
Citation: Khan, M.J.; Sukthankar, G.

SC-Phi2: A Fine-Tuned Small

Language Model for StarCraft II Build

Order Prediction. AI 2024, 5,

2338–2352. https://doi.org/10.3390/

ai5040115

Academic Editor: Gianni D’Angelo

Received: 8 October 2024

Revised: 28 October 2024

Accepted: 4 November 2024

Published: 13 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

AI

Article

SC-Phi2: A Fine-Tuned Small Language Model for StarCraft II
Build Order Prediction
Muhammad Junaid Khan and Gita Sukthankar *

Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA; mu718889@ucf.edu
* Correspondence: gita.sukthankar@ucf.edu

Abstract: Background: This article introduces SC-Phi2, a fine-tuned StarCraft II small language model.
Small language models, like Phi2, Gemma, and DistilBERT, are streamlined versions of large language
models (LLMs) with fewer parameters that require less computational power and memory to run.
Method: To teach Microsoft’s Phi2 model about StarCraft, we create a new SC2 text dataset with
information about StarCraft races, roles, and actions and use it to fine-tune Phi-2 with self-supervised
learning. We pair this language model with a Vision Transformer (ViT) from the pre-trained BLIP-2
(Bootstrapping Language Image Pre-training) model, fine-tuning it on the StarCraft replay dataset,
MSC. This enables us to construct dynamic prompts that include visual game state information.
Results: Unlike the large models used in StarCraft LLMs such as GPT-3.5, Phi2 is trained primarily
on textbook data and contains little inherent knowledge of StarCraft II beyond what is provided by
our training process. By using LoRA (Low-rank Adaptation) and quantization, our model can be
trained on a single GPU. We demonstrate that our model performs well at build order prediction,
an important StarCraft macromanagement task. Conclusions: Our research on the usage of small
models is a step towards reducing the carbon footprint of AI agents.

Keywords: StarCraft II; build order prediction; language models; fine tuning

1. Introduction

Our research explores the application of small language models (SLMs) to the domain
of StarCraft II. StarCraft II (SC2) is a real-time strategy game which has become a promi-
nent benchmark for AI research due to its complexity and strategic depth [1]. The most
successful AI systems for SC2 are AlphaStar [2] and ROA-Star [3], both of which have been
trained using imitation learning and reinforcement learning techniques. These systems
can play full games and achieve Grandmaster-level performance but require substantial
computational resources, needing at least 64 Nvidia V100 GPUs for training. SC2 requires
players not only to fight skirmishes (micromanagement) but also to build an army and
construct fortifications (macromanagement). Construction in SC2 is carried out by creating
build orders that govern technology research and the production of units and workers.
Generating build orders is a complex AI planning task and recognizing opponent build
orders is a form of plan recognition [4]. We demonstrate that SC-Phi2, our fine-tuned SC2
small language model, can accurately predict opponent build orders.

Gallotta et al. (2024) charted a course for the application of LLMs to games, exam-
ining their performance as players, non-player characters, commentators, game masters,
and designers [5]. Despite their successes, LLMs often experience continuity problems,
due to constraints on context size. However their ability to perform commonsense tasks
makes them a natural fit for open-world games like Minecraft, as demonstrated by recent
studies [6–10]. Kambhampati (2024) asserts that LLMs have very limited reasoning ability
and fail at basic planning tasks if small perturbations are made [11]. This makes strategic
games, like StarCraft II, a difficult problem for them.

Using human evaluators, Ma et al. (2024) tested different LLMs on their understanding
of StarCraft concepts such as game rules, race mechanics, build orders, and strategies;

AI 2024, 5, 2338–2352. https://doi.org/10.3390/ai5040115 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai5040115
https://doi.org/10.3390/ai5040115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0009-0008-7805-0311
https://orcid.org/0000-0002-6863-6609
https://doi.org/10.3390/ai5040115
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai5040115?type=check_update&version=1


AI 2024, 5 2339

they showed that GPT-4 and 3.5 can accurately answer detailed questions about SC2
play [12]. However these models are extremely large; for instance, GPT-4 has 1 trillion
parameters. This article proposes the usage of a small language model, Phi-2 [13], for
build order prediction, an important StarCraft macromanagement task. Small language
models (SLMs) are streamlined cousins of large language models that are trained on
more curated datasets. They offer lower processing latency, making them well suited for
chatbots, mobile devices, and real-time applications such as games. Although Phi-2 does
not inherently know much about StarCraft II, it excels at many commonsense reasoning
problems and only has 2.8 billion parameters. To teach Phi-2 about SC2, we created a new
text dataset with information about StarCraft races, roles, and strategies to fine-tune the
model using supervised learning. This article shows that it is feasible to use a significantly
smaller autoregressive language model for StarCraft II macromanagement than has been
demonstrated in previous work [12,14].

Our proposed architecture (Figure 1) integrates the Microsoft Phi-2 language model [13]
with the Vision Transformer (ViT) from BLIP-2 [15]. The training process is conducted in
two stages. (i) Stage 1 focuses on fine-tuning the Phi-2 model on our SC2 Text Dataset to pro-
vide the language model with detailed knowledge of SC2 gameplay, and (ii) Stage 2 further
fine-tunes the model for various match-ups using separate Parameter Efficient Fine-Tuning
(PEFT) adapters for each match-up, specifically targeting build order prediction and game
state prediction.

Figure 1. SC-Phi2 Model. Spatial features represent screen and mini-map features while global
features represent supplies and scores. During the training, we construct a dynamic prompt from
both the global features and the textual descriptions generated by the pre-trained Vision Encoder, ViT,
from the BLIP-2 vision-language model. Here, we use fine-tuned Phi-2 from stage 1 of fine-tuning,
again fine-tuning about 4% of parameters using the LoRA approach.



AI 2024, 5 2340

During Stage 1, we fine-tune only the Phi-2 language model. In Stage 2, we incorporate
both the Phi-2 model and the textual descriptions of visual features extracted by the ViT
model. We design dynamic prompts that include gameplay details such as game stage,
resources, army buildings, and food, combined with these textual descriptions. Based on
these dynamic prompts, our model predicts the next actions (i.e., the build order) and the
game outcome (i.e., win or loss).

Our key contributions are (i) the development of an SC2 text dataset for instructional
fine-tuning of the language model; (ii) the introduction of an SLM-based multimodal
approach for build order prediction; and (iii) the achievement of these results on a single
GPU using PEFT and quantization techniques.

1.1. LLMs in StarCraft

StarCraft game replays contain a large amount of spatial data that are not easily
accessible to LLMs. To overcome this problem, Ma et al. (2024) introduced a text-based
interface, TextStarCraft II, that has specialized adapters for mapping observations to text
and text to actions [12]. Even with these adapters, it is infeasible for LLMs to operate at
the frame rate speeds necessary for SC2 agents. To combat the speed problem, the authors
experimented with multi-frame summarization techniques and action queues. Using this
text version of the game, Ma et al. (2024) showed that GPT-3.5, which has 175 billion
parameters, performs at a level comparable to a mid-range human player [12]. The authors
suggested that incorporating visual data could improve system performance; our proposed
model, SC2-Phi2, uses a pre-trained vision transformer.

SwarmBrain [14] is a more specialized agent that also uses GPT-3.5 to make strategic
decisions for SC2. In SwarmBrain, the Overmind Intelligence Matrix focuses on high-level
strategic decisions like resource allocation and base expansion, while the Swarm ReflexNet
handles immediate tactical responses in battle. In our work, we demonstrate that a signifi-
cantly smaller model, with only 2.8 billion parameters, can be used for macromanagement
tasks, with the right fine-tuning.

1.2. MSC Dataset

The MSC dataset, introduced by Wu et al. (2017) [16], is based on the SC2LE [17] and
comprises over 36,000 replays. It serves as a useful resource for training and evaluating
machine learning models for macromanagement tasks in StarCraft II (SC2). To ensure the
quality and relevance of the replays, a preprocessing pipeline was implemented, ensuring
that each replay meets the following criteria:

• Each match within the replay contains at least 10,000 or more frames.
• Both the player and the opponent have at least 10 APM (actions per minute) rate.
• Both players have at least 1000 MMR (match-making ratio).
• Broken or incomplete replays are excluded.

Each replay includes global features such as resources collected, and detailed infor-
mation about units and buildings, all normalized between 0 and 1. Additionally, each
replay contains spatial features with a shape of R13×64×64. The final outcome of each match,
whether a win or a loss, is also recorded and represented by 1 and 0, respectively. This
dataset has been used by several others to evaluate macromanagement tasks, such as build
order prediction.

This article benchmarks the build order prediction capabilities of SC-Phi2 against
the other two top performers [16,18]. Build orders are used to produce units from raw
materials; Table 1 shows the build order actions available to different races. The aim of
build order prediction is to forecast which combat units will be researched, produced,
and updated. Given the large number of action choices, build order prediction is a chal-
lenging problem. Early prediction of the opponent’s future army composition provides a
competitive advantage when making one’s own production decisions.



AI 2024, 5 2341

Table 1. Build order actions choices by race.

Race No. of Actions No. of Units

Terran 75 336
Protoss 61 246
Zerg 74 714

2. Method

Our proposed method operates in two distinct stages:
(i) Stage 1: Primarily concentrates on fine-tuning the Microsoft Phi-2 model [13]

utilizing our proposed SC2 dataset. This initial stage is dedicated to optimizing model
performance specifically for SC2-related tasks.

(ii) Stage 2: Proceeds with additional fine-tuning of the Phi-2 model using the MSC
dataset. Notably, this stage incorporates textual descriptions sourced from a pre-trained
ViT encoder from the BLIP-2 model [15]. The integration of ViT embeddings enriches
the model’s understanding of textual context from spatial features, enhancing its
overall performance.

2.1. SC2 Text Dataset

While LLMs can generate general information about SC2, optimizing the Phi-2 model
for SC2-specific tasks demands a multi-step approach. To achieve this, we constructed a text
dataset tailored to teach a language model the fundamentals of SC2 gameplay. Our dataset
consists of 1500 instances and is available upon request. Designed in a question–answer
format, it is well suited for fine-tuning language models, particularly with the instructional
prompt format for Phi-2. Additionally, it is compatible with LLaMA-style instructional
fine-tuning. Table 2 provides some examples from the dataset.

Our SC2 Text Dataset was aggregated from several online resources [19–21] and
includes detailed descriptions of all the races (Protoss, Terran, and Zerg), capturing their
unique characteristics, building specifications, and unit tactics. It also contains specific
information on the strengths, weaknesses, and special abilities of each unit type. By
providing a thorough understanding of specific gameplay elements, the dataset facilitates
strategic decision making in StarCraft. Also, the inclusion of material from online discussion
forums discussing the roles and effectiveness of units against different opponents helps the
model predict and adapt to enemy tactics.

Beyond race-specific details, our dataset incorporates information on common ac-
tions drawn from the PySC2 library [17]. This encompasses a wide range of actions and
maneuvers crucial for effective gameplay, such as unit commands, building, training,
and morphing actions, and resource management techniques. By incorporating these
practical in-game actions, the dataset is enriched with actionable knowledge that mirrors
real gameplay scenarios. Lastly, the dataset also contains some example build orders for
each of these races, which initializes the model with some effective build order strategies
for each race.

Fine tuning with our text dataset enables us to enhance the performance of Phi-2
on SC2-specific tasks, ensuring that the model can accurately interpret and respond to a
diverse range of in-game situations. Our dataset not only supports the development of a
more robust macromanagement system but also provides a valuable resource for ongoing
SC2 research.



AI 2024, 5 2342

Table 2. Examples from our SC2 Text Dataset.

Question Answer

What is the role of
Extractor in Zerg?

The Extractor is the Zerg building from which Drones collect Vespene Gas.
The Extractor is the Zerg equivalent to the Terran Refinery and the Protoss
Assimilator. Besides being the fundamental Zerg building for collecting the
Vespene Gas resource, the Extractor is sometimes used early game to
bypass the 14 food limit by using the Extractor Trick. Players can build one
or two Extractors at their main base, start the production of one or two
Drones and then cancel the Extractor(s) as a way of avoiding the delay of a
morphing Overlord when supply capped. This temporary decrease in
supply is only possible for Zerg due to the fact that a morphing Extractor,
along with all other Zerg buildings, requires the sacrifice of one Drone.
Note that performing this supply trick will only refund 19 of the 25
minerals (75% rounded) used to morph the Extractor. Scouting or
expanding drones that are under siege can be morphed into extractors on
the fly to prevent the drone from being killed. They can later be canceled to
continue scouting or expanding once the threats have been nullified.

What is the role of
Terran Medivac vs.
Protoss?

Medivacs are brought with a Terran bio army to provide healing support.
They are also frequently used to drop units in the Protoss base and snipe
important infrastructure (Mining Probes, Pylons, Nexus, tech structures).
They are also used in TvP for Hellion/Hellbat drops.

What are the
Training actions in
Protoss?

“Train_Adept_quick”, “Train_Carrier_quick”, “Train_Colossus_quick”,
“Train_DarkTemplar_quick”, “Train_Disruptor_quick”,
“Train_HighTemplar_quick”, “Train_Immortal_quick”,
“Train_MothershipCore_quick”, “Train_Observer_quick”,
“Train_Oracle_quick”, “Train_Phoenix_quick”, “Train_Probe_quick”,
“Train_Sentry_quick”, “Train_Stalker_quick”, “Train_Tempest_quick”,
“Train_VoidRay_quick”, “Train_WarpPrism_quick”, “Train_Zealot_quick”

2.2. Stage-1 Fine-Tuning the SLM

In Stage 1, we focus on the self-supervised fine-tuning of the Phi-2 model using our
SC2 Text Dataset. To facilitate this fine-tuning process, we leverage the SFTTrainer module
provided by the Hugging Face Transformers library [22].

Despite its relatively smaller scale, with 2.8 billion parameters compared to other
language models, Phi-2 has consistently demonstrated superior performance over larger
counterparts across numerous language tasks. During the first stage, we specifically fine-
tune the attention layers and feed-forward fully connected layers of the transformer layers
within the Phi-2 model using both Low Rank Adaptation (LoRA) and the Quantized Low
Rank Adaptation (QLoRA) approach [23,24]. This fine-tuning process is illustrated in
Figure 2. For Stage 1, we specify the LoRA parameters as alpha = 128 and r = 64.

We employ quantization and load both the model and optimizer in 8-bit mode,
conducting fine-tuning over 160 epochs. Additionally, we include a comparative anal-
ysis of various configurations across different sets of hyperparameters in the Appendix
(Tables A1–A3). Utilizing both the LoRA and QLoRA approaches enables us to fine-tune
our entire model efficiently on a single GPU.

2.3. Stage-2 Fine-Tuning

Stage 2 of the fine-tuning process starts with merging the QLoRA-based adapter and
its weights trained during stage 1 into the main Phi-2 model. This integration enhances the
efficiency of both fine-tuning and inference operations during Stage 2. We keep most of
the hyperparameters from stage 1 unchanged except the text prompt, the length of tokens,
which is set to 288 tokens, and the batch size, which is set to four.

Leveraging the MSC dataset, we fine-tune the model once again, following a self-
supervised approach. Furthermore, for this stage, in addition to Phi-2, we incorporate a
Vision Transformer (ViT)-based vision encoder sourced from the BLIP-2 model. The sub-



AI 2024, 5 2343

sequent sections provide detailed insights into the functionality and implementation of
each component.

Figure 2. LoRA adaptation for language backbone. (a) shows the general LoRA process. (b) LoRA
applied to specific layers in our approach. In the diagram, the red blocks represent the weights
updated during training, while the blue blocks denote the frozen weights. A and B are low rank
matrices and r is a LoRA hyper-parameter.

2.3.1. Visual Backbone

Vision Transformers have emerged as a pivotal tool in vision-language tasks, owing
to their exceptional effectiveness and versatility [15,25,26]. To complement the language
backbone, we employ a pre-trained Vision Transformer (ViT) [27] sourced from the vision-
language model BLIP-2 [15] as our visual backbone.

This particular version of the ViT model is pre-trained on a diverse set of vision-
language tasks, equipping it with the capability to provide textual descriptions for input
images/frames. By incorporating this ViT model into our architecture, we aim to enhance
our model’s ability to interpret visual cues and seamlessly integrate them into our Dynamic
Prompt generation setup.

During the fine-tuning process, we input the map screen features into the visual backbone
to extract their textual descriptions. For instance, circles on the map screen represent buildings,
and these textual descriptions offer valuable insights into the current state of army buildings.
These insights are then incorporated into our dynamic prompt generation step, creating a
prompt for fine-tuning the model. This integration is shown in Figure 3.

Instruct: As an expert StarCraft II Terran player, playing against the Terran, predict the next 4
actions and also the result of the game, given the following resources:
Game Stage: Mid, Army Count: low, Army Units/Buildings: 5 buildings
Minerals collected: low, Minerals used: low, Vespene gas collected: low, Vespene gas used:
low
Food used: low, Food cap: low, Food for Army: low, Food for Workers: low
Idle Workers: low, Warp gates count: low, Larva count: low.
Output:
Action 1: Research_RavenCorvidReactor_quick
Action 2: Research_AdvancedBallistics_quick
Action 3: Research_RavenCorvidReactor_quick
Action 4: Research_RavenCorvidReactor_quick
Result: win

Figure 3. Prompt used during the stage-2 fine-tuning. Numerical values have been changed to
categorical values during training. For example, the value of feature Game Stage is mid, and Army
Count is low in the prompt. Similarly, all other values have been changed.



AI 2024, 5 2344

2.3.2. Global Features for Prompt Generation

Integral to our approach is the incorporation of global features extracted from the
MSC dataset into our Dynamic Prompt Generation component. These features encompass
critical aspects of the game such as food information, army building progress, and resource
collection rates. By assimilating this multifaceted information, our model gains a compre-
hensive understanding of the complex gameplay dynamics inherent in SC2, empowering it
to make predictions with high accuracy.

It is important to note that these global features in the MSC dataset are numerical
values, with most of them normalized between 0 and 1. To enhance the model’s representa-
tion and context, we convert these numerical values into categorical values. Specifically,
the category low corresponds to numerical values between 0 and 0.2, the category medium
represents values between 0.21 and 0.7, and the category high is assigned to values greater
than 0.7. Similarly, the game stage is categorized into four distinct phases: (i) Early: repre-
senting the initial stage of the game; (ii) Mid: indicating the progress of the game between
25% and 60%; (iii) Late: covering the period between 60% and 90%; and (iv) End: denoting
the final phase, over 90% of the game.

Additionally, we redefine the rewards, converting a reward of 0 to loss and a reward of
1 to win. The actions are also transformed from action IDs to their corresponding full action
names. For example, the action ID 75 is mapped to the action Build_Reactor_Factory_quick
according to the PySC2 library.

2.3.3. Dynamic Prompt Generation

In our methodology, we employ dynamic prompts generated during the training
process. These prompts are crafted utilizing global features, including vital information
such as food availability, army status, mineral and vespene gas reserves, and textual
information of spatial features generated from the vision encoder.

As the game progresses, these feature values dynamically evolve. To effectively adapt
to these fluctuations, we continuously update the prompts in real time, ensuring that the
language model remains informed about the prevailing game circumstances. By providing
this contextualized feedback, our model gains deeper insights into the evolving dynamics
of the game, enhancing its ability to make informed decisions and predictions. The training
prompt is shown in Figure 3.

2.3.4. Prompt Strategy

In our approach, we utilize a simple prompt for both training and evaluation, in con-
trast to Chain of Thought [28] and other advanced prompt engineering techniques often
employed in related works. While these sophisticated approaches are highly effective,
especially with large models like GPT-4, they may not be as suitable for smaller models like
Phi-2. Given that Phi-2 is significantly smaller and not trained at the same scale as GPT-4,
a simpler prompt proves to be more effective for fine-tuning in our context.

Additionally, our method offers a comprehensive mechanism for fine-tuning a multi-
modal model on a single GPU. This approach not only ensures efficient training but also
allows for further reduction in computational load during inference, enhancing the overall
feasibility and performance of the model.

2.3.5. Final Fine-Tuning of SLM

After generating dynamic prompts, our SLM undergoes another round of fine-tuning,
this time utilizing these dynamic prompts as inputs. This fine-tuning process follows
the same strategy as Stage 1, employing the QLoRA approach with the optimal set of
hyperparameters identified in Stage 1. Once the fine-tuning is complete, we merge these
adapters back into the main Phi-2 model, enhancing its inference capacity. The architecture
of our model is presented in Figure 1.



AI 2024, 5 2345

2.4. Training

Fine-tuning LLMs can be challenging due to the problem of encountering ’NaN’ and
’Inf’ values during the backward pass. To ensure the consistent behavior of both the training
and the evaluation phases, we set seed values for both the Numpy and the Pytorch libraries.
In addition, enabling anomaly detection within PyTorch’s autograd engine helps in rapidly
identifying and addressing any computational anomalies that may arise.

We adopt a strategy where only a small fraction (approximately 4%) of the parameters
of the pretrained Phi-2 model are fine-tuned in each stage. This fine-tuning process is
executed utilizing both the LoRA and the QLoRA approaches, which efficiently updates the
model’s parameters to adapt to the specifics of the SC2 domain. This process is illustrated
in Figure 2. Meanwhile, we freeze the visual encoder and token generation components
throughout the training process.

The MSC dataset provides over 36,000 pre-processed game replays for training the
model. However, we only utilize a small subset of the replays to fine-tune our model. These
details have been listed in Table 3.

Table 3. Number of MSC replays for each racial match-up and the no. of replays used for fine-tuning.

Match-Up No. of Replays No. of Replays Used

Terran vs. Terran (TvT) 4897 1000
Terran vs. Protoss (TvP) 7894 1000
Terran vs. Zerg (TvZ) 9996 1000
Protoss vs. Protoss (PvP) 4334 1000
Protoss vs. Zerg (PvZ) 6509 1000
Zerg vs. Zerg (ZvZ) 2989 1000

LoRA and QLoRA Adaptation for Language Backbone

To fine tune our model, we employ the LoRA process along with its variant QLoRA in
our language backbone. LoRA is a mathematical technique aimed at reducing the number
of trainable parameters in a model. Unlike traditional fine-tuning methods that update
the entire model, LoRA adaptation selectively updates only a small subset of the model’s
parameters [23]. For any specific layer, the weights are updated using the LoRA process as:

W0 + ∆W = W0 + BA

In this equation, W0 represents the pretrained weights of the large model, while ∆W
represents the updated weights obtained through low-rank matrices A and B. Here, W0 ∈
Rd×k, A ∈ Rr×k, and B ∈ Rd×r, and rank r << min(d, k). Typically, B is initialized with
zeros, while A is initialized with a normal distribution. The output is then calculated as:

h = W0X + ∆WX

= W0X + BAX

where X is the input to a layer or block. The dimensions of matrices A and B are determined
by the LoRA ‘r’ and ‘alpha’ parameters.

In our approach, we methodically identify the layers requiring updates during the
fine-tuning stage through the LoRA process. To ensure stability and prevent training
difficulties, we adopt techniques outlined by Hu et al. (2022) [23] and Yuan et al. (2023) [25].
Specifically, we fine-tune all attention layers and selectively update some fully connected
layers. Additionally, we also fine-tune out projection layers to further enhance stability and
robustness during the fine-tuning process, depicted in Figure 2. This systematic approach
not only streamlines the fine-tuning process but also contributes to the overall stability
and efficiency of our model. The next section presents the results of our model, which are
summarized in Tables 4 and 5.



AI 2024, 5 2346

Table 4. Accuracy for build order prediction. Results from the best performing method are marked in
bold. Our method outperforms previous work across all the match-ups.

Games GRU [16] Transformer [18] Ours

Mirror matchups

TvT 73.1% 74.38% 76.82%
PvP 74.2% 74.6% 78.49%
ZvZ 74.9% 74.6% 77.07%

Non-mirror matchups

PvT 69.6% 77.58% 79.62%
PvZ 74.2% 77.92% 80.37%
TvZ 74.8% 75.22% 78.74%

While LoRA focuses on estimating the weights through smaller matrices, QLoRA
leverages quantization techniques to reduce the memory footprint of the LLMs during
fine-tuning while maintaining performance. Quantization involves reducing the precision
of the model’s parameters to lower bit widths, typically 8-bit or lower. In our case, we use
8-bit quantization during fine-tuning. By quantizing the model’s parameters and applying
layer-wise random adaptation, QLoRA enables fine-tuning of the entire LLM on a single
GPU, making it suitable for deployment on devices with limited computational resources.

Table 5. Accuracy for build order prediction with transfer learning setup. Results from the best
performing method are marked in bold.

Games Fine-Tuned Transfer Learning
Zero-Shot 5-Shot

TvT to TvZ 78.74% 53.34% 74.63%
PvP to PvT 79.62% 51.37% 75.0%
PvP to PvZ 80.37% 51.74% 75.81%

3. Results

For both stage 1 and stage 2 fine-tuning, we utilize a system equipped with an NVIDIA
RTX 3090 GPU with 24 GB of VRAM, an Intel Core i7-11700KF CPU with 16 cores, and
64 GB of system RAM. For the initial set of experiments, we fine-tuned three distinct PEFT
adapters: (i) one for Terran vs. Terran matches; (ii) one for Protoss vs. Protoss matches; and
(iii) one for Zerg vs. Zerg matches, following the first stage of our method. Each adapter
was fine-tuned for an additional two to three epochs using a subset of their respective
training replays as described in the training section. After fine-tuning, we evaluated
each adapter on the test replays from the MSC dataset. Using the evaluation prompt,
we instructed the model to generate actions and predict the game outcome based on the
provided information. The generated results were then compared to previous methods,
with results summarized in Table 4. SC-Phi2 outperformed previous supervised approaches
based on GRUs [16] and transformers [18] across all three match-ups.

Table 6 shows a sample of the generated actions and game outcome, along with ground
truth actions and actual outcome. The sample shows both correctly generated actions and
an incorrectly generated action (Action 4, marked in red).

The next set of experiments explores the generalizability of the adapters. We took
the adapters from the previous experiments and fine-tuned them for different match-
ups. For instance, the adapter fine-tuned on the Terran vs. Terran match-up was tested
using both zero-shot and 5-shot approaches on Terran vs. Zerg match-up. The results are
presented in Table 5. The experimental results suggest that while zero-shot transfer learning
fell short of expectations, the 5-shot approach demonstrated better performance. However,
even with this improvement, it still did not exceed the baseline results we achieved with
our proposed approach.



AI 2024, 5 2347

Table 6. A sample of ground truth actions and outcome along with model generated actions and
outcome. The incorrect model prediction is marked in red.

Ground Truth
Actions

‘Research_RavenCorvidReactor_quick’,
‘Research_AdvancedBallistics_quick’,
‘Research_RavenCorvidReactor_quick’,
‘Research_AdvancedBallistics_quick’

Ground Truth
Outcome

win

Generated Ac-
tions and Out-
come

Instruct: As an expert StarCraft II Terran player, playing against the Terran,
predict the next 4 actions and also the result of the game, given the
following resources:
Game Stage: Mid, Army Count: low, Army Units/Buildings: 5 buildings
Minerals collected: low, Minerals used: low, Vespene gas collected: low,
Vespene gas used: low
Food used: low, Food cap: low, Food for Army: low, Food for Workers: low
Idle Workers: low, Warp gates count: low, Larva count: low.
Output:
Action 1: Research_RavenCorvidReactor_quick
Action 2: Research_AdvancedBallistics_quick
Action 3: Research_RavenCorvidReactor_quick
Action 4: Research_RavenCorvidReactor_quick
Result: win

3.1. Ablation Results

To evaluate the effectiveness of our method, we conducted a series of ablation experi-
ments. We began with the off-the-shelf Phi-2 model and tested its performance in zero-shot
learning. The Phi-2 model was evaluated in various configurations, including its original
form and quantized versions at 8-bit, 16-bit, and 32-bit precision levels.

3.1.1. Impact of One-Stage Fine-Tuning

For the first set of experiments, we used the Phi-2 model and compared its performance
against the stage 1 fine-tuning, focusing on responses to a range of SC2-related questions.
While the Phi-2 could only generate a general output related to SC2, we saw noticeable
improvements after stage 1 fine-tuning. These results, along with the prompts used, are
summarized in Table 7.

Table 7. Comparison of outputs generated by Phi-2 with Stage 1 fine-tuning.

Prompt Question: What are the Build actions for Terran?
Answer:

Phi-2 Output

Question: What are the Build actions for Terran?
Answer:
Build a barracks
Build a research lab
Build a space station
Build a space station

Stage 1

Question: What are the available Build actions for Terran?
Answer:
actions = [‘Build_Barracks_screen’,
Build_CommandCenter_screen’, ‘Build_EngineeringBay_screen’]

3.1.2. Impact of Two-Stage Fine-Tuning

In the second set of experiments, we focused solely on the evaluation prompt to
determine whether Phi-2 could generate meaningful build orders. In its original form and
under zero-shot learning conditions, Phi-2 failed to produce any substantial results. Even
after stage 1 fine-tuning, the model’s outputs remained inadequate. However, we observed



AI 2024, 5 2348

significant improvements only after stage 2 fine-tuning. A breakdown of these findings is
presented in Table 8.

Table 8. Comparison of outputs of various quantized versions of Phi-2 with Stage 1 and Stage
2 fine-tuning.

8-bits

Output:
Terran: low, Terran: low, Terran units: low, Terran units: low, Terran units:
low, Terran units: low, Terran units: low, Terran units: low, Terran units:
low, Terran units: low

16-bits

Output:
Enemy Units: low, Enemy Units: low, Enemy Units: low, Enemy Units: low,
Enemy Units: low, Enemy Units: low, Enemy Units: low, Enemy Units: low,
Enemy Units: low, Enemy

32-bit

Output:
Enemy Units: low, Enemy Units: low, Enemy Units: low, Enemy Units: low,
Enemy Units: low, Enemy Units: low, Enemy Units: low, Enemy Units: low,
Enemy Units: low, Enemy

Stage 1

Output:
Terran: low, Terran units: low, Terran units: low, Terran units: low, Terran
units: low, Terran units: low, Terran units: low, Terran units: low, Terran
units: low

Stage 2

Output:
Action 1: Research_RavenCorvidReactor_quick,
Action 2: Research_AdvancedBallistics_quick,
Action 3: Research_RavenCorvidReactor_quick,
Action 4: Research_RavenCorvidReactor_quick

3.1.3. Comparison with Phi-3.5-Vision

For the next set of experiments, we compared our approach with the Phi-3.5 Vision
model [29], the latest in the Phi series, which supports a multimodal design and contains
approximately 4.2 billion parameters. In these experiments, we employed Phi-3.5 Vision in
a zero-shot setting, prompting the model with our prompt shown as well as some other
prompts. The results were then compared against those from our stage-2 fine-tuned model
to assess performance differences and are summarized in Table 9.

We observed that, while the latest model generated some meaningful responses
compared to its predecessors, it still struggled to predict any build actions or provide highly
relevant information.

Table 9. Comparison of Phi-3.5-Vision with our approach. The first two prompts did not include the
spatial features (map features) directly, while the third prompt included the spatial features as part of
the prompt.

Prompt Output

As an expert StarCraft II Terran player,
playing against the Terran, predict the next
4 actions and also the result of the game,
given the following resources: Game Stage:
Mid, Army Count: low, Army
Units/Buildings: 5 buildings Minerals
collected: low, Minerals used: low, Vespene
gas collected: low, Vespene gas used: low
Food used: low, Food cap: low, Food for
Army: low, Food for Workers: low Idle
Workers: low, Warp gates count: low, Larva
count: low. Output:

As an AI, I cannot predict future events or
outcomes in a game of StarCraft II. My
responses are based on the information
provided and do not include speculation
or predictions.



AI 2024, 5 2349

Table 9. Cont.

Prompt Output

Consider youself an expert StarCraft II
Terran Player. You are playing against the
Protoss opponent. Currently you have
enough resources to build army units,
upgrade or train your army. What 4 actions
will you perform next?

As an AI, I cannot provide real-time strategic
decisions for a game of StarCraft II. My
responses are based on the information
provided and do not include speculation
or predictions.

The image is the map features of Starcraft
game where each circle represents a building.
Now assume yourself as the Starcraft Terran
player and your opponent is Zerg. You have
enough resources to perform next actions
including developing new building,
upgrading or researching. What actions will
you do next?

As a Starcraft Terran player, my next actions
would depend on the current state of the
game and my opponent’s actions. However,
some general options could include:
1. Building a new structure, such as a
Barracks or a Factory, to increase my
production capabilities.
2. Upgrading existing structures to improve
their efficiency and output.
3. Researching new technologies to gain an
advantage in the game. Expanding my base
to secure more resources and defend against
potential attacks.
4. Focusing on resource management to
ensure a steady supply of resources for
future actions.

4. Conclusions and Future Work

In this work, we introduce SC-Phi2, a multimodal small language model that leverages
both the Phi-2 and ViT models for SC2 macromanagement prediction tasks. Our approach
employs dynamic prompts constructed from the game’s global information, such as re-
sources and food, along with textual descriptions of visual features extracted from the ViT
model. These prompts are updated during fine-tuning to reflect the game’s progress. Our
method outperforms previous approaches in build order prediction. In addition, we show
that we can train our model on a single GPU using LoRA and quantization approaches.

Our research on fine-tuning small language models is a step towards reducing the
carbon footprint of AI agents. We concur with Gallotta et al. (2024) [5] that the most fertile
areas for LLM research are likely to be in design and commentator systems rather than in
surpassing the best AI players. In future work, we plan to explore the usage of SC-Phi2 as a
StarCraft commentator system that can comment on SC2 gameplay in real time; prior work
in this area [30] has demonstrated the utility of LLM commentary for League of Legends.

Author Contributions: Conceptualization, M.J.K.; methodology, M.J.K.; investigation, M.J.K.; re-
sources, G.S.; data curation, M.J.K.; writing—original draft preparation, M.J.K.; writing—review and
editing, G.S.; visualization, M.J.K.; resources, G.S.; supervision, G.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received external funding from Lockheed Martin Corporation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Code and dataset are available at https://github.com/junaiddk1/sc-
phi2 (accessed on 16 February 2024).

Conflicts of Interest: We declare no conflicts of interest.

https://github.com/junaiddk1/sc-phi2
https://github.com/junaiddk1/sc-phi2


AI 2024, 5 2350

Abbreviations
The following abbreviations are used in this manuscript:

SC2 StarCraft II
SLM Small Language Model
LLM Large Language Model
ViT Vision Transformer
BLIP Bootstrapping Language-Image Pre-training
GPT Generative Pre-trained Transformer
LLaMA Large Language Model Meta AI
LoRA Low Rank Adaptation
QLoRA Quantized Low Rank Adaptation

Appendix A

Appendix A.1. Stage-1 Self-Supervised Fine-Tuning

The following table presents the fine-tuning details for Stage 1, including various
hyperparameters and the model’s performance under each parameter configuration. Across
all configurations, we maintain a batch size of 1, utilize a cosine learning rate scheduler,
implement eight gradient accumulation steps, set a token length of 820, and employ
Flash attention.

Table A1. Comparison of Stage-1 fine-tuning across different hyperparameter configurations (training
times are given in seconds). The best performing configuration is marked in bold.

LoRA r LoRA Alpha Training Time Training Loss Epochs 4 Bit 8 Bit Warmup Steps Optimizer

32 64 9625 1.58 40 Yes No 0 Paged AdamW 8 bit
64 128 10,587 2.0427 20 Yes No 20 Paged AdamW 8 bit
64 128 20,946 1.57 40 Yes No 20 Paged AdamW 8 bit

64 128 22,157 1.56 40 No Yes 20 Paged AdamW 8 bit
64 128 43,329 1.06 80 No Yes 30 AdamW 8 bit
64 128 54,705 0.8854 100 No Yes 30 AdamW 8 bit

64 128 54,277 0.9866 100 No Yes 30 Paged AdamW 32 bit
64 128 78,544 0.6355 140 No Yes 50 AdamW 8 bit
64 128 87153 0.5564 160 No Yes 80 AdamW 8 bit

Extending the fine-tuning duration invariably enhances performance, albeit at the
cost of increased training time. Additionally, incorporating warmup steps has a positive
impact on the model’s fine-tuning performance, as evidenced by the highlighted row in the
table. Moreover, the non-paged version of the AdamW optimizer outperformed its paged
counterpart, even when operating in 8-bit mode.

Optimizing the values of the LoRA hyperparameters ‘r’ and ‘alpha’ significantly
influences the fine-tuning process of large language models (LLMs). Larger values for both
hyperparameters can enhance fine-tuning performance, albeit at the expense of increased
memory requirements and the number of trainable parameters. Detailed statistics on these
aspects are provided in Table A2.

Table A2. Comparison of various values of ‘r’ and ‘alpha’ and their impact on trainable parameters
and GPU memory.

Base Model
Params LoRA r LoRA

Alpha Trainable Params Token
Length GPU Memory

2,889,784,320 32 64 1.31% | 36,700,160 820 17.1 GB
2,889,784,320 64 128 2.57% | 74,400,320 820 17.5 GB
2,889,784,320 96 192 3.81% | 110,100,480 820 17.9 GB



AI 2024, 5 2351

Appendix A.2. Stage-2 Self-Supervised Fine-Tuning

Following the best parameters listed in the Stage-1 fine-tuning, we proceed with the
Stage-2 fine-tuning. Again, we set LoRA ‘alpha’ to 192, and ‘r’ to 96. However, we change
the batch size to 4, and token length to 288, but keep gradient accumulation steps the same
as well as the optimizer. Table A3 lists the stage 2 fine-tuning configuration.

Table A3. Stage 2 training configuration, keeping the best configuration of stage 1, except batch size
and token length.

Base Model Params LoRA r LoRA Alpha Trainable Params Token Length Batch Size GPU Memory

2,889,784,320 96 192 3.81% | 110,100,480 288 4 23.44 GB

References
1. Čertický, M.; Churchill, D.; Kim, K.J.; Čertický, M.; Kelly, R. StarCraft AI Competitions, Bots, and Tournament Manager Software.

IEEE Trans. Games 2019, 11, 227–237. [CrossRef]
2. Vinyals, O.; Babuschkin, I.; Czarnecki, M.W.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, H.D.; Powell, R.; Ewalds, T.; Georgiev, P.;

et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef]
3. Huang, R.; Wu, X.; Yu, H.; Fan, Z.; Fu, H.; Fu, Q.; Yang, W. A Robust and Opponent-Aware League Training Method for StarCraft

II. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA 10–16 December 2023; Oh,
A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S., Eds.; 2023; Volume 36, pp. 47554–47574.

4. Churchill, D.; Buro, M. Build order optimization in StarCraft. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, Palo Alto, CA, USA, 10–14 October 2011; pp. 14–19.

5. Gallotta, R.; Todd, G.; Zammit, M.; Earle, S.; Liapis, A.; Togelius, J.; Yannakakis, G.N. Large Language Models and Games: A
Survey and Roadmap. arXiv 2024, arXiv:2402.18659. [CrossRef]

6. Wang, G.; Xie, Y.; Jiang, Y.; Mandlekar, A.; Xiao, C.; Zhu, Y.; Fan, L.; Anandkumar, A. Voyager: An Open-Ended Embodied Agent
with Large Language Models. arXiv 2023, arXiv:2305.16291.

7. Hu, S.; Huang, T.; Ilhan, F.; Tekin, S.; Liu, G.; Kompella, R.; Liu, L. A Survey on Large Language Model-Based Game Agents.
arXiv 2024, arXiv:2404.02039.

8. Zhu, X.; Chen, Y.; Tian, H.; Tao, C.; Su, W.; Yang, C.; Huang, G.; Li, B.; Lu, L.; Wang, X.; et al. Ghost in the Minecraft: Generally
Capable Agents for Open-World Environments via Large Language Models with Text-based Knowledge and Memory. arXiv 2023,
arXiv:2305.17144.

9. Zhou, E.; Qin, Y.; Yin, Z.; Huang, Y.; Zhang, R.; Sheng, L.; Qiao, Y.; Shao, J. MineDreamer: Learning to Follow Instructions via
Chain-of-Imagination for Simulated-World Control. arXiv 2024, arXiv:2403.12037.

10. Yuan, H.; Zhang, C.; Wang, H.; Xie, F.; Cai, P.; Dong, H.; Lu, Z. Skill Reinforcement Learning and Planning for Open-World
Long-Horizon Tasks. In Proceedings of the NeurIPS 2023 Foundation Models for Decision Making Workshop, New Orleans, LA,
USA, 15 December 2023.

11. Kambhampati, S. Can large language models reason and plan? Ann. N. Y. Acad. Sci. 2024, 1534, 15–18. [CrossRef] [PubMed]
12. Ma, W.; Mi, Q.; Zeng, Y.; Yan, X.; Wu, Y.; Lin, R.; Zhang, H.; Wang, J. Large Language Models Play StarCraft II: Benchmarks and

A Chain of Summarization Approach. arXiv 2024, arXiv:2312.11865.
13. Gunasekar, S.; Zhang, Y.; Aneja, J.; Mendes, C.C.T.; Giorno, A.D.; Gopi, S.; Javaheripi, M.; Kauffmann, P.; de Rosa, G.; Saarikivi,

O.; et al. Textbooks Are All You Need. arXiv 2023, arXiv:2306.11644.
14. Shao, X.; Jiang, W.; Zuo, F.; Liu, M. SwarmBrain: Embodied agent for real-time strategy game StarCraft II via large language

models. arXiv 2024, arXiv:2401.17749.
15. Li, J.; Li, D.; Savarese, S.; Hoi, S. BLIP-2: Bootstrapping language-image pre-training with frozen image encoders and large

language models. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023.
16. Wu, H.; Zhang, J.; Huang, K. MSC: A Dataset for Macro-Management in StarCraft II. arXiv 2017, arXiv:1710.03131.
17. Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhnevets, A.S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou, J.P.; Schrittwieser,

J.; et al. StarCraft II: A New Challenge for Reinforcement Learning. arXiv 2017, arXiv:1708.04782.
18. Khan, M.J.; Hassan, S.; Sukthankar, G. Leveraging Transformers for StarCraft Macromanagement Prediction. In Proceedings of

the IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16 December 2021;
pp. 1229–1234.

19. Liquipedia. 2024. Available online: https://liquipedia.net/starcraft/Main_Page (accessed on 16 February 2024).
20. Wiki, S. StarCraft Wiki. 2024. Available online: https://starcraft.fandom.com/wiki/StarCraft_Wiki# (accessed on 18 February

2024).
21. StarCraft-Wikipedia. 2024. Available online: https://en.wikipedia.org/wiki/StarCraft (accessed on 20 February 2024).

http://doi.org/10.1109/TG.2018.2883499
http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.1109/TG.2024.3461510
http://dx.doi.org/10.1111/nyas.15125
http://www.ncbi.nlm.nih.gov/pubmed/38445711
https://liquipedia.net/starcraft/Main_Page
https://starcraft.fandom.com/wiki/StarCraft_Wiki#
https://en.wikipedia.org/wiki/StarCraft


AI 2024, 5 2352

22. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. HuggingFace’s
Transformers: State-of-the-art Natural Language Processing. arXiv 2020, arXiv:1910.03771.

23. Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. LoRA: Low-Rank Adaptation of Large Language
Models. In Proceedings of the International Conference on Learning Representations, Online, 25–29 April 2022.

24. Dettmers, T.; Pagnoni, A.; Holtzman, A.; Zettlemoyer, L. QLORA: Efficient Finetuning of Quantized LLMs. In Proceedings of the
37th Annual Conference on Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023.

25. Yuan, Z.; Li, Z.; Sun, L. TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones. arXiv 2023,
arXiv:2312.16862.

26. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning
Transferable Visual Models From Natural Language Supervision. arXiv 2021, arXiv:2103.00020.

27. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International
Conference on Learning Representations, Online, 3–7 May 2021.

28. Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.; Xia, F.; Chi, E.; Le, Q.V.; Zhou, D. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans,
LA, USA, 28 November–9 December 2022; Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A., Eds.; 2022;
Volume 35, pp. 24824–24837.

29. Abdin, M.; Aneja, J.; Awadalla, H.; Awadallah, A.; Awan, A.A.; Bach, N.; Bahree, A.; Bakhtiari, A.; Bao, J.; Behl, H.; et al. Phi-3
Technical Report: A Highly Capable Language Model Locally on Your Phone. arXiv 2024, arXiv:2404.14219.

30. Ranella, N.; Eger, M. Towards Automated Video Game Commentary Using Generative AI. In Proceedings of the EXAG@ AIIDE,
Salt Lake City, UT, USA, 18 October 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	LLMs in StarCraft
	MSC Dataset

	Method
	SC2 Text Dataset
	Stage-1 Fine-Tuning the SLM
	Stage-2 Fine-Tuning
	Visual Backbone
	Global Features for Prompt Generation
	Dynamic Prompt Generation
	Prompt Strategy
	Final Fine-Tuning of SLM

	Training

	Results
	Ablation Results
	Impact of One-Stage Fine-Tuning
	Impact of Two-Stage Fine-Tuning
	Comparison with Phi-3.5-Vision


	Conclusions and Future Work
	Appendix A
	Stage-1 Self-Supervised Fine-Tuning
	Stage-2 Self-Supervised Fine-Tuning

	References

