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Abstract: Background: Advances in medical image classification have recently benefited from general
augmentation techniques. However, these methods often fall short in performance and interpretabil-
ity. Objective: This paper applies the Unified Model Agnostic Computation (UMAC) framework
specifically to the medical domain to demonstrate its utility in this critical area. Methods: UMAC
is a model-agnostic methodology designed to develop machine learning approaches that integrate
seamlessly with various paradigms, including self-supervised, semi-supervised, and supervised
learning. By unifying and standardizing computational models and algorithms, UMAC ensures
adaptability across different data types and computational environments while incorporating state-
of-the-art methodologies. In this study, we integrate UMAC as a plug-and-play module within
convolutional neural networks (CNNs) and Transformer architectures, enabling the generation of
high-quality representations even with minimal data. Results: Our experiments across nine diverse
2D medical image datasets show that UMAC consistently outperforms traditional data augmentation
methods, achieving a 1.89% improvement in classification accuracy. Conclusions: Additionally, by
incorporating explainable AI (XAI) techniques, we enhance model transparency and reliability in
decision-making. This study highlights UMAC’s potential as a powerful tool for improving both the
performance and interpretability of medical image classification models.

Keywords: deep learning; explainable artificial intelligence; convolutional neural networks (CNN);
self-supervised machine learning

1. Introduction

Deep learning methods significantly aid clinicians in rapid examination and accu-
rate diagnosis [1]. However, these methods demand substantial data, which are often
scarce in medical contexts. Limited patient data or insufficient medical equipment can
lead to biased and overfitting models [1]. Data augmentation, a technique commonly em-
ployed to address these issues, is particularly crucial in medical imaging where modalities
(e.g., MRI, CT, X-ray) require specialized knowledge, and augmentation can be computa-
tionally expensive [2,3]. Traditional image-level augmentations often struggle to introduce
sufficient diversity or achieve meaningful semantic transformations. Meanwhile, generative
methods, although capable of enhancing diversity, remain complex and computationally
intensive [4,5].

Recent advancements in feature-level augmentation techniques provide new ap-
proaches for improving the performance of models, especially in medical image clas-
sification. Techniques like GuidedMixup [6], which employs saliency maps to preserve
the most relevant parts of the image during augmentation, have been shown to reduce
label violations by focusing on salient regions. PuzzleMix improves the standard Mixup
method by optimizing spatial consistency and preserving local structures, which is crucial
in medical imaging tasks involving complex anatomical structures [7]. SaliencyMix fur-
ther improves upon these techniques by combining saliency-guided augmentations with
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patch-based mixups to enhance regularization and generalization, even on smaller medical
datasets [8].

In addition to these, ResizeMix offers an augmentation strategy that handles the vary-
ing resolutions in medical images by resizing patches while mixing them, thus improving
performance across different imaging modalities [9]. ReMix addresses class imbalances by
synthesizing balanced training data for underrepresented classes, making it particularly
valuable in applications like disease classification where certain conditions may be under-
represented [10]. Finally, Co-Mixup introduces a novel approach to jointly mixing images
while preserving diversity across multiple sources, making it suitable for small medical
datasets [11].

These state-of-the-art augmentation techniques are particularly relevant in medical
image classification, where data are often scarce, and diversity in training samples is crucial
for model generalization. Building on our previous work [12], where we developed the
UMAC framework, we now apply it to the medical domain, integrating these advanced
augmentation techniques.

UMAC’s model-agnostic approach integrates seamlessly with various learning paradigms,
adapting across different data types and environments. It is particularly well-suited to
the medical field, where data scarcity, the need for high accuracy, and the demand for
interpretability are critical challenges. By generating new models tailored for medical
applications and incorporating XAI methodologies, UMAC simplifies the development
of effective, reliable, and transparent machine learning solutions. This demonstrates its
potential to significantly advance medical research and practice. Given these considerations,
our research is guided by the following central question:

Research Question: How can the UMAC framework be effectively applied to the challeng-
ing field of medical image classification, addressing issues such as data scarcity, model
generalization, and the need for interpretability in clinical settings?

Our main contributions in addressing this question are:

• Developing a high-performance, self-supervised learning module using UMAC tech-
niques, specifically tailored for medical image classification.

• Demonstrating how UMAC techniques provide insights into where performance
improvements are achieved.

• Showing that UMAC enhances performance across various dimensions, modalities,
and architectures, including CNNs and Transformers, with a particular emphasis on
improving data augmentation techniques.

The remainder of this paper is structured as follows: In Section 2, we discuss the chal-
lenges in acquiring medical data. Section 3 provides an in-depth discussion of related
work, focusing on state-of-the-art techniques in data augmentation and self-supervised
learning, particularly in the context of medical imaging. Section 4 introduces the proposed
methodology, detailing the integration of UMAC with advanced augmentation strategies.
Section 5 describes the datasets and experimental setup used to evaluate the performance of
UMAC. The experimental results, comparisons with other cutting-edge methods, and key
insights are presented in Section 6. Finally, Section 7 concludes the paper.

2. Challenges in Acquiring Medical Data

Obtaining high-quality, labeled data is a significant challenge in the medical field,
especially for training machine learning models. Unlike other domains where data can
be easily generated or collected, medical data acquisition is often constrained by several
unique factors.

First, data privacy and security is a major concern. Medical data contain sensitive
information, and regulations such as the Health Insurance Portability and Accountability
Act (HIPAA) in the United States and the General Data Protection Regulation (GDPR) in
Europe impose strict controls on data collection, storage, and sharing. These regulations
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are essential to protect patient privacy but can also limit access to large datasets for research
purposes [13,14].

Additionally, data labeling and annotation is a complex process in the medical domain.
It requires expertise from trained medical professionals, which makes it time-consuming
and expensive. The variability in labeling due to subjective interpretations by different
experts adds another layer of complexity [15,16].

Another challenge is data diversity and representation. Many medical datasets lack
diversity, both in terms of demographic representation and the range of medical conditions
covered. Most available datasets are sourced from a limited number of healthcare institu-
tions, often in high-income countries, leading to biases that affect the generalizability of
models to broader or underserved populations [17,18].

Furthermore, data size and quality can be a limiting factor. Certain medical conditions
are rare, making it difficult to obtain sufficient data to train robust models. The quality
of available data may also vary significantly due to differences in imaging equipment,
protocols, and patient populations, leading to noisy and inconsistent datasets that hinder
model performance and reliability [19,20].

The use of medical data for research raises ethical and legal challenges, particularly
around consent and data misuse. Researchers must navigate complex ethical guidelines to
ensure data usage aligns with patient rights and expectations, requiring careful collabora-
tion among clinicians, ethicists, and data scientists [21,22].

Finally, data integration and standardization pose significant difficulties. Integrating
data from multiple sources, such as electronic health records (EHRs), imaging, and genomic
data, requires significant preprocessing, cleaning, and normalization to ensure compatibility
and meaningful analysis [23,24].

These challenges highlight the need for innovative approaches like the UMAC frame-
work, which aims to maximize the utility of available data through advanced computational
techniques and data augmentation strategies. By addressing the limitations of current
datasets, UMAC can improve the performance and generalizability of machine-learning
models in the medical field.

3. Related Work

Self-supervised learning (SSL) has emerged as a key approach in machine learning,
particularly for leveraging unlabeled data to extract meaningful features. Shurrab et al. [25]
provide a comprehensive overview of SSL techniques in medical imaging, discussing their
contributions and limitations. While this survey highlights important advancements, it
does not delve into the shared foundational components that unify various SSL approaches.
Recent studies have demonstrated the effectiveness of SSL in numerous medical imaging
tasks. For example, Taleb et al. [26] introduced a multi-task learning framework that inte-
grates SSL with semi-supervised learning, reporting a 7% improvement in classification
accuracy for 3D medical images. Similarly, Jamaludin et al. [27] applied SSL to spinal MRI,
achieving a 15% increase in feature extraction efficiency, significantly enhancing segmen-
tation accuracy. These findings underscore the potential of SSL to improve performance
in situations where labeled data are limited.

In the field of medical image registration, Li and Fan [28] employed self-supervised
fully convolutional networks for non-rigid image alignment, reaching an accuracy of 80%
without requiring extensive labeled data. Taleb et al. [26] extended SSL to 3D medical
imaging, showing a 10% improvement in segmentation tasks, further demonstrating the
value of SSL in complex medical imaging scenarios.

XAI techniques have also gained importance alongside SSL, as they provide insights
into the decision-making process of machine learning models. LIME [29] and SHAP [30]
are widely used XAI methods, though they are often modality-specific. Droste et al. [31]
highlighted the need for clinically relevant explainability by developing metrics based on
visually salient landmarks. However, these techniques are often limited to specific imaging
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modalities. The UMAC framework offers a more flexible approach to XAI, enhancing
explainability across a range of medical imaging tasks.

Data augmentation plays a critical role in improving model performance, especially
in medical imaging, where data are often scarce. GuidedMixup [32], which uses saliency
maps to guide interpolation, has demonstrated a 5% improvement in classification accuracy
on imbalanced datasets. PuzzleMix [7], which focuses on optimizing spatial consistency
during augmentation, improved segmentation accuracy by 8% in tasks involving complex
anatomical structures.

Implicit Semantic Data Augmentation (ISDA) [33] enhances model robustness by aug-
menting features along class-specific semantic directions without generating new samples.
ISDA has been shown to improve classification accuracy by 2–4% on datasets such as
CIFAR-10 and CIFAR-100 when applied to deep networks like ResNet [33]. Its adaptability
to deep learning models makes it highly relevant to medical imaging tasks where labeled
data are limited.

Bayesian Random Semantic Data Augmentation (BSDA) [34], introduced in [34],
addresses challenges in medical image classification by generating feature augmentations
that better represent class distributions. BSDA improved accuracy and area under the ROC
curve (AUC) by 2–5% on medical imaging datasets such as BreastMNIST and RetinaMNIST,
demonstrating its efficacy in both 2D and 3D modalities [34].

These augmentation methods, while initially developed for general imaging tasks,
hold significant potential when applied to medical image classification. The UMAC frame-
work integrates these techniques to improve model generalization and performance across
a variety of medical imaging tasks, providing a flexible and powerful tool for the medical
research community.

4. Methodology

To apply the UMAC methodology [12] to the medical field, we begin by outlining its
essential components and the process involved in developing a UMAC system. The devel-
opment of a UMAC system follows a structured methodology that efficiently integrates
diverse computational models, algorithms, and frameworks. The goal is to create a flexible
computation system capable of handling various data types, problems, and computational
environments, while also incorporating the latest advancements in methodologies. A key
feature of UMAC is the integration of XAI, which enhances transparency and interpretabil-
ity by providing a plug-and-play structure. This allows developers to clearly understand
and modify different components of the model as needed, making it easier to experiment,
fine-tune, and improve the system’s performance while ensuring that each part of the
model is easily interchangeable and its impact is transparent.

When adapting UMAC to the medical field, preprocessing techniques play a critical
role in enhancing the performance of self-supervised learning models, particularly in medi-
cal image classification. Building on insights from our previous work [12], we developed
a systematic approach that unifies and abstracts computational models and algorithms.
This ensures adaptability across different data types and computational environments.
Specifically, we adopt the Unified Agnostic Computation Process for self-supervised learn-
ing, focusing on data augmentation techniques to improve model performance in medical
image classification tasks, as shown in Figure 1.

Figure 1 outlines the Unified Agnostic Computation Process for self-supervised learn-
ing as applied to medical image classification. The process begins by generating two
augmented datasets from the original dataset, which are then processed through two
encoders: the Key Encoder and the Queue Encoder. The Key Encoder is represented by
parameters θ, while the Queue Encoder is initialized with parameters ξ.

To ensure diversity in the dataset, random parameters σ and σ′ are applied during
augmentation. After the data pass through the encoders, contrastive loss is calculated by
comparing positive pairs (similar images) with negative pairs (dissimilar images). A FIFO
queue mechanism is employed to store representations from previous batches, allowing
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the model to learn from a broader range of examples. This enhances the model’s ability to
distinguish between different classes.

Figure 1. Unified Agnostic Computation Process with self-supervised learning in the medical field.
In this context, θ and ξ are parameters, while σ and σ′ represent random parameters.

If a symmetric loss function is applied, the augmented input is fed into both network
classifiers, which have different parameters: θ for the Key Encoder and ξ for the Queue
Encoder. The loss is computed between the two classifiers, typically CNNs or transformers,
to capture differences in representation.

Finally, the parameters of the Key Encoder (θ) are used as the starting point for the
fine-tuning phase. The output is further fine-tuned using labeled data, which enhances the
model’s performance in tasks such as medical image classification, as demonstrated in the
RetinaMNIST dataset.

4.1. Training

The training phase is a critical component of our system’s development, laying the
foundation for a robust computational model. This stage is meticulously designed to
enhance model performance through various preprocessing and network classification
strategies.

• Preprocessing: The detailed procedure for image data augmentation is outlined in
Algorithm 1. This algorithm aims to increase the dataset size while preserving the
original label distribution. Given an original set of images X = {x1, x2, x3, . . . , xn} and
corresponding labels Y = {y1, y2, y3, . . . , yn}, where each label yi ∈ {0, 1, 2, . . . , u},
the objective is to expand the dataset by a factor α.
To achieve this, the algorithm performs the following steps:

– Initialization: Calculate the desired size of the augmented datasets:

m = ⌈n× α⌉

Initialize empty sets S1 and S2 for storing augmented images. Compute the
label distribution P(y) from Y to maintain the original distribution in the aug-
mented datasets.

– Augmentation Strategy: For each image in the original dataset X, apply a series
of random augmentations to create new images. The augmentation function A is
defined using parameters generated randomly:

Xaug = A(x)

Each image is augmented at least once to ensure diversity in the augmented datasets.

If C(y) < py ×m, then augment image x.

– Final Datasets: The resulting augmented datasets S1 and S2 are expanded to the
target size m, with label distributions that closely follow the original dataset’s
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distribution. This process enhances the model’s ability to generalize and handle
diverse data scenarios.

To further illustrate this augmentation process, Figure 2 provides a concrete example
using a DermaMNIST image. This example demonstrates the series of transformations
applied during augmentation, such as random color shifts and spatial adjustments,
highlighting how these changes ensure diversity in the training data.

Algorithm 1 Image Data Augmentation with Size Increase

Require:
| Original set of images X = {x1, x2, x3, . . . , xn}
| Original set of labels Y = {y1, y2, y3, . . . , yn}, where yi ∈ {0, 1, 2, . . . , u}
| Desired augmentation factor α

Ensure: Augmented image sets S1, S2 with size increased by factor α
1: S1, S2 ← ∅
2: m← ⌈n× α⌉
3: P(y) = {p0, p1, . . . , pu} from Y
4: C(y) = {c0 = 0, c1 = 0, . . . , cu = 0}
5: for i = 1 to 2 do
6: for j = 1 to n do
7: σ← rand()
8: Bi, Ni, Ci, Oi ← σi
9: cik ← rand(), ∀k ∈ [1, kcolor]

10: oik ← rand(), ∀k ∈ [1, kspatial]
11: Ai ← createAugmentationFunction(Bi, Ni, Ci, Oi, ci1, . . . , cik, oi1, . . . , oik)
12: Xaug ← A(xj)
13: Si.add(Xaug)
14: end for
15: while size of Si < m do
16: Select a random number r ∈ {1, 2, . . . , n}
17: Determine label yr ← yr

18: if C(yr) < pyr ×m then
19: Obtain image xr from X
20: σ← rand()
21: Bi, Ni, Ci, Oi ← σi
22: cik ← rand(), ∀k ∈ [1, kcolor]
23: oik ← rand(), ∀k ∈ [1, kspatial]
24: Ai ← createAugmentationFunction(Bi, Ni, Ci, Oi, ci1, . . . , cik, oi1, . . . , oik)
25: Xaug ← A(xr)
26: Si.add(Xaug)
27: end if
28: end while
29: end for
30: return S1, S2

• Network Classifier: The prevailing models predominantly incorporate two encoders,
punctuated with key components:

– Encoder Architecture: The encoder can be any of the popular CNN architectures
such as ResNet [35], ResNeXt [36], or DenseNet [37]. Larger architectures gen-
erally yield superior results, albeit at heightened computational costs. Specific
components, especially the queuing of representations, can judiciously curtail the
model’s size and batch requisites without compromising performance. The mini-
batch size is set to 128 by default for each of these CNN architectures but can
be adjusted if needed. However, we did not find significant differences when
altering the minibatch size, which is a limitation of our experiment. In addition
to CNN-based encoders, Transformer-based architectures like Vision Transformer
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(ViT) [38] can also be utilized for image classification tasks, providing a versatile
option for the encoders based on self-attention mechanisms.

– Auxiliary Components:

* MLPs: Post-encoder MLPs are non-negotiable. A deeper MLP on the Key
Encoder relative to the Queue Encoder is quintessential. A more intricate and
expansive Encoder Architecture mandates a correspondingly profound MLP.

* Representation Queue: The representation queue, while adhering to the
FIFO principle, is also influenced by the learning rate of the key encoder.
A higher learning rate necessitates a smaller queue due to rapid weight
updates rendering stored representations obsolete swiftly. Conversely, with
a slower learning rate, representations evolve more gradually, permitting
a more extensive queue. Mathematically, the FIFO operation in terms of
batches, influenced by a hyperparameter h, can be articulated as follows:

Qb+1 = Append(Qb, kb+1)− Remove(Qb, h)

where Qb symbolizes the queue’s state at batch b, kb+1 denotes the key
representations of the newly processed batch, and h indicates the number of
batch sizes’ worth of representations to be removed. Adjusting h allows for
fine-tuning the refresh rate of the queue, providing a balance between queue
longevity and representational freshness.

* Exponential Moving Average (EMA): A straightforward procedure where
solely the Key Encoder’s value undergoes modifications, employing EMA to
contemporaneously update the Queue Encoder’s parameters.

Let θ be the randomly initialized parameters of the Key Encoder and ξ be the parame-
ters of the Queue Encoder. The training process involves the two augmented datasets,
and a backward propagation updates θ while EMA is used to update ξ:

ξ ← βξ + (1− β)θ

where β is the EMA decay rate. This process is illustrated in Figure 1.

• Loss Function: The nature of the loss function plays a pivotal role in dictating the
interaction between augmented data and the encoders, determining if both augmented
datasets traverse both encoders or just one. Coupled with this, the role of queuing
becomes evident:

– Contrastive Loss and Queuing: In architectures that employ representation
queuing, the contrastive loss is especially effective. A queue that captures repre-
sentations from previous batches enables the network not only to contrast against
the positive pair but also against a vast array of negatives. This extensive neg-
ative sampling sharpens the encoder’s ability to discern between semantically
close and diverse data points. In the absence of such a queue, the contrastive
loss mainly depends on positive pairs, potentially overlooking the fine nuances
provided by many negative samples. As such, leveraging the contrastive loss
alongside a queue not only expands the range of representations but also enriches
the learning process, setting a more comprehensive contrastive context.

– Non-contrastive Loss and Queuing: For architectures employing a non-contrastive
loss, there is a tendency to sidestep processing both augmented datasets through
the two (or ‘twin’) encoders, choosing a more linear path. While this simplifies the
computational trajectory, it might forgo the advantages of contrasting augmented
views in a dense representational setting.
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Figure 2. Example of Augmentation Function applied to a DermaMNIST image, showcasing color
shifts and spatial transformations.

4.2. Supervised Fine-Tuning

Before we start the fine-tuning process, it is important to note that θ is not randomly
initialized for this phase. Instead, we leverage the parameters from the training mode in
the previous step. This allows us to benefit from the previously learned representations,
enhancing the supervised fine-tuning process.

The process of supervised fine-tuning fundamentally revolves around equipping the
key encoder with capabilities to handle labeled data. At the heart of this process lies the
widely adopted cross-entropy loss, which serves as the objective function for this phase
of training.

Essentially, this entails a basic supervised training regimen for the key encoder.
In contrast to the unsupervised or self-supervised paradigms previously discussed, here,
the model explicitly learns from data that carries associated labels. Notably, only a per-
centage of the data, which is labeled, is employed for this fine-tuning. Often, this subset
of labeled data is particularly used for benchmarking purposes to assess and compare
model performances.

To facilitate the training, a softmax layer is appended at the tail end of the encoder.
This layer’s primary function is to produce probability distributions over the possible
classes for each input sample.

Mathematically, if C denotes the number of classes, the output of the key encoder is
fed into a softmax function adjusted to yield a C-dimensional vector. This vector essentially
captures the likelihood of the input sample belonging to each of the C classes. The formula
can be expressed as follows:

Softmax(x)i =
exi

∑C
j=1 exj

where x is the output of the key encoder and i ranges from 1 to C.
The cross-entropy loss, often used in classification tasks, measures the difference

between the true labels and the predicted probability distributions. For a single sam-
ple, the cross-entropy loss H(y, ŷ) between the true label y and the predicted probability
distribution ŷ is given by the following:

H(y, ŷ) = −
C

∑
c=1

yc log(ŷc)
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where C is the number of classes, yc is the true label for class c (often a binary indicator
whether the sample belongs to class c or not), and ŷc is the predicted probability for class c.

The produced probabilities are then contrasted with the true labels using the cross-
entropy loss to guide the fine-tuning of the encoder. The loss is then backpropagated
through the encoder to update its parameters.

Upon successful fine-tuning using the labeled data subset, the trained key encoder is
subsequently applied to medical image classification tasks, as demonstrated in Figure 1 for
the RetinaMNIST dataset [39].

5. Experimental Setup

The primary objective of this study is to evaluate the effectiveness of the UMAC
framework in medical image classification tasks using the MedMNIST+ dataset. Specifically,
we aim to assess UMAC’s performance across different data modalities, neural network
architectures, and augmentation strategies. Our goal is to determine whether UMAC
can enhance model performance, improve generalization, and maintain interpretability
compared to state-of-the-art methods.

The observation targets include key performance metrics such as accuracy (ACC) and
the area under the ROC curve (AUC) across multiple datasets with varying complexities
and data modalities (e.g., X-ray, OCT, Ultrasound). By focusing on these metrics, we
observe the effectiveness of UMAC in handling diverse classification tasks, including binary
classification, multi-class classification, ordinal regression, and multi-label classification.

When presenting the results, we aim to address several critical aspects of our research
questions. We investigate whether the UMAC framework offers superior performance
compared to existing state-of-the-art methods across different medical image datasets.
Additionally, we evaluate UMAC’s adaptability to various neural network architectures
and its impact on training stability and model robustness. Furthermore, we explore the
effectiveness of different data augmentation strategies within UMAC, particularly their
role in enhancing model generalization to unseen data.

In this section, we empirically validate the proposed algorithm using MedMNIST+ [39],
a large-scale collection of standardized biomedical images. Our evaluation strategy covers
several crucial aspects: comparison with state-of-the-art methods, effectiveness across dif-
ferent modalities and dimensions, and adaptability to various neural network architectures.
Additionally, we conducted ablation experiments, hyperparameter analysis, and visualiza-
tions of deep features.

5.1. Datasets

The MedMNIST+ [39] dataset comprises twelve pre-processed 2D datasets and six pre-
processed 3D datasets from selected sources covering primary data modalities (e.g., X-ray,
OCT, Ultrasound, CT, Electron Microscope), diverse classification tasks (binary/multi-
class, ordinal regression, and multi-label), and data scales (from 100 to 100,000) [39]. We
selected five 2D medical image datasets in MedMNIST+ [39] covering different modalities.
For more details on the dataset, please refer to Table 1. We selected these 2D images due to
computational restrictions, which we will discuss in the next subsection.

Table 1. Summary of Selected 2D Medical Image Datasets. The columns represent the number of
samples for Training (T), Validation (V), and Test (Te), and the number of classes (C).

Dataset Data Modality Tasks (C) Samples (T/V /Te)

BreastMNIST Ultrasound Binary Classification (2) 546/78/156
DermaMNIST Dermatology Multi-class Classification (7) 7000/1500/2000
RetinaMNIST OCT Multi-class Classification (5) 1000/200/400
ChestMNIST X-ray Multi-label Classification (14) 78,468/11,219/22,435
PneumoniaMNIST X-ray Binary Classification (2) 4708/524/624
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Each dataset has a distinct class distribution, as detailed in Table 2. The table pro-
vides an overview of the exact number of samples in each class and their corresponding
percentage of the total dataset. Understanding this class distribution is crucial for eval-
uating potential biases and imbalances that may impact the performance of machine
learning models.

Table 2. Detailed Class Distribution for Selected 2D Medical Image Datasets. The table includes the
number of samples in each class and the corresponding percentage of total samples for each dataset.

Dataset Class Number of Samples Percentage (%)

BreastMNIST Benign 348 63.74%
Malignant 198 36.26%

DermaMNIST

Melanocytic nevi 6705 67.05%
Melanoma 111 1.11%
Benign keratosis 514 5.14%
Basal cell carcinoma 327 3.27%
Actinic keratoses 239 2.39%
Vascular lesions 142 1.42%
Dermatofibroma 62 0.62%

RetinaMNIST

No DR 535 53.50%
Mild NPDR 153 15.30%
Moderate NPDR 158 15.80%
Severe NPDR 83 8.30%
Proliferative DR 71 7.10%

ChestMNIST

Atelectasis 13,078 16.67%
Cardiomegaly 2662 3.39%
Effusion 10,335 13.17%
Infiltration 1087 1.39%
Mass 1891 2.41%
Nodule 2051 2.61%
Pneumonia 984 1.25%
Pneumothorax 2926 3.73%
Consolidation 1221 1.56%
Edema 2531 3.22%
Emphysema 1704 2.17%
Fibrosis 855 1.09%
Pleural Thickening 1515 1.93%
Hernia 164 0.21%

PneumoniaMNIST Non-pneumonia 3875 82.34%
Pneumonia 1333 17.66%

To provide a visual overview of the selected datasets, Figure 3 presents a set of
sample images from BreastMNIST, DermaMNIST, RetinaMNIST, ChestMNIST, and Pneu-
moniaMNIST. These images exemplify the diversity of modalities, including X-ray, OCT,
Ultrasound, and Dermatology. Visualizing these images is essential for understanding
the unique characteristics of each dataset, including image resolution and variability in
appearance between classes.
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Figure 3. Sample images from the MedMNIST datasets, including examples from BreastMNIST,
DermaMNIST, RetinaMNIST, ChestMNIST, and PneumoniaMNIST.

5.2. Implementation Details and Evaluation Protocols

UMAC was applied to the MedMNIST+ dataset to determine hyperparameters,
with results reported based on the test set. Often, the randomness in model selection
is overlooked, leading to misleading conclusions about method performance [40]. To en-
sure robustness, the process was repeated three times with different random seeds. Each
reported metric is the average of these repetitions, along with their estimated standard
error. The evaluation metrics used are the area under the AUC and ACC.

UMAC was implemented using PyTorch Stable (2.3.1) and Torchvision 0.18.1, with ex-
periments conducted on a single NVIDIA RTX 4090 GPU and an Intel 13900k CPU. This
implementation is based on the BYOL architecture. The 2D images used were sized at
224 × 224 pixels. Consistent training configurations were maintained across all experiments
to ensure fairness. The AdamW optimizer [41] was employed with a learning rate of 0.001,
and a learning rate warmup strategy was applied during the initial five epochs of training.

6. Results

We conducted an evaluation of cutting-edge methods using five 2D medical image
datasets from MedMNIST2D [39], which include BreastMNIST, DermaMNIST, RetinaM-
NIST, ChestMNIST, and PneumoniaMNIST, totaling 130,858 samples. Our comparison
included UMAC with the BYOL design against leading augmentation techniques such
as BSDA [34], ISDA [33], Cutout [42], Mixup [43], and CutMix [44] across these datasets.
UMAC, through its preset tasks, serves as an augmentation technique, which is used to
train the model and update the parameters more effectively than starting from random
initialization, especially given the extensive amount of training data available. This method
aligns with the principles of self-supervised learning, where models are pre-trained on
specific tasks to enhance performance on the main dataset.

6.1. ACC Results

Table 3 demonstrates that UMAC with Self-Supervised learning is the top-performing
method, achieving the highest average accuracy of 81.97% across all evaluated datasets.
Although ISDA and BSDA also show strong performance with an average accuracy of
79.58% and 80.08%, respectively, they are slightly less consistent compared to UMAC
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with Self-Supervised learning. This highlights the benefits of pretrained parameter up-
dates for medical images and underscores the superior performance of UMAC with Self-
Supervised learning over ISDA and BSDA. For instance, UMAC with Self-Supervised
learning achieved 96.49% accuracy on ChestMNIST and 88.86% on BreastMNIST, whereas
BSDA achieved 95.78% and 86.1% on these datasets, respectively. While methods like Cut-
Mix [42], CutOut [42], and MixUp [43] provide comparable results with average accuracies
of 77.66%, 78.80%, and 76.53%, respectively, none consistently surpass the performance of
ISDA, BSDA, and UMAC with Self-Supervised learning. RetinaMNIST remains the most
challenging dataset, with all methods exhibiting lower accuracy levels around 50–53%,
such as ISDA at 52.6% and UMAC with Self-Supervised learning at 51.3%. BSDA leads in
this dataset with 53.3%, though UMAC with Self-Supervised learning will be improved in
the next subsection.

Table 3. ACC Performance Comparison of Selected Methods on the Five Different MedMNIST2D
Datasets. The “Official” method refers to the baseline provided by MedMNIST+ [39]. Bold values
indicate the highest performance, while underlined values indicate the runner-up.

Method Breast Derma Retina Pneumonia Chest Avg

Official 83.3 75.4 49.3 86.4 94.4 77.76
Mixup 83.5 ± 3.2 76.6 ± 0.9 51.3 ± 0.9 81.6 ± 6.1 89.63 ± 3.1 76.53
Cutout 86.3 ± 3.7 75.6 ± 0.1 51.5 ± 4.9 86.1 ± 0.5 94.5 ± 2.8 78.80
CutMix 84.6 ± 0.6 76.3 ± 0.5 52.2 ± 1.5 83.6 ± 7.5 91.6 ± 2.1 77.66
ISDA 86.1 ± 1.0 76.7 ± 0.4 52.6 ± 1.5 87.2 ± 3.7 95.3 ± 2.3 79.58
BSDA 86.1 ± 1.5 76.4 ± 0.8 53.3 ± 0.1 88.8 ± 1.2 95.78 ± 2.1 80.08
UMAC (Ours) 88.86 ± 2.3 78.89 ± 0.72 51.3 ± 1.1 90.3 ± 2.3 96.49 ± 2.7 81.97

6.2. AUC Results

The AUC provides a measure of a model’s ability to distinguish between classes.
A higher AUC indicates better performance, with a value of 1 representing a perfect
classifier. In scenarios with class imbalances, AUC is a more reliable metric than simple
accuracy because it accounts for the true positive rate (sensitivity) and false positive
rate (1 − specificity). Table 4 presents the AUC performance comparison across five
MedMNIST2D datasets.

As shown, UMAC achieved the highest average AUC of 90.72, excelling particularly
on the ChestMNIST dataset with a score of 96.8. BSDA also performed well with an average
AUC of 90.60, securing the second-highest scores across most datasets. Although Mixup and
ISDA provided competitive results, they did not match the consistently high performance
of UMAC and BSDA.

Table 4. AUC Performance Comparison of Selected Methods on the Five Different MedMNIST2D
Datasets. The “Official” method refers to the baseline provided by MedMNIST+ [39] . Bold values
indicate the highest performance, while underlined values indicate the runner-up.

Method Breast Derma Retina Pneumonia Chest Avg

Official 89.1 92.0 71.0 95.6 94.4 88.42
Mixup 89.5 ± 1.2 92.7 ± 0.5 71.9 ± 1.3 95.8 ± 0.4 89.63 ± 3.1 87.51
Cutout 91.1 ± 1.5 93.0 ± 0.5 72.5 ± 1.4 95.9 ± 0.6 94.5 ± 2.8 89.40
CutMix 90.7 ± 1.0 92.9 ± 0.4 73.4 ± 1.3 96.4 ± 0.6 91.6 ± 2.1 89.80
ISDA 89.3 ± 2.0 93.0 ± 0.4 74.1 ± 1.4 95.0 ± 1.1 95.3 ± 2.3 89.34
BSDA 91.4 ± 0.2 93.1 ± 0.2 75.0 ± 0.7 95.7 ± 0.2 95.78 ± 2.1 90.60
UMAC (Ours) 93.8 ± 2.1 93.2 ± 0.5 73.2 ± 1.1 96.6 ± 2.0 96.8 ± 1.5 90.72
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6.3. F1-Score Results

The F1-score results provide a more balanced assessment of model performance, espe-
cially in scenarios with class imbalances. Table 5 shows that UMAC with Self-Supervised
learning achieved the highest average F1-score of 82.54%, demonstrating its superior ability
to handle both precision and recall. While BSDA and ISDA also performed well with
average F1-scores of 80.62% and 79.85%, respectively, they fell short compared to UMAC’s
consistent performance across datasets. The highest F1-score was achieved by UMAC on
ChestMNIST (96.81%).

Table 5. F1-Score Performance Comparison of Selected Methods on the Five Different MedMNIST2D
Datasets. The best results are bold-faced.

Method Breast Derma Retina Pneumonia Chest Avg

Mixup 82.6 75.8 51.0 80.5 89.1 75.8
Cutout 85.5 76.3 51.9 85.9 93.6 78.6
CutMix 84.0 75.9 51.7 82.9 91.4 77.2
ISDA 85.7 77.2 52.3 87.1 95.1 79.85
BSDA 86.0 77.5 53.2 88.6 95.4 80.62
UMAC (Ours) 88.4 78.6 52.0 90.1 96.81 82.54

6.4. Evaluation of Different Network Classifiers with UMAC

In this section, we evaluate the performance of various convolutional neural networks
and vision transformer architectures when using the UMAC framework on the Pneumo-
niaMNIST dataset. Table 6 presents the results of applying UMAC and BSDA to several
widely used models, including ResNet, DenseNet, and ViT, alongside the baseline perfor-
mance without augmentation. The results demonstrate that UMAC consistently improves
upon both the baseline and BSDA across most networks, in terms of both ACC and AUC.

UMAC shows notable improvements over BSDA and baseline in almost all network
architectures. For example, in ResNet-18, UMAC increases the accuracy by 9.8% and AUC
by 2.0% compared to the baseline, and by 3.1% and 1.4% compared to BSDA. In addition to
accuracy and AUC, we also measure the additional computational overhead introduced
by UMAC. Although UMAC increases the training time marginally compared to BSDA,
the performance gains justify the added complexity, especially in high-stakes domains such
as medical image classification.

Table 6. Evaluation of Baseline, BSDA, and UMAC on different convolutional neural networks
using the test set of PneumoniaMNIST. The best results are bold-faced, and the number in brackets
denotes the performance improvements achieved by UMAC over BSDA. The last column shows the
additional time (AT) introduced by BSDA and UMAC.

Network ACC (%) AUC (%) AT (%)
Baseline BSDA UMAC Baseline BSDA UMAC BSDA UMAC

ResNet-18 82.1 88.8 91.9 (+3.1) 95.1 95.7 97.1 (+1.4) 3.7 4.5
ResNet-50 87.0 86.3 88.7 (+2.4) 96.8 96.9 97.3 (+0.4) 5.9 6.7
DenseNet-121 84.9 89.4 91.1 (+1.7) 96.6 96.9 97.5 (+0.6) 1.5 2.1
ViT-T 82.9 86.0 87.9 (+1.9) 94.9 96.0 97.2 (+1.2) 7.5 8.4
ViT-S 81.1 87.2 89.0 (+1.8) 95.3 95.9 97.0 (+1.1) 5.8 6.3
ViT-B 81.8 86.8 88.3 (+1.5) 94.1 95.2 96.3 (+1.1) 2.3 3.0
Swin-T 73.6 77.0 79.3 (+2.3) 87.3 92.0 93.8 (+1.8) 1.4 2.0
Swin-S 63.9 71.7 74.1 (+2.4) 81.9 90.6 92.4 (+1.8) 2.1 3.0
Swin-B 62.5 62.5 65.2 (+2.7) 88.3 88.3 89.9 (+1.6) 1.3 2.2

As shown in Table 6, UMAC offers consistent improvements over both the baseline
and BSDA. The largest gain in accuracy (9.8%) was observed with ResNet-18, demon-
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strating UMAC’s capability to boost performance across different network architectures.
In addition, Vision Transformers (ViT and Swin) also benefitted from UMAC, with notable
improvements in both accuracy and AUC.

Despite the slight increase in training time due to the added complexity of UMAC,
the significant performance improvements make it a valuable enhancement, particularly
in scenarios where model accuracy and reliability are of utmost importance, such as
medical diagnosis.

6.5. Comparison Experiments with the Use of Multiple Datasets for Training

Building on our analysis of ACC and AUC, we explored the impact of using multiple
MedMNIST2D datasets for pretraining, as illustrated in Figure 4. Our results, detailed
in Table 7, demonstrate that using multiple datasets for training (UMAC-MD) yields im-
provements over training with only one dataset (UMAC-1D). This improvement leverages
the pre-set tasks used in training the θ parameters, where the augmentation of images is
compared against these tasks.

Figure 4. UMAC training with Multiple MedMNIST2D Datasets.

UMAC-1D Training Details: UMAC-1D was trained and tested on a single dataset.
For instance, when evaluating BreastMNIST, the model was trained solely on BreastMNIST
and tested on the same dataset. The learning rate remained consistent throughout the
training and testing process. This approach followed a standard supervised learning setup
on one dataset, without leveraging data from other datasets.

UMAC-MD Training Details: In contrast, UMAC-MD leverages pretraining on multi-
ple MedMNIST2D datasets. During pretraining, the model is trained on auxiliary datasets
(e.g., DermaMNIST, RetinaMNIST, ChestMNIST, and PneumoniaMNIST) using a lower
learning rate, typically reduced by a factor (e.g., 0.1). This reduced learning rate allows the
model to learn from the auxiliary datasets without overfitting any specific one.

After pretraining, the model switches to the target dataset (e.g., BreastMNIST) for
the main training phase. During this training on the target dataset, the learning rate is
increased back to the standard value, allowing the model to focus more on optimizing for
the target data. Fine-tuning is also applied during this phase to further refine the model
based on the specific features of the target dataset. The combination of pretraining on
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multiple datasets with a lower learning rate and fine-tuning on the target dataset helps the
model generalize better and achieve superior performance.

The results in Table 7 show that UMAC-MD, with its multi-dataset pretraining strategy,
yields the highest average accuracy of 82.85%.

UMAC-MD’s approach of using multiple datasets for pretraining, followed by targeted
training and fine-tuning with an increased learning rate on the dataset of interest, offers
significant advantages over both BSDA and UMAC-1D. This method allows the model to
learn from a variety of data sources while still optimizing for a specific dataset during the
final training and fine-tuning phases.

Table 7. ACC Performance Comparison of Selected Methods on the Five Different MedMNIST2D
Datasets, including UMAC with One or More Datasets. The highest accuracy is bold-faced, while the
second-highest (runner-up) is underlined.

Method Breast Derma Retina Pneumonia Chest Avg

Official 83.3 75.4 49.3 86.4 94.4 77.76
ISDA 86.1 ± 1.0 76.7 ± 0.4 52.6 ± 1.5 87.2 ± 3.7 95.3 ± 2.3 79.58
BSDA 86.1 ± 1.5 76.4 ± 0.8 53.3 ± 0.1 88.8 ± 1.2 95.78 ± 2.1 80.08
UMAC-1D 88.86 ± 2.3 78.89 ± 0.72 51.3 ± 1.1 90.3 ± 2.3 96.49 ± 2.7 81.17
UMAC-MD 90.13 ± 1.2 80.03 ± 0.87 54.7 ± 0.7 93.0 ± 1.7 97.18 ± 1.7 82.85

6.6. Comparing the Augmentation Factor α

As shown in Table 8, the average augmentation factor α for UMAC methods sig-
nificantly reduced when datasets were combined for training. Specifically, when we
incorporated 1000 images from each of the remaining datasets into the training process, we
observed a noticeable decrease in the required augmentation factor.

Table 8. Best Augmentation Factors α for Selected Methods on the Five Different MedM-
NIST2D Datasets.

Method Breast Derma Retina Pneumonia Chest Avg

UMAC-1D 7.4 3.7 5.8 1.3 2.3 4.10

UMAC-MD 6.5 3.1 5.3 1.7 2.1 3.74

This suggests that integrating diverse datasets can enhance the robustness of the model,
thereby reducing the need for extensive data augmentation to achieve optimal performance.

6.7. Summary and Implications

The experimental results demonstrate how the UMAC framework effectively ad-
dresses the challenges outlined in Section 2 and provides answers to the central research
question posed in this study.

First, the UMAC framework helps overcome the challenge of data scarcity in medical
imaging by employing self-supervised learning techniques and feature-level data augmen-
tation. By pre-training models on multiple datasets (as shown in Figure 4) and utilizing
pre-set tasks, UMAC reduces the reliance on large labeled datasets, thus mitigating the
difficulty of acquiring annotated medical data. This approach allows the model to learn
robust representations even with limited data, directly addressing the issue of data scarcity
and enhancing model generalization.

Second, UMAC enhances the diversity and quality of training data through advanced
data augmentation strategies. The reduction in the augmentation factor α (Table 8) when
combining datasets indicates that UMAC can effectively leverage diverse data sources to
improve model robustness without the need for extensive, manually-tuned data augmenta-
tion. This capability addresses the challenge of limited data diversity and improves the
model’s ability to generalize to a broader range of medical conditions.
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Third, by integrating feature-level augmentation methods that focus on both semantic
direction and strength, UMAC maintains high performance across different modalities and
neural network architectures, including CNN. This adaptability is crucial in the medical
field, where different imaging modalities require specialized handling to ensure accurate
diagnosis. The results shown in Tables 3–5 highlight UMAC’s consistent outperformance
across various datasets and metrics, confirming its effectiveness in enhancing model perfor-
mance and interpretability.

The F1-score results further demonstrate UMAC’s ability to handle both precision
and recall effectively. As shown in Table 5, UMAC achieved the highest average F1-score
of 82.54%, surpassing alternative methods such as BSDA (80.62%) and ISDA (79.85%).
Particularly notable is UMAC’s performance on the ChestMNIST dataset, where it reached
an F1-score of 96.81%, indicating its superior capability in addressing class imbalance and
achieving high performance in both precision and recall. This performance underscores
UMAC’s potential for real-world medical applications where both false positives and false
negatives must be minimized.

Finally, UMAC provides a structured approach to machine learning operations, offer-
ing a clear computation graph that outlines the flow of data and processing steps. This
structure helps to understand how different components and algorithms interact within
the model, ensuring that the machine learning process is well-organized and consistent.
While UMAC does not directly enhance transparency in terms of model decision-making, it
does offer a well-defined framework that aids in understanding the overall operation of the
model. This structured approach aligns with the research question’s focus on improving the
reliability and trustworthiness of machine learning models in medical contexts by clarifying
the computational processes involved.

6.8. Limitations of the Study

While the results presented in this study demonstrate the potential of UMAC in
enhancing model performance on 2D medical image datasets, there are several limitations
that should be acknowledged.

First, this study is limited to 2D medical images, such as those found in the MedM-
NIST2D collection. Although UMAC has shown significant improvements in accuracy and
AUC within this domain, we have not extended our experiments to 3D medical images,
which are prevalent in many real-world applications such as MRI and CT scans. The ab-
sence of evaluation on 3D datasets leaves the question open as to how well UMAC would
perform in more complex, three-dimensional modalities where spatial relationships across
different planes are crucial. Future work should investigate the applicability of UMAC to
3D medical images to determine its generalizability beyond 2D imaging tasks.

Second, while UMAC demonstrated impressive performance across various datasets,
the computational complexity of the framework could be a barrier to its adoption in
resource-constrained environments. The integration of multiple datasets and advanced
feature-level augmentations requires significant computational power, which may not
be available in all healthcare settings, particularly in low-resource environments. This
limitation highlights the need for optimization strategies that can reduce computational
overhead without compromising performance.

By addressing these limitations, future work can further validate and expand the
potential of UMAC, ensuring that it remains a robust and flexible tool for a wide range of
medical imaging tasks.

7. Conclusions

In this study, we have demonstrated the effectiveness of the UMAC method in achiev-
ing superior performance across various 2D medical image datasets from MedMNIST2D.
By employing UMAC with self-supervised learning, we have shown significant improve-
ments in both accuracy and AUC compared to traditional augmentation techniques such
as BSDA, ISDA, Cutout, Mixup, and CutMix.
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Furthermore, we explored the application of UMAC with multiple datasets (UMAC-
MD), leveraging pre-set tasks and unsupervised pretraining to enhance model training.
The UMAC-MD approach not only improved performance metrics but also demonstrated
consistent results across different datasets. This highlights the practical applicability of the
UMAC method, showing that its benefits extend beyond theoretical constructs to tangible
improvements in real-world data scenarios.

Additionally, UMAC provides a structured approach to machine learning operations,
offering a clear computation graph that details the flow of data and processing steps. This
structured methodology enhances the understanding of how different components and
algorithms interact within the model, ensuring a well-organized and consistent machine
learning process.

Overall, this study illustrates the practical application of UMAC, confirming that
its utility is not confined to theoretical exploration but can be effectively translated into
improved performance in diverse and challenging datasets. The structured approach
to machine learning operations provided by UMAC further contributes to its reliability
and effectiveness, making it a valuable tool in medical image classification and other
complex domains.
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