58, respectively) while also taking the least time (0.17 s). We
observe that Variant II required the most time (0.40 s), and Variant IV was noted to be
the second highest in terms of its performance based on accuracy (78.2%) and F-measure
(0.55). Further, based on the observations in Table 3, the results for Variants II and V show
substantial differences in accuracy magnitude (even though differences were statistically
significant p < 0.01). In following the trend of analyses above, we tested the six variants
on the ThreeNow dataset and evaluated their performances accordingly. Overall, Variant
I showed the lowest accuracy (60.2%) and F-measure (0.72) compared to others, while
Variant IV showed the highest accuracy (78.2%) and F-measure (0.81). However, Variant VI
required the least time requirements (0.11 s), whereas Variant II needed more time than
others (0.28 s).

Finally, we tested the six Naïve Bayes variants on the Flutter dataset and evaluated
their performances accordingly. Overall, Variant I displayed the lowest accuracy (76.2%),
whereas VI was seen to exhibit the highest F-measure (0.89) with the least time (0.08 s)
requirement. We observe that Variant II had the highest time requirement (0.23 s), and Vari-
ant IV was noted to be the second highest in terms of its performance based on the accuracy
(82.3%) and F-measure (0.88). That said, based on the observations in Table 3, the results
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for Variants II, III, and V did not show substantial differences in accuracy and F-measure
magnitude (although these differences were statistically significant, p-value < 0.01).

Table 3. Naïve Bayes Variants’ Performance on Five Datasets.

Dataset Category
Labels

Imbalance
Scale (0–1) Variant Accuracy

(%)
Precision

(0–1) Recall (0–1) F (0–1) Time
(Seconds)

TradeMe Imbalanced 0.7

I 59.3 0.40 0.98 0.57 0.23

II 74.9 0.58 0.62 0.60 0.29

III 78.1 0.64 0.63 0.63 0.14

IV 79.0 0.65 0.64 0.64 0.17

V 74.1 0.54 0.71 0.61 0.12

VI 80.2 0.56 0.78 0.65 0.10

MyTracks Balanced 0.3

I 68.1 0.56 0.98 0.71 0.26

II 80.4 0.73 0.88 0.80 0.30

III 87.4 0.81 0.91 0.86 0.12

IV 89.2 0.84 0.94 0.89 0.19

V 84.6 0.76 0.90 0.82 0.15

VI 86.5 0.78 0.91 0.84 0.10

Vodafone
NZ

Imbalanced 0.8

I 56.9 0.28 0.93 0.43 0.32

II 75.1 0.52 0.41 0.46 0.40

III 76.6 0.72 0.39 0.51 0.23

IV 78.2 0.75 0.43 0.55 0.29

V 75.2 0.43 0.57 0.49 0.20

VI 79.6 0.53 0.63 0.58 0.17

ThreeNow Balanced 0.1

I 60.2 0.57 0.97 0.72 0.24

II 71.1 0.71 0.76 0.74 0.28

III 74.1 0.74 0.83 0.78 0.16

IV 78.2 0.77 0.86 0.81 0.19

V 69.6 0.70 0.75 0.73 0.14

VI 72.2 0.73 0.80 0.76 0.11

Flutter Imbalanced 0.7

I 76.2 0.75 0.97 0.85 0.19

II 80.3 0.82 0.91 0.86 0.23

III 80.5 0.81 0.94 0.87 0.12

IV 82.3 0.84 0.93 0.88 0.16

V 80.4 0.83 0.87 0.85 0.10

VI 84.4 0.87 0.91 0.89 0.08

Bold values indicate the best performance.

To summarize the outcomes of this sub-section, Variant I, given its recall (on average:
0.97) is able to correctly classify useful reviews (from all app reviews belonging to the useful
category) than the other variants. Similarly, Variant IV was found to be precise (on average:
0.8), indicating correct identification of useful reviews among the app reviews that were
classified as useful reviews and robust (average F-measure: 0.8) than the other variants.

RQ2. Are there differences in outcomes for different Naïve Bayes implementations, particularly
when considering data imbalances?
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To answer RQ2, we conducted Spearman’s Rho correlation test to explore the rela-
tionship between the degree of data imbalance and accuracy, F-measure, and the time
each variant took to classify reviews [55]. We report our findings in Table 4. Since there
were five datasets involved in the previously conducted experiment, we obtained a total
of five hundred observations for each variant (i.e., five datasets subjected to one hundred
experiments each), wherein outcomes reflected accuracy, F-measure, and time results of
the respective cross-validation operation. The results reported in Table 4 show that the
accuracy of Variant I (Multinomial Naïve Bayes) decreased with an increase in data imbal-
ance, whereas the accuracy of Variant II (Expectation Maximization—Multinomial Naïve
Bayes) increased slightly with an increase in data imbalance. A similar conclusion can be
drawn in cases of Variant IV (Expectation Maximization—Multinomial Naïve Bayes with
Laplace smoothing) and V (Complement Naïve Bayes), where accuracy is directly affected
by data imbalance. In addition, as the pattern of correlation coefficients observed for the
accuracy metric is inconsistent and inconclusive for Variants III (Multinomial Naïve Bayes
with Laplace smoothing) and VI (Complement Naïve Bayes with Laplace smoothing), no
definitive inferences can be drawn from them.

Table 4. Tradeoff between Data Imbalance and Accuracy, F-measure and Time of Each Naïve Bayes
Variant Measured through Spearman’s Rho (r).

Variant
Spearman’s Rho (r)

Accuracy F Time

I −0.4 * −0.41 * 0.2 *

II 0.1 * −0.33 * 0.4 *

III 0.0 −0.17 * 0.2 *

IV −0.2 * −0.11 * 0.4 *

V 0.2 * −0.13 * 0.2 *

VI 0.0 0.15 * 0.2 *
(* p-value < 0.01).

More importantly, such statistical outcomes pertaining to the accuracy metric are
commonly observed in cases of imbalanced data, and hence, such outcomes are generally
not considered to draw any conclusions by researchers [55]. Furthermore, as the data
imbalance increases, the F-measure of Variants I to V decreases. This divergence was
particularly pronounced for Variants I and II. On the contrary, the F-measure of Variant VI
increases with an increase in data imbalance, indicating that Variant VI (i.e., Complement
Naïve Bayes with Laplace Smoothing) is effective at handling imbalanced data. However,
the decrease in the F-measure of the expectation maximization variants (II and IV) was
lesser compared to their predecessors (I and II). Similarly, the variants incorporated with
Laplace Smoothing were effective in handling imbalanced data compared to their earlier
versions (III–I, IV–II, and VI–V).

In addition, the expectation maximization variants (II and IV) took more time when
handling imbalanced data compared to their predecessors (I and II). That said, these data
imbalances do not seem to affect the time needed for learning and prediction. Even though
the reported correlations supporting the above-mentioned inferences are weak, they are
statistically significant (p-value < 0.01).

Finally, we conducted Spearman’s Rho correlation test to explore the relationship
between the results of the F-measure and the time of each variant to probe our outcomes
further [55]. We report our findings in Table 5. The results reported in Table 5 show that the
F-measure of all the variants reduces with an increase in the time required for learning and
prediction purposes. For all six cases, there is a statistically significant correlation (trade-off)
observed between the F-measure and time.
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Table 5. Tradeoff between F-measure and Time of Each Naïve Bayes Variant Measured through
Spearman’s Rho (r).

Variant Spearman’s Rho (r)

I −0.7 *

II −0.7 *

III −0.7 *

IV −0.5 *

V −0.6 *

VI −0.7 *
(* p-value < 0.01).

To summarize the outcomes of this sub-section, Variant VI exhibits better robustness
(r = 0.15) when dealing with imbalanced data in comparison to the other variants, and the
robustness of Variant IV (r = −0.5) was found to be reliable with an increase in the time for
learning and prediction in comparison to the other variants.

The performance variations observed across datasets and variants can be attributed to
differences in review characteristics such as length, vocabulary size, and topic diversity.
These factors influence each variant’s classification accuracy, reflecting the complex nature
of app review data.

5. Discussion and Implications

RQ1. What are the performances of Naïve Bayes variants when extracting useful reviews?

Figure 1 provides a summary of performance results (accuracy, F-measure, and time
metrics) of the six Naïve Bayes variants for the five datasets in the form of a box plot.
The figure allows for meaningful evaluation of trends in our outcomes. When examining
the range of results observed for the five datasets (TradeMe, MyTracks, Vodafone NZ,
ThreeNow, and Flutter), the six variants exhibited varied performances. This conclusion is
drawn based on the results shown by the accuracy, F-measure, and time metrics (refer to
Section 5—RQ1 and Figure 1). We suspect that the type of features associated with each
label (i.e., category) plays an important role in predicting the relevant label (useful or non-
useful). This may explain variations in performances shown by the Naïve Bayes variants
when classifying useful and non-useful reviews for the five datasets. Based on this outcome,
we believe the variants can reliably predict the label of each review if the features spread
across various labels had a higher degree of distinctness (i.e., if the features associated
with a label are significantly distinct compared to the features associated with other labels),
an aspect needing further empirical investigation. This is because, for some overlapping
features (i.e., similar words belonging to different categories), the conditional probability
P (wi|cn) of the specific feature wi given the category cn could be normally distributed.
In such a scenario, bias and variance of such features belonging to each category in the
training data could be computed, and later, utilizing the probability density function of the
normal distribution, P (wi|cn) can be computed for the unlabeled reviews. To generate the
probability value of a specific feature wi from the feature’s continuous probability density
function, it would be necessary to integrate the probability density function around the
probability value of the feature under examination over an interval of width epsilon and
compute the limit of the integral as epsilon moves towards zero. This would enable the
examination of the ratio of conditional probabilities generated by the particular variant that
would ultimately assist in the generation of reliable features for learning purposes [56,57].
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More importantly, we noticed that all the Naïve Bayes variants operated on the inde-
pendence assumption, causing each variant to ignore the meaning of words relative to other
words. This, in general, may compromise each variant’s ability to calculate probabilities
when working with words pertaining to real-world natural language applications [58]. For
example, in the review ‘the signal fades away’, the words ‘signal’ and ‘fades’ are related
as the word pair ‘signal—fades’ indicates that there is an issue with the phone signal.
However, this is not considered by the Naïve Bayes variants. However, other machine
learning algorithms, such as logistic regression, discretize the words or try to fit a normal
distribution [59]. In fact, each Naïve Bayes variant assumes the word space is normally
distributed with zero variance among words in all categories. This is a questionable as-
sumption for any real-world application as, in some cases, the variant may be unable to
generate a reliable discretization of interrelated (continuous) word features. This may po-
tentially compromise prediction accuracy and thus demand a solution. A simple potential
solution would be to test for the independence of the words to obtain a tentative estimate of
prediction errors to determine the suitability of the application of a particular Naïve Bayes
variant, or it may be useful to obtain a zero normal distribution to achieve more efficient
results [60,61]. However, some of the measures returned above are significant (e.g., 89%
accuracy, 0.87 precision, 0.98 recall, 0.89 F-measure, and 0.08 s time). Therefore, the Naïve
Bayes variants examined in this study, individually, show promise for aiding useful review
filtering to support software maintenance and evolution practice.

Furthermore, the Naïve Bayes method has been shown to outperform other methods
on information retrieval tasks (i.e., tasks involving textual data) [25,26], and Chen et al. [8]
reported an F-measure of 0.86 when their approach was evaluated. In the current study,
we perform extensive experiments and confirm the value of Naïve Bayes with slightly
improved results. In particular, the expectation maximization variants of the Naïve Bayes
method produced F-measure as much as 0.86 (i.e., Variant II) and 0.89 (i.e., Variant IV).
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RQ2. Are there differences in outcomes for different Naïve Bayes implementations, particularly
when considering data imbalances?

It is evident in Figure 1 and statistics reported in Table 4 that the expectation maxi-
mization variants (II and IV) notably enhanced the basic Multinomial Naïve Bayes vari-
ants (I and III). The Expectation Maximization-Multinomial Naïve Bayes and Expecta-
tion Maximization-Multinomial Naïve Bayes with Laplace smoothing consistently outper-
formed their predecessors Multinomial Naïve Bayes and Multinomial Naïve Bayes with
Laplace smoothing. These customizations resulted in as much as 32% improvement in ac-
curacy in the retrieval of useful reviews over their predecessors. However, the Expectation
Maximization-Multinomial Naïve Bayes and Expectation Maximization-Multinomial Naïve
Bayes with Laplace smoothing variants of Naïve Bayes required more time for learning
and prediction purposes (as much as 25% increase in time).

The increase in accuracy and F-measure noted in Section 5 is due to the working
mechanism of Expectation Maximization that allows the Multinomial Naïve Bayes variants
to gain maximum information about the underlying words in reviews of the same category
during its learning phase. This is seen in Section 3.5 when uncategorized and categorized
reviews are passed to the Expectation Maximization variant, which allows the Expectation
Maximization variant to gain insights into the different types of words related to a particular
category during its learning phase. The knowledge gathered during the learning process
also leads to higher accuracy and F-measure. That said, the operating structure of the
Multinomial Naïve Bayes and Multinomial Naïve Bayes with Laplace smoothing work
based on closed-form formulas [62], which allows these variants to generate results quickly.
This contrasts with Expectation Maximization-Multinomial Naïve Bayes and Expectation
Maximization-Multinomial Naïve Bayes with Laplace smoothing, which produces results
through an iterative process approach (waiting for likelihood parameters to stabilize),
thereby requiring more time. In addition, the Expectation Maximization variants could
handle these imbalanced data better than their predecessors even though they needed
additional time for learning and prediction purposes (refer to Table 4).

In terms of Laplace smoothing, results show that this enhancement assisted signifi-
cantly in increasing the accuracy and F-measure and reducing the time requirements for
predictions including Multinomial Naïve Bayes, Expectation Maximization-Multinomial
Naïve Bayes, and Complement Naïve Bayes (III, IV, and VI). We observe as much as an
18.8% increase in accuracy, a 0.15 improvement in F-measure, and a 0.14 s reduction in time
attributed to the Laplace smoothing (all statistically significant outcomes). This concept
significantly enhanced the retrieval of useful reviews. As seen from Equations (6) and (7),
Laplace smoothing prevents zero counts of words whose information is not known in the
training phase, thus maintaining the value of maximum likelihood estimates that are crucial
towards the computation of a category of review. Therefore, any maximum likelihood
estimate being 0 causes a lapse in the judgment toward determining the relevant category
of a review. Consequently, the variants augmented by Laplace smoothing generate faster
estimates of the parameters that compute the likelihood [63], hence improving Naïve Bayes
prediction performance. In addition, as inferred from the findings reported in Table 4,
Laplace smoothing benefited Variants III, IV, and VI in dealing with data imbalance. This
effect is particularly pronounced when Variant VI is considered. Thus, concepts such as
expectation maximization and Laplace smoothing contribute towards resolving the data
imbalance issue.

Figure 1 and statistics reported in Table 4 also show overall, Expectation Maximization-
Multinomial Naïve Bayes with Laplace smoothing performed well on the datasets in
terms of accuracy and F-measure. Therefore, from a practical standpoint, Expectation
Maximization-Multinomial Naïve Bayes with Laplace smoothing (IV) may be a suitable
candidate for the task of retrieving useful reviews when app developers are dealing with
limited amounts of manually categorized (or labeled) reviews. On the contrary, Comple-
ment Naïve Bayes with Laplace smoothing (VI) showed good performance on the TradeMe,
Vodafone NZ, and Flutter datasets. This is because the working methodology of Comple-
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ment Naïve Bayes incorporated with Laplace smoothing enables it to perform well when
the dataset is imbalanced, as observed in the case of the above-mentioned datasets (refer
to Section 4 and Table 4). To elaborate further, Complement Naïve Bayes variants attempt
to normalize the word counts to rectify weight bias (i.e., data imbalance) [43]. The overall
objective of the Complement Naïve Bayes variants is to make the estimated conditional
probabilities insensitive to skewed counts of words (refer to Section 3.3). Hence, if there
is a presence of few app reviews in one category (e.g., Useful) and these app reviews are
comparable in length to those of the other category (e.g., non-useful) given the fact that
certain words appear more often in app reviews of one category, then Complement Naïve
Bayes tends to associate these app reviews with app reviews of other categories. Thus, by
normalizing the word counts across categories, the weight bias is compensated.

Moreover, concerning the datasets, Complement Naïve Bayes with Laplace smoothing
(VI) had the least time requirements (average ~0.11 s). Hence, the application of Comple-
ment Naïve Bayes with Laplace smoothing is best suited when app developers have a
substantial number of categorized reviews whose labels are imbalanced and, at the same
time, are bound by time constraints. However, the Complement Naïve Bayes with Laplace
smoothing variant cannot incorporate Expectation Maximization, limiting its use to the
previously mentioned application scenario.

Furthermore, as observed from Table 5, the F-measure of all the versions of the Naïve
Bayes method decreased as the time required for learning and prediction increased. It is
suspected that as the number of features increases, and if the likelihood of these features
does not conform to the appropriate distribution required by the Naïve Bayes method,
the F-measures of the variants are compromised. In addition, the Naïve Bayes method
requires the number of features related to each category to be logarithmic to the size of the
training data [59]. These observations further support our theory of generating reliable
feature sets (i.e., feature sets consisting of appropriate features) pertaining to each category
for the relevant variant, as mentioned earlier (refer to Section 5, RQ1 discussion). One
potential solution to address this problem would be to utilize Information Gain (IG) to
extract features from the training data and later sort the extracted features in descending
order of their computed IG ratio to select the prominent features (e.g., top ‘n’, where n is
based on some appropriate threshold) [64].

Our analysis revealed that dataset imbalance, review length, and vocabulary diversity
affect variant performance. Complement Naïve Bayes variants (V and VI) showed improved
performance on imbalanced datasets, while variants with Laplace smoothing (III, IV, and VI)
handled larger vocabularies more effectively. These observations highlight the importance
of considering dataset characteristics when selecting a Naïve Bayes variant for app review
classification.

6. Threats to Validity
6.1. Internal Validity

In this study, the risks associated with labeling app reviews have been addressed by
(1) making use of feedback from app developers, (2) studying and understanding the rules
outlined in Chen et al. [12] for labeling app reviews, and (3) thoroughly analyzing various
types of app reviews that concern app developers. The rules for labeling app reviews
were extensively discussed among the authors to achieve a shared understanding before
conducting reliability checks, which resulted in substantial agreements (see Fleiss Kappa
statistics in Section 4). Follow-up discussions were held to reach a consensus among the
authors before finalizing the labeled reviews. The primary objective of this study was to
compare the performance of different Naïve Bayes variants in filtering useful app reviews,
addressing data imbalance issues, and identifying potential research opportunities for
improving their performance. Therefore, this work does not investigate the performance of
other information retrieval approaches or methods for addressing data imbalance. How-
ever, potential future work aimed at conducting such an investigation could be planned.
This investigation could involve the performance evaluation of popular machine learning
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algorithms such as BERT (Bidirectional Encoder Representations from Transformers), De-
cision Trees, Random Forests, Logistic Regression, SVM, and so on, towards the filtering
of useful reviews along with methods such as SMOTE (Synthetic Minority Oversampling
Technique), ADASYN (adaptive synthetic sampling approach) which specialize in address-
ing the data imbalance issue. Potential future work could be planned to investigate these
approaches. Finally, this study primarily focused on the performance of Naïve Bayes
variants for extracting useful reviews, hence investigating and addressing issues related
to the generation of distinct (reliable) features for learning purposes, and independence
assumptions made by these variants were outside the scope of this study.

6.2. External Validity

A computer with a specific hardware configuration (detailed in Section 4) was used,
which may limit the generalizability of our outcomes; however, the pattern of results was
consistent across the datasets, so this was not a threat to the pattern of outcomes observed.
We have utilized five datasets to evaluate the utility of the six Naïve Bayes variants for
filtering useful reviews. Hence, the generalizability of the results may be limited to these
datasets. However, the main objective of this study was to examine the feasibility and
performance of the variants in filtering useful reviews and quantifying the evaluation of
the results produced by the variants to identify the best-performing variants under certain
circumstances. Our analysis was also restricted by the time and human resource constraints
related to the manual labeling of the reviews and reliability assessments performed in
this study.

6.3. Construct Validity

To construct the ground truth to filter useful reviews, we followed the well-established
rules from a prominent study to label the app reviews [12]. In addition, recommended
practices from the software engineering discipline guided our decisions (e.g., around relia-
bility assessments and consensus formation). However, another approach to constructing
this ground truth would be to contact the app developers of the respective apps to obtain
the labeled set of reviews for evaluating the performance of the filtering approach. Such an
approach could be a natural next step for future research.

7. Conclusions and Future Work

In this study, we examined Naïve Bayes variants for their usefulness in extracting
useful app reviews. In the past, various approaches have been used to extract app reviews,
with the method incorporating Expectation Maximization for the Naïve Bayes method
showing the most potential. Thus, in this study, we explore the performances of six variants
of Naïve Bayes. The findings indicate that, overall, Expectation Maximization-Multinomial
Naïve Bayes with Laplace smoothing (Variant IV) is the most effective for extracting useful
reviews from various datasets, while Complement Naïve Bayes with Laplace smoothing
(Variant VI) is better suited for extracting useful reviews from highly imbalanced datasets.
Furthermore, the utilization of such variants may provide decision support for software
product maintenance and evolution.

That said, this study identifies several further research opportunities. For instance, the
potential performance optimization of the Naïve Bayes variants for filtering app reviews
provides a useful opportunity for follow-up research. In addition, the generation of discrete
(reliable) features for learning purposes and addressing the independence assumption
made by the variants are useful avenues for follow-up work. Additional datasets belonging
to a wide spectrum of categories (e.g., Banking, Social, Video Players and Editors, and
so on) from the app domain can be utilized to evaluate the performance of the proposed
versions of Multinomial Naïve Bayes method to verify the application generalizability
of the best-performing variants from a broader perspective (i.e., industry or academic
settings). Beyond app reviews, however, the usefulness of these variants can be empirically
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evaluated on bug reports and requests logged in software repositories such as Jira, GitHub,
and others.
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Appendix A

Table A1. Datasets summary.

App
Name

Total
Number of

Reviews
Logged

Category

Maximum
Review
Length
(Charac-

ters)

Minimum
Review
Length
(Charac-

ters)

Average
Length of
Review

Average
App

Rating
Category

MyTracks 4003 1988 3 136 3.8 Travel

Flutter 3483 2110 2 126 4.2 Casual

ThreeNow 3683 1483 2 132 1.5 Entertainment

TradeMe 4559 1732 3 112 3.2 Shopping

Vodafone
NZ 6583 1434 2 123 2.4 Tool
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