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Abstract: Background: The Internet of Things (IoT) has improved many aspects that have impacted
the industry and the people’s daily lives. To begin with, the IoT allows communication to be made
across a wide range of devices, from household appliances to industrial machinery. This connectivity
allows for a better integration of the pervasive computing, making devices “smart” and capable
of interacting with each other and with the corresponding users in a sublime way. However, the
widespread adoption of IoT devices has introduced some security challenges, because these devices
usually run in environments that have limited resources. As IoT technology becomes more integrated
into critical infrastructure and daily life, the need for stronger security measures will increase. These
devices are exposed to a variety of cyber-attacks. This literature review synthesizes the current
research of artificial intelligence (AI) technologies to improve IoT security. This review addresses key
research questions, including: (1) What are the primary challenges and threats that IoT devices face?;
(2) How can Al be used to improve IoT security?; (3) What AI techniques are currently being used for
this purpose?; and (4) How does applying Al to IoT security differ from traditional methods? Methods:
We included a total of 33 peer-reviewed studies published between 2020 and 2024, specifically in
journal and conference papers written in English. Studies irrelevant to the use of Al for IoT security,
duplicate studies, and articles without full-text access were excluded. The literature search was
conducted using scientific databases, including MDPI, ScienceDirect, IEEE Xplore, and SpringerLink.
Results were synthesized through a narrative synthesis approach, with the help of the Parsifal tool
to organize and visualize key themes and trends. Results: We focus on the use of machine learning,
deep learning, and federated learning, which are used for anomaly detection to identify and mitigate
the security threats inherent to these devices. Al-driven technologies offer promising solutions for
attack detection and predictive analysis, reducing the need for human intervention more significantly.
This review acknowledges limitations such as the rapidly evolving nature of IoT technologies, the
early-stage development or proprietary nature of many Al techniques, the variable performance of Al
models in real-world applications, and potential biases in the search and selection of articles. The risk
of bias in this systematic review is moderate. While the study selection and data collection processes
are robust, the reliance on narrative synthesis and the limited exploration of potential biases in the
selection process introduce some risk. Transparency in funding and conflict of interest reporting
reduces bias in those areas. Discussion: The effectiveness of these Al-based approaches can vary
depending on the performance of the model and the computational efficiency. In this article, we
provide a comprehensive overview of existing Al models applied to IoT security, including machine
learning (ML), deep learning (DL), and hybrid approaches. We also examine their role in enhancing
the detection accuracy. Despite all the advances, challenges still remain in terms of data privacy and
the scalability of Al solutions in IoT security. Conclusion: This review provides a comprehensive
overview of ML applications to enhance IoT security. We also discuss and outline future directions,
emphasizing the need for collaboration between interested parties and ongoing innovation to address
the evolving threat landscape in IoT security.
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1. Introduction

The Internet of Things (IoT) has become an important part of modern technological
innovation, with applications ranging from smart cities and industrial automation to
healthcare and connected vehicles, all capable of functioning without human intervention.
Advancements in technologies such as sensors, tracking, wireless communications, and
embedded computing have increased the possibility of integrating advanced capabilities
into our daily activities over the Internet [1].

In recent years, the integration of intelligent vehicles into the broader Internet of
Things (IoT) ecosystem has introduced significant cybersecurity challenges for manufactur-
ers. Vehicles are now susceptible to both internal and external attacks, particularly due to
the vulnerabilities inherent in the controller area network (CAN). The lack of authentication
and encryption within CAN messages allows attackers to exploit these weaknesses, poten-
tially taking control of critical vehicle functions such as brakes, steering, and gears. While
CAN remains widely used for its robustness and cost-effectiveness, its cybersecurity limita-
tions pose serious physical risks, making vehicles vulnerable to remote attacks that could
jeopardize human safety. Additionally, in-vehicle networks (IVN) face increasing risks from
remote exploitation, emphasizing the urgent need for enhanced security mechanisms [2-4].

In response to these challenges, artificial intelligence encompasses machine learning
and has emerged as a promising solution for enhancing IoT security. Al offers sophisti-
cated techniques for anomaly detection, real-time threat analysis, and automated response
systems, allowing for more efficient and scalable security architectures. Machine-learning
models can be trained to identify patterns in network traffic and detect abnormal behaviors
that can indicate the presence of malicious activities. Consequently, Al-driven solutions,
such as deep learning, further enhance detection capabilities by analyzing larger datasets
and predicting cyber-threats with greater precision [5]. Recent research has focused on
developing lightweight Al models tailored to the resource limitations of IoT devices and
employing federated-learning techniques to ensure privacy while maintaining security [6].

This review seeks to explore critical areas in the intersection of IoT security and
artificial intelligence (AI). It aims to uncover the key challenges and threats facing IoT
devices and investigates the potential of Al in strengthening their defenses. Furthermore,
the review will examine which Al techniques are being applied to enhance security and
analyze how Al-based approaches differ from traditional cybersecurity methods. Through
this comprehensive exploration, the review seeks to provide insights into the evolving role
of Al in securing IoT ecosystems.

1.1. Motivation

Our participation in this review is based on our participation in the A-MoVeR Project,
which aims to build an all-electric motorbike in partnership with some companies, equip-
ping it with various state-of-the-art electronic devices to improve the interaction between
the bike and the user, with the network being easier and more intuitive to use.

Given the importance of the electronic integration project, it is urgent that we address
the security of IoT devices in the automotive sector. Since the bike will heavily rely on
interconnected systems, it is crucial to ensure robust security measures to protect it from
potential threats.

This review article is motivated by the need to evaluate Al-driven security solutions
specifically designed for IoT devices, with an emphasis on the automotive sector. By focus-
ing on this sector, we aim to provide valuable insights for securing emerging technologies
not only in our project but similar ones that rely on the use of IoT devices. This will
contribute to the success of the A-MoVeR Project, as well as the broader field of IoT security.
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1.2. Organization of the Paper

The rest of the paper is organized as follows. Section 2 describes the methodology
used to conduct this review, following the PRISMA guidelines. Section 3 provides a
narrative synthesis of the selected articles. In Section 4, we analyze the findings and
discuss the effectiveness of the different models proposed in the articles. Finally, Section 5
concludes the paper and suggests directions for future research.

2. Materials and Methods

This section describes the approach used to carry out this systematic review, which
follows the PRISMA 2020 guidelines [7] to ensure a comprehensive review process. The
review protocol was designed based on the PRISMA recommendations, and this article
meets all the relevant items on the PRISMA 2020 checklist.

We followed a structured framework that includes formulating the research objective
with the research questions, conducting the search strategy with the proper eligibility criteria,
selecting the appropriate studies, extracting and analyzing the relevant data, conducting the
quality assessment of the selected studies, and synthesizing the results. In addition, we used
the Parsifal tool to maintain the proper rigor throughout the review process.

This approach provides a clear understanding, ensuring that our methods are repro-
ducible and providing clear guidelines for researchers who wish to replicate our study.

2.1. Research Objective

The main objective of this review is to perform a systematic analysis of existing studies
on the security of IoT devices with artificial intelligence (AI). We aim to identify the most
common threats that IoT devices face, and we will also explore how Al can be used to
improve their security.

Through this literature review, we hope to find the most common areas where Al is
applied for IoT security, as well as identify the areas that require further investigation. Specif-
ically, we intend to explore Al-driven security solutions for IoT devices in the automotive
sector, providing guidance to future researchers in addressing cybersecurity challenges.

The research questions of this systematic review of the literature are based on the
definition of PICO elements, a framework commonly used in literature reviews. Although
PICO can be a useful tool, it is important to be flexible in selecting its most relevant elements
to better focus the collection rate, thus reducing studies that are not as relevant to our field
of study. Current recommendations suggest that the appropriate elements of the PICO
should be included in the search strategy [8], as presented in Table 1. The research questions
are presented in Table 2 below.

Table 1. PICO Elements of the included studies.

Components Description
Population Researchers that create methods to increase the cybersecurity of IoT devices using Al
. Articles in specific scientific repositories documenting techniques and technologies to improve the security related
Intervention .
to IoT devices
Comparison Typical security techniques (e.g., encryption, firewalls) without Al integration
Outcome Improvement in security measures, reduced vulnerabilities, and enhanced detection

Table 2. Research questions for the literature review.

Question Number

Research Questions

RQ1
RQ2
RQ3
RQ4

What are the primary challenges and threats that IoT devices face?
How can artificial intelligence be used to enhance the security of IoT devices?
What Al techniques are currently being used to enhance the security of IoT devices?
How does applying Al to secure IoT devices differ from traditional security methods?
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2.2. Search Strategy

For this review, we conducted a comprehensive search across four major reposito-
ries: https:/ /www.mdpi.com (accessed on 1 September 2024) MDPI; https:/ /ieeexplore.
ieee.org/Xplore/home.jsp (accessed on 1 September 2024) IEEE Xplore; https://www.
sciencedirect.com (accessed on 1 September 2024) ScienceDirect; https:/ /link.springer.com/
(accessed on 1 September 2024) SpringerLink.

We used a combination of relevant keywords, such as: IoT Security; Artificial Intelli-
gence; Machine Learning; Anomaly Detection; Cybersecurity. We also used the following
search string:

(“IoT” OR “Internet of Things”) AND (“Machine Learning” OR “Deep Learning” OR
“Al”) AND (“security” OR “cybersecurity” OR “attacks”) AND PUBYEAR > 2020 AND
NOT DOCTYPE (sh) AND OA(publisherhybridgold) AND LANGUAGE (ENGLISH)

2.3. Eligibility Criteria
In this review, we apply the following inclusion and exclusion criteria for study selection:
Inclusion Criteria

*  Peer-reviewed articles: studies (journal and conference papers) published in peer-
reviewed journals focusing on Al applications in IoT security.

* Language: articles written in English.

e  Publication date: we included the papers that were published in the last 4 years
(2020-2024) to ensure the most up-to-date research.

¢ Scope of the study: articles that focused on security in IoT devices, particularly using
Al for security.

Exclusion Criteria

¢ Duplicate studies: repeated studies found in more than one repository.

¢ Full-text option: articles which are not available as open access or without institutional
access (UTAD).

¢ Irrelevancy of the study: papers that did not focus on the application of artificial
intelligence to secure IoT devices were excluded.

2.4. Selection Process

In this review, the Parsifal tool, designed to organize the review process and synthesize
the results, was used to assist in the selection of studies. The selection process involved
two phases:

1. Inthe first phase, the relevance of the studies was assessed based on their titles and
abstracts;

2. Inthe second phase, the articles that were selected in the first phase were subjected to
a full-text analysis for further evaluation.

To reduce the bias risk and ensure rigor, the selection process was peer-reviewed. Both
reviewers worked independently during each phase, and any discrepancies were resolved
through discussion among all the authors. Parsifal helped optimize the workflow, ensuring
consistency throughout the study selection process.

We identified 136 studies with potential for inclusion in the review. After removing
8 duplicate articles, we excluded 58 studies that were considered review articles, and
we marked 37 studies as irrelevant to the scope of our study. This gives us a final set of
33 articles marked as eligible to be included in the review.

2.5. Data Extraction

In this phase, we collected relevant information from the selected studies using a
structured approach, which included the following as key data points:

*  Study objectives: The primary goal addressed by each study.
e Al techniques: Specific Al methods used for IoT security.
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e JoT applications: The context that the IoT security measures were applied.

*  Security challenges addressed: The cybersecurity vulnerabilities that the authors
aimed to mitigate.

*  Outcomes and performance: The main conclusions of each study, such as the effective-
ness of Al in improving IoT security, the metrics that were used for evaluation, and
comparison with traditional methods.

The extracted data were then organized to provide support for analysis and synthesis
in the subsequent phases of the review.

2.6. Quality Assessment

In this section, we evaluated the rigor and validity of our selected studies using the
following quality criteria:

1. Are the objectives of the study clearly stated?

2. Is the research design comprehensive enough to cover all necessary aspects of IoT security
(security protocols, threat models) and Al (algorithms, models, performance evaluations)?

3. Are the methods used in the research detailed enough to allow for the reproducibility
of the study?

4. Arethebenchmark sources credible and representative to be relevant to the research objectives?

2.7. Data Synthesis and Reporting

In the data synthesis and reporting phase, we analyzed the information extracted to
draw conclusions from the selected studies. This synthesis involved identifying patterns
and similarities in the studies in order to answer our research questions and summarize
the effectiveness of Al techniques in improving IoT security.

To facilitate this process, we used the Parsifal tool, as mentioned above, which helped
organize the data. The Parsifal capabilities allowed us to generate detailed reports. The
results were compiled into a narrative synthesis that describes the current state of Al and
ML applications in IoT security, on which metrics were used to evaluate the proposed
algorithms, and identify some gaps in the research.

2.8. Selection of Studies

In this section, we present the results of our study selection process, including the
number of articles identified and selected from each repository.

The initial search yielded us a total of 136 articles, distributed in the following repositories:
e MDPL17;
. ScienceDirect: 40;
e IEEE XPlore: 39;
*  SpringerLink: 40.

The selected and accepted articles can be seen in the bar chart illustrated in the
Figure 1 below:

B selected
I Accepted

Number of Articles

ieee xplore SpringerLink ScienceDirect MDPI

Figure 1. Bar chart of selected vs. accepted articles.



Al 2024, 5

2284

After applying the eligibility criteria and conducting the screening process, the final

set of selected studies are shown in the Figure 2:

Identification of studies via databases and registers

Records removed before
screening:

Duplicate records removed (n=8)
Records marked as ineligible by
automation tools (n =0)

Records removed for other
reasons (n = 0)

Records excluded - Marked as
review (n =58)

Reports not retrieved (n =0)

Reports excluded:
Irrelevant to the scope of study
(n =37)

c
o
s Records identified from:
5.% Databases (n = 4)
T Registers (n =136)
2
Records screened (n =128)
Reports sought for retrieval
2l |0
c
(]
e
P v
Reports assessed for eligibility
(n =70)
|
\ 4
T L .
o Studies included in review
E] (n =33)
3]
£

Figure 2. PRISMA 2020 diagram.

2.9. Risk of Bias

To assess the risk of bias in this systematic review, we used the ROBUST (Risk of Bias
in Systematic Reviews) tool [9]. We evaluated the following five domains:

2.9.1. Risk of Bias in Study Identification and Inclusion

Low risk: Our search strategy and inclusion criteria are transparent and comprehensive,
covering both journal and conference papers, minimizing the likelihood of selection bias.

2.9.2. Risk of Bias in Data Collection Methods

Low risk: The use of independent reviewers and a systematic tool (Parsifal) indicates
a rigorous data collection process.
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2.9.3. Risk of Bias in Data Analysis Methods

Moderate risk: Narrative synthesis can introduce bias due to the subjectivity of the
authors in interpreting results.

2.9.4. Risk of Bias in Presentation and Interpretation of Results

Moderate risk: While we acknowledged the limitations, the potential for bias in study
selection and data synthesis is not exhaustively addressed, leaving room for overestimation
of the results.

2.9.5. Risk of Bias in Funding and Conflict of Interest

Low risk: There is transparency regarding the funding, and no conflicts of interest
are declared.

3. Results

The studies resulting from the final selection were categorized according to their focus
areas. After a rigorous selection process, as detailed in the previous section, 33 studies
were identified as relevant and included in this review. These studies mainly focus on
Al techniques used to mitigate vulnerabilities in IoT systems, with an emphasis on the
detection category. The articles were grouped based on three key themes:

1. Securing IoT devices with Al—general approaches, Section 3.1: This theme encom-
passes the studies that explored Al techniques that are applicable to securing IoT
devices across different industries;

2. Securing IoT devices with Al—automotive sector, Section 3.2: This theme high-
lights research targeting the integration of Al in securing IoT devices within the
automotive industry;

3. Security mechanisms for automotive Sector with potential Al enhancements,
Section 3.3: This theme evaluates existing security mechanisms within the auto-
motive sector and discusses how can Al enhance these mechanisms, focusing on
methods that could be improved with the use of AL

3.1. Securing IoT Devices with AI—General Approaches

Starting with the article by Alsaedi et al., where they introduced the TON-IoT dataset
for intrusion detection systems (IDS) in IoT and Industrial IoT (IloT) environments [5].
The dataset was created using a three-layer architecture (Edge, Fog, Cloud) connected via
SDN and NFV on the NSX-VMware platform. Includes telemetry data, operating system
logs, and network traffic from various IoT/IIoT sensors. The dataset features nine types of
cyberattacks, including DoS, DDoS, and ransomware, and is organized for training and
testing ML models.

Seven ML methods (LR, LDA, k-NN, CART, RF, NB, SVM) and an LSTM model were
tested. LSTM and k-NN performed best on the Fridge dataset, RF and CART excelled in
Modbus, and CART was the top performer for combined and multiclass datasets, while
NB and SVM underperformed.

Tendikov et al. advanced cybersecurity by integrating ML techniques into SIEM
systems, using k-means clustering for data grouping [10]. Their approach, which analyzed
data from virtual machines and the CICIDS2017 dataset, demonstrated that the random
forest model showed the best performance, particularly after key features were refined
using a decision tree classifier and hyper-parameter tuning. This resulted in improved
accuracy and a reduction in false negatives. Clustering of k-means provided separation of
useful and irrelevant data, contributing to cybersecurity insights.

Building on the integration of machine learning for security, Akshaya et al. similarly
employed advanced techniques, but their focus was on improving IoT security [11]. They
trained an IDS using the NSL-KDD dataset, where k-means clustering played a role in data
preprocessing. In contrast to Tendikov’s use of RF, Akshaya’s model leveraged a hierar-
chical convolutional neural network (HCNN) coupled with optimized AES encryption.
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The inclusion of the entropy-hummingbird optimization algorithm for feature selection
contributed to the system’s superior performance, surpassing existing techniques like
PSO and APSO-CNN, achieving higher accuracy, precision, recall, and F-measure, thus
improving attack detection and classification.

While these studies used ML to mitigate threats, Hassan et al. took a different approach
with LETM-IoT to address Sybil attacks in IoT networks [12]. Their approach, although
lacking direct ML integration, laid the foundations for future improvements in this area.
Using a trust-based system, LETM-IoT achieved good results in packet delivery rate and
true positive rate for detecting malicious nodes, showing potential for future integration of
ML techniques to enhance adaptability and effectiveness against new threats.

Sudharsanan et al. explored this potential, applying ML to enhance IoT communi-
cation through the Xception-based feedforward encapsulation algorithm (XBFE), which
uses machine learning to enhance IoT communication security [13]. Unlike the trust-based
approach in LETM-IoT, Sudharsanan’s model classifies network characteristics and detects
attacks, addressing issues such as communication failures and data loss. Using the UNSW-
NB15 dataset, the results indicated that the XBFE algorithm outperformed existing methods
in monitoring IoT devices and analyzing cyberattacks, showing improved performance in
both the training and testing phases.

Similarly, Nawshin et al. addressed malware detection on Android IoT devices using
ML techniques, focusing on feature selection, differential privacy (DP), and a zero-trust
security framework [14]. Although their model used a TensorFlow /Keras neural network,
like Sudharsanan’s use of advanced neural network architecture, they also integrated
a zero-trust approach to limit application access based on security status. This proved
strong accuracy and efficiency gains outperforming LSTM, CNN, and CapsNet in malware
detection accuracy. The zero-trust approach includes static and dynamic analyses to classify
APKs and ensure minimal access while preserving privacy. Future research will explore
diverse datasets and integrate additional privacy techniques such as federated learning.

Continuing the exploration of advanced Al techniques, Alkhonaini et al. proposed a
novel model for loT security that combined the Sine-Cosine Chimp Optimization (HSCCO)
algorithm with deep learning [15]. Their model, which uses a stacked autoencoder (SAE) for
classification, was tested on the WSN-DS dataset. It showed superior accuracy, sensitivity,
specificity, F-score, and AUC in all classes, outperforming models such as KNN-PSO and
AdaBoost in classification and efficiency.

Following Alkhonaini et al.’s combination of optimization algorithms with deep
learning, Samy et al. took a step further by introducing a fog-based architecture for attack
detection on IoT devices using deep learning [16]. Their framework, leveraging LSTM
models, are trained in the cloud but deployed on fog nodes to classify traffic as normal
or attack. The architecture not only demonstrated high accuracy using datasets such as
UNSW-NB15 and CICIDS-2017, but also reduced latency compared to cloud-based systems.
The inclusion of various DL models (LSTM, GRU, CNN, CNN-LSTM, DNN) highlighted
LSTM'’s superior performance in accuracy and detection, showing lower latency compared
to the cloud-based alternatives.

In contrast, Nallakaruppan et al. focused on an integrated security framework com-
bining machine learning (ML), intrusion detection (IDS), and prevention (IPS) in IoT
systems [17]. Their simulations, based on the CTU-13 dataset, evaluated eight ML algo-
rithms, with decision trees showing the best performance. Challenges include dataset
quality, real-time detection, and computational complexity. Future research will focus on
improving authentication methods and adapting complex algorithms for IoT devices.

Taking a wider perspective, Ferrag et al. developed a new IoT/IloT dataset to improve
security by creating a seven-layer testbed architecture (cloud computing, NFV, blockchain,
fog computing, SDN, edge computing, and IoT/IloT perception) [18]. The Edge-lloT
dataset was created by configuring various network layers, modeling 14 attack types, and
collecting normal and attack traffic data, using tools such as Wireshark and Zeek to capture
and extract relevant features from protocols like IP, TCP, UDP, and MQTT. The dataset
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was evaluated using centralized and federated deep learning, with DNNs achieving high
accuracy, and federated learning performing similarly well, even with non-IID data.

Similarly, Ullah and Mahmoud explored deep-learning models by applying CNN1D,
CNN2D, and CNNB3D architectures for anomaly detection in IoT networks [3]. Their study
introduced the use of CNNI1D for handling time-series data, while CNN2D and CNN3D
managed 2D and 3D image-like data. Transfer learning further improved their model’s
efficiency, achieving high accuracy, precision, recall, and F1 scores in various datasets like
BoT-IoT, MQTT-10T-IDS2020, and I0T-23, which was later combined into IoT-DS-1 and
IoT-DS-2 for various attack scenarios. CNN1D and CNN2D outperformed CNN3D in
various datasets, offering a balance between performance and computational complexity,
particularly when transfer learning was applied to reduce training times.

Habib et al. used deep convolutional neural networks (DCNN) for malware detection on
IoT devices, focusing on the the Malimg dataset [19]. Their model outperformed well-known
architectures such as ResNet50 and MobileNet, achieving higher accuracy with fewer epochs
and lower loss. By evaluating performance through metrics such as F1 score, precision, recall,
and accuracy, they concluded that DCNN could effectively identify malware while reducing
computational overhead, making it a valuable addition to IoT security.

Continuing from Habib et al.’s success in malware detection using DCNN, Negabi et
al. explored the vulnerabilities in IoT devices using a deep-learning-based power analysis
attack using CNNs to extract AES keys from a microcontroller which is commonly used in
IoT devices [20]. By analyzing power traces during encryption, the CNN model, trained
with 100 k traces and tested on 2 k, successfully recovered the AES key with an average
of 1200 traces and perfect accuracy. While the CNN outperformed other methods, some
overfitting was observed during validation, suggesting a need for model complexity reduction.

Soliman et al. similarly integrated deep-learning techniques into IDS for Industrial IoT
(IIoT), focusing on integrating these techniques into IDS [21]. Their approach employed
both DL and ML algorithms to process a large-scale dataset, with preprocessing that
included normalization and dimensionality reduction via single value decomposition
(SVD). While DL models like LSTM and GRU processed sequential data, ML models such
as bagging trees, decision trees, and K-NN aggregated predictions for faster processing
times. Despite their higher training times, DL models outperformed ML methods in
accuracy and error rate, demonstrating their robustness in detecting specific attacks.

Ajay et al. built upon these advancements by incorporating deep belief networks
(DBNSs) for intrusion detection and prevention in IoT environments [22]. Their DBN model,
trained on 60% of data, tested on 30%, and validated on 10%, classifies inputs as secure
or threatening and checks user behavior before granting network access. Performance is
evaluated using precision, recall, and the F1 score. While the DBN shows high F1 scores,
expanding the training data could further enhance its effectiveness.

In parallel, Bhayo et al. developed a machine-learning framework to improve security
in software-defined IoT (SD-IoT) networks, focusing on detection of DDoS attacks [23].
Their framework utilizes SDNWISE and IoT controllers for traffic management and applies
ML algorithms like Naive Bayes, decision trees (DT), and SVM for early detection of
attacks. Experiments showed that the DT classifier outperformed others in speed and
accuracy, with the best average classification time and an accuracy of 98.1%. The ML
module processed 48 packets per second with only a 3% increase in CPU and memory
usage, proving to be efficient and effective compared to traditional methods. Overall, the
framework demonstrated superior performance in detecting DDoS attacks.

Manickam et al. took a unique approach for anomaly detection in IoT systems with
their BBODL-ADC algorithm, combining feature selection via BPEO, anomaly detection
with ERNN, and hyper-parameter tuning using BBO [24]. The results of Manickam et al.
showed significant improvements in accuracy, precision, recall, F-score, and AUC in the
UNSW NB-15 and UCI SECOM datasets, with improved performance over epochs and
reduced losses. It surpasses traditional methods such as LR, K-NN, and SVM.
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In a different way, Abbas et al. leveraged federated learning to detect cyberattacks
in IoT environments, by enabling devices to train a model without sharing raw data,
addressing privacy concerns while improving security [25]. Using the CIC-10T2023 dataset,
their deep neural network (DNN), optimized with binary cross-entropy loss and the Adam
optimizer, demonstrated high accuracy across multiple rounds. This FL approach proved
to be effective for IoT attack detection, showing potential for broader application in privacy-
preserving cybersecurity.

Ali et al. introduced a hybrid deep-learning model for botnet detection in IoT systems,
combining LSTM Autoencoders for sequence learning and MLP for classification [26].
The model was evaluated in on n-BAIoT 2018 and UNSW-NB15 datasets, showing that
the LAE-MLP model demonstrated strong generalizability and achieved high precision,
making a significant improvement over traditional IoT cybersecurity approaches.

Continuing from Ali et al.’s hybrid deep-learning approach for botnet detection,
Kayode Saheed et al. proposed an ML-based IDS tailored for IoT network attacks [1].
Data were subjected to PCA for dimensionality reduction for the UNSW-NB15 dataset and
models such as XGBoost, CatBoost, K-NN, SVM, and QDA were used for classification.
The dataset was divided into 75% for training and 25% for testing. Evaluation metrics
included precision, F1 score, and MCC. The PCA-XGBoost model showed the highest
accuracy, outperforming other models. Saheed et al. also discussed the use of outdated
datasets in earlier IDS studies, such as NSL-KDD, highlighting that their IDS addresses
more effectively the IoT security challenges.

Ganapathy et al. then introduced a blockchain-based federated deep-learning model to
secure data transmission in healthcare IoT networks, integrating blockchain and federated
learning to ensure privacy during deep-learning training [27]. By ensuring that data remain
decentralized and protected during training, it allows clients to contribute to a global model
without revealing local parameters. Using a BLSTM network for classification, it captures
data sequence dependencies, including data encryption, decentralized storage, along with
access control through smart contracts. The model was evaluated using accuracy, precision,
sensitivity, specificity, and F1 score, achieving 97% accuracy for normal behavior and 88%
for ransomware detection. BFL-hIoT outperformed other models, particularly in normal
behavior detection, and demonstrated the lowest contract deployment execution time,
offering scalability and efficient feature learning compared to models like BDSDT.

3.2. Securing loT Devices with AI—Automotive Sector

The Al applications aimed at the automotive industry that we have included are
presented in this section.

Starting with Adly et al., their work focuses on applying machine-learning and deep-
learning-based intrusion detection systems to prevent CAN bus attacks in electric au-
tonomous vehicles [28]. They proposed an ECU-level mitigation strategy to detect mali-
cious code, which is a key cause of many CAN bus attacks. Adly et al. tested a secure
boot process on AURIX TC399 microcontroller (Infineon Technologies AG, Neubiberg,
Germany) using six data integrity algorithms, including a novel CMAC-based ECDSA
variant, and showed that the CMAC variant was the fastest due to the optimized AES
hardware accelerator. The scheme effectively detected all malicious code injections but
did not detect malicious ECUs added to the network. Future work aims to address this
limitation by integrating ECU detection systems.

In the following, Baldini’s article introduced a novel IDS that uses CNNs to detect
cyberattack anomalies in CAN bus traffic by processing CANID values [29]. Their approach,
tested on the Car Hacking and ROAD datasets, uses a CNN with three convolutional layers.
Through hyperparameter optimization, the authors found diferent optimal settings for
the two datasets, with Car Hacking showing better performance (WS = 120, PD = 80),
while ROAD performed best with WS = 300 and PD = 70. The multiscale CNN approach
outperformed the single scale methods. While competitive, the method has advantages
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like reduced input space and reliance on legitimate traffic, but also faces challenges such as
large dictionary sizes and the need for precise hyperparameter tuning.

Taking the concept of machine-learning-based intrusion detection, Bhavsar et al. ap-
plied federated learning (FL) in the context of the automotive sector, developing a federated-
learning-based IDS (FL-IDS) to secure connected and autonomous vehicles (CAVs) [30].
Using the Flower framework, they incorporated logistic regression (LR) and CNN methods
to train local models on Raspberry Pi testbeds and aggregate them into a global model.
Their evaluation, conducted with NSL-KDD and Car-Hacking datasets, and using Python-
based Keras, Pytorch, and TensorFlow showed that the LR model achieved high accuracy
with NSL-KDD but lower accuracy with Car-Hacking. The PCC-CNN model, which
combines Pearson correlation with CNN, optimized performance on resource-constrained
devices. The PCC-CNN model performed better overall, although it had longer training
times, particularly with Car Hacking, indicating a need for efficiency improvements.

Similarly advancing towards real-time detection, Dini and Saponara developed an
anomaly-detection algorithm for CAN networks, leveraging a feed-forward neural network
optimized with TensorFlow Lite on an NXP 532K microcontroller to classify and detect
intrusions [31]. Their focus on real-time performance, particularly against replay, injection,
and impersonation attacks, highlighted the importance of maintaining system accuracy.
The network effectively classified known units but misclassified unknown “Intruder” units,
leading to the introduction of a fourth “Unknown” class for better detection. Future work
includes real-world testing, integration with other techniques, protocol expansion, compar-
ison with deterministic algorithms, and further resilience testing to improve automotive
and industrial cybersecurity.

In a different approach to vehicle network security, Pascale et al. developed an IDS using
ML techniques to detect vehicle network security threats. They proposed an embedded intru-
sion control system (EIDS) connected to the OBDII port, which uses a two-step algorithm [32].
First, the pre-processing step analyzes ten state frames of vehicle data for anomalies through
temporal and spatial analysis. Then, in the Bayesian network step, a trained Bayesian network
was applied to assess the likelihood of an attack based on averaged parameter values. This
Bayesian network is organized into three layers (data, information, and knowledge) to classify
the vehicle’s status as either normal or under attack.

Four attack types were tested—DoS, Fuzzy, Impersonation, and Attack-Free State—using
the CARLA simulator with 1000 malicious messages in 24 h. The evaluation involved imple-
menting the algorithm and Bayesian network with Weka and TensorFlow, creating datasets
with 8158 frames per attack type, and measuring performance with precision, recall, and F1
score. The system showed high performance, especially with real data, and future tests on
actual vehicles are planned.

Addressing the intersection of IoT and smart vehicles, Alshdadi discussed the in-
tegration of IoT technologies in smart vehicles with a focus on cybersecurity [33]. They
highlighted the development of IDS using machine learning to protect IoT devices from
cyber-attacks. The Advanced Electronic Cyber-Physical System (AE-CPS) was introduced,
which integrates 5G, IoT, and UAVs for real-time data collection and load balancing. AE-
CPS uses a layered security approach to detect attacks and ensure data integrity. The system
was evaluated for its efficiency and low error rates, outperforming existing methods such
as PDCRT, ABAC, and IDS. With high performance and security, AE-CPS proves to be
highly effective.

Gad et al. developed an IDS for VANETSs by leveraging the ToN-IoT dataset, which in-
cludes network and system data [34]. They tested various ML methods: logistic regression,
naive Bayes, k-NN, decision tree, random forest, SVM, AdaBoost, and XGBoost—evaluating
them on accuracy, precision, recall, F1 score, and false positives. Their approach included
pre-processing for missing values, categorical data, and class imbalance, with data divided
into training, validation, and test sets, and cross-validation for tuning. XGBoost consistently
outperformed others, showing high accuracy and recall, particularly with Chi2 feature
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selection and SMOTE. k-NN also performed well and XGBoost excelled in binary and
multiclass classification tasks.

Further exploring the security of in-vehicle networks, Khan et al. focused on improving
in-vehicle networks, specifically the CAN bus [35]. They introduced an IDS for in-vehicle
networks, using a sliding-window approach to detect anomalies by comparing mean and
standard deviation values. Performance metrics, such as accuracy, precision, recall, and
error rates were used to evaluate its effectiveness against attacks. The experimental results
were obtained using two main datasets: the car hacking dataset and the survival analysis
dataset. First, the CAN bus traffic data used were collected from Hyundai, Kia, and
Chevrolet vehicles while simulating DoS and fuzzy attacks.

The IDS performed well in both standalone and merged attack scenarios, with larger
windows reducing the misclassification rate (MR) for fuzzy attacks. It outperformed
existing methods in accuracy and F1 scores, achieving perfect accuracy on real vehicle data
across various car models. The IDS has limitations, particularly in cases where an attacker
ECU is active before normality values are established.

Building on the detection strategies for vehicles, Santonicola et al. proposed CAR-
DIAN, a context-aware cybersecurity system using Bayesian networks for real-time intru-
sion prevention in vehicles [36]. The IDS monitors CAN bus messages for anomalies, using
real data from a heavy vehicle for training, including both normal and attack data.

The system operates in three phases: data are collected and averaged, driving scenarios
are identified using the Jaccard index, and a Bayesian network calculates attack probabilities.
Built from 300 h of CAN data, the network detects four types of attacks—DoS, fuzzy, gear,
and RPM—with 99% accuracy.

Evaluating using real and attack datasets, the system achieved high precision and
recall. It benefits from domain ontologies and an FPGA accelerator for efficient, low-energy,
real-time performance. Future enhancements will involve real-world testing and contextual
datasets for better adaptability and defense strategies.

3.3. Security Mechanisms for Automotive Sector with Potential AI Enhancements

In this final section, we present the articles that do not use Al, but were considered
important because of their relevance. These studies highlight areas where Al can enhance
security measures in the Internet of Vehicles, demonstrating potential opportunities for Al
improvements in automotive IoT security.

For instance, Toker and Alsweiss developed a radar sensor for autonomous vehicles
designed to resist cyberattacks at the physical layer of the radar [37]. They focused on
integrating a digital signal processing (DSP) algorithm into the radar’s firmware to de-
tect adversarial signals, particularly those that could bias speed estimates. Their system
combined a random signature generator with a standard frequency modulated continuous
wave (FMCW) radar setup. The generator alternates chirp slopes between positive and
negative frequencies, while the detection algorithm analyzes these patterns to identify
potential attacks. The test involved two 77 GHz radars, with measurements that captured
system noise, real data, and attack signal effects. The noise was confirmed to be white
Gaussian, allowing for the generation of synthetic noise data. The study’s results showed
that the DSP can effectively detect attacks, with a stronger attack signal needed to trigger an
alarm. This study reveals the potential for Al to further enhance such systems by refining
real-time detection and response mechanisms through more advanced pattern recognition
and anomaly detection techniques.

In parallel, Tany et al. examined the security implications of various automotive system
architectures, focusing on the vulnerabilities inherent in different electrical/electronic (E/E)
vehicle setups [6]. They described four vehicle architectures: traditional (multiple ECUs,
inefficient due to wiring), one-brain (centralized HPC, risks total failure), two-brain (split
functions, adds redundancy and cost) and three-brain (improves scalability but increases
complexity). Using the STRIDE framework, they identified threats to components such
as telematics, ECUs, sensors, actuators, and data flows, with risk increasing along with
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architectural complexity. Key vulnerabilities include spoofing and data manipulation in
sensors and actuators, and threats to telematics and HPCs. To mitigate these risks, they
recommend using firewalls, identity management, IDS/IPS, secure wireless interfaces, secure
boot, virtualization, and authentication for sensors. The authors found that HPC-based
automotive architectures (one-brain, two-brain, and three-brain) improve the performance,
scalability, and simplicity of the wiring, but also increase costs and vulnerability. Effective
security measures can address these risks. In addition, HPC systems make troubleshooting,
repair, memory management, and software updates easier, although they add complexity and
expense. Tany et al.’s work outlines the importance of layered security measures like firewalls,
secure wireless interfaces, and IDS/IPS systems. This study emphasizes a crucial area where
Al could play an innovative role, by improving the adaptability of security protocols in
real-time, particularly within the more complex and vulnerable HPC-based architectures.

Latif et al. took a different approach by proposing a cluster-based authentication and
communication protocol to secure vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications [38].

Their proposed protocol involves several phases. In registration, vehicles provide
an e-mail, password, and registration number, which are used to encrypt passwords.
The CA then creates and sends session keys. For authentication, vehicles log in with an
email, password, or authentication code, while the CA verifies credentials and updates
logs. Vehicles are grouped into clusters with a cluster head (CH), selected based on
a weighted score. Simulations of congested, sparse, and intermediate traffic clusters
tested two resource allocation algorithms in MATLAB, showing the protocol’s superior
performance in authentication delay, detection accuracy, and packet delivery. The baseline
and greedy resource allocation algorithms optimized V2V communication, and Postman
testing showed efficient API responses and improved performance with RESTful APIs in a
5G VANET. While their model demonstrated improvements in authentication delay and
packet delivery, it could be enhanced with Al. More specifically, ML could be employed
to analyze traffic patterns, optimize resource allocation, and improve decision-making
processes. These Al-driven improvements could enhance both the security and efficiency
of IoT and IoV systems, making Latif et al.’s work a prime candidate for further exploration
in Al applications.

By examining these studies, it becomes clear that although Al has not yet been fully
integrated into these solutions, its potential for improving security measures in the context of
the automotive IoT could be vast. The opportunities that Al has to improve real-time threat
detection, resource management, and the dynamic change in the system in order to increase
its adaptability, offer a promising path for future developments in this automotive field.

4. Discussion

The discussion section presented below focuses on the performance and efficiency of
different Al models to mitigate the cyber-threats coming from IoT devices. By examining
machine-learning techniques—such as random forest, support vector machines (SVM),
and naive Bayes—as well as more advanced deep-learning techniques—including con-
volutional neural networks (CNNs) and long short-term memory (LSTM) networks—we
highlight their strengths, limitations, and suitability for more specific types of attacks,
such as DdoS, ransomware, and data theft. This section also considers the importance
of these algorithms in real-time detection and predictive analysis. By understanding the
comparative performance analysis of these techniques, we can identify the best approaches
to ensure security in IoT environments with limited resources, such as vehicular networks,
where efficiency, low utilization of computational resources and the problem of scalability
are important considerations. In addition, the discussion will also cover the types of attacks,
the most widely adopted artificial intelligence techniques and the role of choosing the best
dataset for validating Al models.
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4.1. Al Techniques and Their Efficacy

Inside the traditional machine-learning (ML) models, we found that the most adopted
model is the support vector machine (SVM) [1,5,17,18,23,30], primarily due to to its ro-
bust generalization capabilities and its effectiveness in handling classification with high-
dimensional data, followed by the naive Bayes model [1,5,18,23,30], which is known for its
simplicity and computational efficiency. Despite its simplicity, this model offers significant
computational efficiency, making it a suitable choice when IoT resources may be limited.
Among these models, random forest was the model that demonstrated superior accuracy
in most cases [5,10,17,30] due to its approach, which mitigates overfitting through the use
of ensemble learning.

Moving to the deep-learning models, which typically outperform traditional ML
models like SVM, naive Bayes, and K-Nearest Neighbors (KNN) [18] in tasks involving
more complex data patterns, we observed a widespread preference for convolutional
neural networks (CNNs) [3,11,16,19,20,28,29]. These models are known for their ability
to automatically extract and learn feature representations. The long short-term memory,
another widely adopted DL model [3,11,16,26], emerged as the best option regarding real-
time attack detection. Its ability to adapt to evolving patterns of cyberattacks makes LSTM
a highly valued tool in environments where the IoT devices are constantly generating
temporal data, making it the best in terms of attack detection and accuracy [16].

While traditional ML models provide strong baselines, the adaptability and superior
detection capabilities of deep-learning models, particularly CNNs and LSTM, are making
them the preferred choice for detecting and securing IoT devices against cyberattacks.

4.2. Al in Real-Time and Predictive Threat Detection

Al can excel in real-time threat detection through the continuous monitoring of net-
work traffic and device behavior in order to identify and mitigate malicious activities. This
capability is crucial for defending against various attacks. Many authors cite DoS/DDoS
attacks as the most prominent threats to IoT devices [3,5,11,13,18,21,23,25,29,30,32,35], fol-
lowed by brute force attacks [10,22,30] and ransomware attacks [3,5,32], the latter of which
is often considered a form of DoS attack. Al systems, by leveraging techniques such as
anomaly detection and pattern recognition, can detect deviations from normal behavior
and flag potential malicious traffic, enabling proper mitigation actions.

One of the most crucial challenges in IoT security is the appearance of zero-day attacks,
which exploit vulnerabilities previously unknown. Al systems with adaptive-learning
capabilities can evolve and update their threat detection algorithms in response to new
threats. This adaptive-learning process, which continuously feeds new data into the Al
model, can allow it to refine its detection capacity and recognize new attack types. As noted
by Ali et al. [26], this dynamic approach ensures that Al systems can provide protection
against novel zero-day vulnerabilities, where traditional security mechanisms might miss.
Predictive analysis is another area where Al can enhance IoT security. Predictive analysis
involves Al models to predict vulnerabilities before they can be exploited, allowing for
early detection and reducing reaction time.

4.3. Al Role in Improving IoT Security

Al facilitates automated responses to detect threats by employing real-time data
processing, enabling it to identify malicious activities and initiate automated response
actions without human intervention. This automation is valuable in scenarios that require
immediate action, such as stopping a potential attack or isolating the compromised devices.
The integration of Al enables improved anomaly detection [10] and automated threat
response mechanisms.

Behavioral analysis, powered by Al is essential for establishing and maintaining a
baseline of normal device activity. Al systems can learn and adapt to the typical behavior
of IoT devices over time, creating a profile of the expected interactions between them. and
when deviations from this pattern occur, Al can flag these anomalies. This approach has
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proven effective, for example, in Android malware detection, as demonstrated by Nawshin
etal. [14]. By analyzing patterns, the application of Al to detect and mitigate the suspicious
activity can enhance the overall security of IoT systems.

4.4. Datasets and Their Impact on Model Performance

The quality and relevance of datasets are fundamental to the success of Al models.
The choice of the dataset can have a significant impact on the performance of the security
frameworks, influencing their ability to detect the threats. Several key datasets that are
frequently used in the evaluation are highlighted below:

4.4.1. TON_IoT Dataset

The ToN-IoT dataset, created by UNSW Canberra IoT Labs and the Cyber Range,
serves as a comprehensive resource for evaluating cybersecurity applications based on
ML. Proposed by Alsaedi et al. [5], it is available in CSV format and contains labeled data
for normal and attack behaviors, encompassing various attack types such as ransomware,
password attacks, scanning, DoS, DDoS, data injection, backdoor, XSS, and MITM. It
features 44 attributes and distinguishes between normal and attack data points [34]. The
TON_IoT dataset is used for training and testing Al algorithms designed to detect cyber-
threats in IoT devices, making it suitable for evaluating various aspects of IoT security [5].

The dataset is organized into five directories: raw datasets (including log and CSV
files), processed datasets (filtered for standard features), train/test datasets (for evaluat-
ing machine-learning algorithms), descriptive statistics (offering feature descriptions and
record counts), and ground truth datasets (containing security event timestamps linked to
hacking incidents). Research conducted by [21,27] effectively used the TON_IoT dataset,
demonstrating its significance in the field.

4.4.2. UNSW-NB15 Dataset

The UNSW-NB15 dataset, developed by Moustafa and Slay [39], was seen as the most
widely adopted dataset for evaluating anomaly detection models [1,13,16,26]. Created
by the Cyber Range lab at the University of New South Wales (UNSW), it was generated
using a testbed configuration with the IXIA PerfectStorm traffic generator to simulate
both normal and malicious network traffic across multiple servers. Network traffic was
captured in pcap format using the tcpdump tool, with attack behaviors modeled from
real-world threats. Traffic analysis includes flow numbers, packet sizes, and protocol
types, which are categorized into normal and attack records. Specifically, the UNSW-
NB15 dataset comprises nine types of attacks. Fuzzers (crashing a network with random
data), analysis (port scans, spam, HTML penetrations), backdoors (bypassing security
mechanisms stealthily), DoS (disrupting network availability), exploits (leveraging known
security vulnerabilities), generic (techniques applied to all block ciphers based on key size),
reconnaissance (information-gathering attacks), shellcode (payloads exploiting software
vulnerabilities), and worms (self-replicating malware exploiting security flaws), providing
a comprehensive framework for studying network security.

4.4.3. NSL-KDD Dataset

The NSL-KDD dataset is an updated version of the original KDD Cup 99 dataset,
introduced by Tavallaee et al. [40] in order to address some of the issues of its predecessor.
The original KDD dataset contained many duplicate records, which could lead to biased-
learning algorithms that prioritize frequent records. To address this, the authors removed
all repeated records from both the training and test sets. Additionally, the original dataset
has been questioned for its ease of classification that resulted in false higher accuracy
rates. The NSL-KDD dataset provides a more balanced and representative selection of data
points. It consists of four types of attacks: DoS (which aim to overload system resources),
probe (gathering information about the network, such as port scanning), remote-to-local
(R2L) attacks (where an attacker exploits vulnerabilities to gain user-level access), and
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user-to-root (U2R) attacks (where a local user gains root access). This dataset provides a
benchmark for evaluating the effectiveness of detection models, making it a reliable choice
for training and testing intrusion detection systems [11,16,30].

4.4.4. CICIDS2017 Dataset

This dataset is another important resource for evaluating Al models, as it includes
various types of attacks and normal traffic. Sharafaldin et al. and the Canadian Institute
for Cybersecurity (CIC) created the CICIDS2017 dataset [41], which simulates realistic
benign and malicious network traffic over five days. It includes various attack profiles,
such as DoS, DDoS, brute force, heartbleed, botnet, web attacks (SQL Injection, XSS), and
infiltration, using tools like Patator, LOIC, and Metasploit. The dataset features 80 extracted
attributes using CICFlowMeter, making it ideal for evaluating intrusion detection systems
(IDSs). The attacks are characterized as follows:

*  Brute force—attempts all password combinations;

*  Heartbleed—exploits a bug to retrieve sensitive data;

*  Botnet—compromised devices controlled to steal data;

*  DoS—overwhelms a resource with excessive requests;

e DDoS—multiple systems generate massive traffic;

*  Web attacks—includes SQL injection and XSS;

¢ Infiltration—exploits software vulnerabilities for internal access.

The CICIDS2017 is part of a series of datasets developed to support the study of
network security. It is recognized and adopted by several authors [10,15,16].

4.4.5. Datasets Summary

For a clearer understanding of the datasets used, Table 3 provides an overview of how
each dataset was partitioned by its respective creators. Most datasets, including TON_IoT,
UNSW-NB15, and NSL-KDD, were divided into training and testing sets. However, the
CICIDS2017 dataset is different, since it is not split in this manner. Instead, the CICIDS2017
dataset is organized into two categories: benign traffic (2,359,087 records) and attack records,
allowing for a detailed analysis of malicious activities and normal network behavior.

Table 3. Table of the datasets.

Datasets Training Testing Total
TON_IoT 21,877,978 461,043 22,339,021
UNSW-NB15 175,341 82,332 257,673
NSL-KDD 1,074,992 77,289 1,152,281
CICIDS2017 Attack Records: 720,928 3,080,015

In addition to these widely used datasets, several authors used their own dataset,
with some also proposing their IoT-specific tailored dataset. For example, the EDGE-
IoTset, proposed by [18] or Malimg;, is an established dataset used in the field of detecting
metamorphic malware, used in the research by Habib et al. [19].

4.5. Challenges and Future Directions

Although the integration of Al into IoT security has progressed, there is still a number
of challenges that remain, which should be addressed to improve the effectiveness of these
technologies. One major issue is overfitting, where Al models perform well during training
but struggle to handle new and unseen data. Overfitting is a concern in IoT security due
to the unpredictable nature of new threats. Some methods, such as the use of wide deep
long short-term memory (WDLSTM) networks [3], have been proposed to mitigate the
overfitting problem, assisted by CNNs to allow for automatic feature extraction. However,
it is necessary to create additional strategies, such as cross-validation techniques, in order
to increase the robustness of AI models.
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Scalability is another worrying challenge. As the proliferation of IoT networks grows,
Al models must be able to adapt to the increase in data volume and also to the growing
number of devices, in order not to become an obsolete model. Studies such as those by
Ajay et al. [22] highlight the importance of a strong Al capability to scale the network
effectively. Techniques such as recursive feature elimination and dimensionality reduction,
as suggested by Samy et al. [16] and Akshaya et al. [11], are crucial to ensuring that Al
models remain efficient without compromising performance.

Al can also improve radar detection of cyberattacks, especially in IoT and the automo-
tive sector. ML and DL algorithms can integrate radar data with data from other sensors,
such as cameras or GPS, providing a more comprehensive view of the environment and
improving the accuracy of object tracking [37].

Another concern is environments with typically limited resources, which are easily
found in IoT networks. These types of devices usually have low computing power, limited
memory, and poor battery life, which is a challenge for implementing Al models that
require a lot of computational resources. Future research should focus on developing
lighter Al algorithms that can work effectively in these types of environments. In addition,
integrating Al into threat modeling can improve risk management by being able to analyze
large datasets of vehicle components to automatically identify potential threats. Al can
prioritize threats dynamically, since it has the ability to assess the probability and the impact
of the threats by using historical data, directing resources to the most critical risks [6].

Looking at future directions, the most critical area for future research is adapting Al
to keep the pace with the rapidly growing scale of IoT devices. It would be interesting to
see the integration of Al with upcoming technologies, such as 5G, 6G, and the blockchain,
which could improve the security of IoT systems.

4.6. Limitations of Our Study

Although this review provides a general approach to the intersection of Al and IoT
security, we should note some of the limitations. First, the rapidly evolving nature of
IoT devices poses a challenge, as we may find it difficult to cover the latest technologies.
Many of the techniques may be in the early stages of development, or there may be some
limitations on proprietary solutions that have not been published.

Second, although we have analyzed various datasets and Al models, their performance
varies based on many factors. We recognize that the effectiveness of these models can vary
substantially when applied to real-world scenarios, which was outside the context of this
article to evaluate.

Finally, although we have tried to follow a recognized and widely adopted methodol-
ogy in reviews to the letter, we must acknowledge the limitations inherent in our possible
bias, both in the search strategy and in the screening and selection of the articles included,
which may not fully represent the best ones to include in the scope of this review. Addition-
ally, the choice of the mentioned scientific repositories used on our literature review may
also be acknowledged as a limitation of our study, potentially overlooking other research
published in other repositories. This includes technical reports, industry publications,
Master’s dissertations, or PhD theses that could provide additional valuable resources to
be included in this review.

5. Conclusions

With this review, we aim to highlight the growing role of artificial intelligence techniques,
particularly machine learning and deep learning, in enhancing the security in IoT devices.
These models are essential for automating the detection of malicious activities and improve
real-time attack mitigation. Despite the widespread adoption of machine-learning meth-
ods, challenges related to scalability and real-time processing, especially in resource-limited
environments such as IoT networks and the automotive sector, still remain.

Our analysis reveals that the choice of datasets, such as UNSW-NB15 and CICIDS2017,
can significantly affect the performance of these models. While standard metrics like
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precision, recall, and F1 score are commonly used for evaluating the performance, they
cannot respond to the specific challenges of IoT, such as latency, resource consumption,
computational overhead, and robustness to adversarial attacks. Future research must
focus on developing a more comprehensive evaluation framework that reflects the unique
characteristics of IoT environments.

The integration of machine learning into IoT security is still in its early stages. While
progress has been made, many models remain too computationally intensive for practi-
cal deployment in environments with limited processing power. Addressing this issue
through the development of lightweight and scalable models is important for the continued
advancement of this field.

Looking ahead, it is clear that the collaboration between academia and industry
will be critical to overcome these challenges. Emerging approaches such as federated
learning, which can distribute computation across devices while preserving data privacy,
and adaptive algorithms, offer potential for the future of IoT and vehicular security. Only
through these continued advancements we will be able to realize the full potential of
Al in protecting IoT ecosystems and ensure resilience against increasingly sophisticated
cyber-threats.

In conclusion, while Al provides promising solutions for detecting and mitigating
cyber-threats in IoT devices, its full potential is yet to be fulfilled. The critical challenges
of scalability and real-time detection is essential for creating more resilient and adaptable
systems capable of defending against sophisticated cyberattacks. Continuous innovation,
by researchers and industry professionals, will be key to developing efficient algorithms
that meet the demands of IoT ecosystems and the automotive sector.
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CNN Convolutional Neural Network

CPS Cyber-Physical System
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DDoS Distributed Denial of Service

DL Deep Learning
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DoS Denial of Service
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FMCW Frequency Modulated Continuous Wave
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NFV Network Functions Virtualization

OBDII On-Board Diagnostics 11

PCA Principal Component Analysis

PDR Packet Delivery Ratio

PICO Population, Intervention, Comparison, Outcome
PRISMA  Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PSO Particle Swarm Optimization

QDA Quadratic Discriminant Analysis

RF Random Forest

SDN Software-Defined Networking

SIEM Security Information and Event Management
SMOTE  Synthetic Minority Over-Sampling Technique
SNR Signal-to-Noise Ratio

STRIDE  Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service,
Elevation of Privilege

SVD Singular Value Decomposition

SVM Support Vector Machine

TCP Transmission Control Protocol

TPR True Positive Rate

uDP User Datagram Protocol

V2l Vehicle-to-Infrastructure

v2v Vehicle-to-Vehicle

VANET  Vehicular Ad-hoc Network

XBFE eXtreme Balanced Feature Engineering

XGBoost  eXtreme Gradient Boosting
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