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Abstract

:

As machine learning (ML) transforms industries, the need for efficient model development tools using high-performance computing (HPC) and ensuring interpretability is crucial. This paper presents SIBILA, an AutoML approach designed for HPC environments, focusing on the interpretation of ML models. SIBILA simplifies model development by allowing users to set objectives and preferences before automating the search for optimal ML pipelines. Unlike traditional AutoML frameworks, SIBILA is specifically designed to exploit the computational capabilities of HPC platforms, thereby accelerating the model search and evaluation phases. The emphasis on interpretability is particularly crucial when model transparency is mandated by regulations or desired for stakeholder understanding. SIBILA has been validated in different tasks with public datasets. The results demonstrate that SIBILA consistently produces models with competitive accuracy while significantly reducing computational overhead. This makes it an ideal choice for practitioners seeking efficient and transparent ML solutions on HPC infrastructures. SIBILA is a major advancement in AutoML, addressing the rising demand for explainable ML models on HPC platforms. Its integration of interpretability constraints alongside automated model development processes marks a substantial step forward in bridging the gap between computational efficiency and model transparency in ML applications. The tool is available as a web service at no charge.
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1. Introduction


The rapid development of technologies has helped artificial intelligence (AI) become a well-known and reliable tool for researchers in academia and industry [1]. Its ability to analyze vast amounts of data has become a powerful tool in science and business [2]. Looking for repetitive patterns among such data collections is a complex but necessary task that needs to be done to extract knowledge from past events. By exploring several samples, AI models can learn the internal relationships among data and use that information to forecast future events or unexplored samples. Machine learning (ML) and its subtype, deep learning (DL), are two typical approaches to AI [3]. Both types of model are flexible enough to analyze a range of datasets, including tabular data, text, time series, and images. This adaptability to different contexts has propelled their application into traditional and fundamental areas of science, such as biology [4,5], chemistry [6,7], and medicine [8]. Classical scientific areas can profit from ML and DL, as can new and related multidisciplinary fields. This is the case with genomics [9,10], bioinformatics [11], and drug discovery [12,13,14], to name a few. Medicine probably has the greatest visibility in society of all the scientific areas mentioned. Advances in medicine are frequently considered highly relevant, meaning any help is always welcome. Consequently, applying ML and DL to treat patients or give insight into a disease is a significantly relevant topic. As a result, more than a few examples of ML and DL applied to medicine can be found in the literature [15,16,17,18,19,20,21,22]. Unfortunately, ML research requires following an iterative process that can be very time-consuming and needs some expertise. First, an exploratory data analysis (EDA) is performed to clean and organize the data to allow the models to work. The researchers need some knowledge of the data to identify what changes can be made. For example, knowing the input features’ meaning can help encode categorical features properly. Next, one or more models have to be developed and fed with data for training. Once the model is trained, it is evaluated, and based on the results its hyperparameters may need to be adjusted. Hyperparameter tuning is an essential but complex task that strongly determines the accuracy of the models. This workflow is repeated until the accuracy of the models reaches the desired quality level or the scientist gives up. However, when another dataset has to be processed, all this work is frequently disregarded because each dataset needs particular transformations. Many automated machine-learning (AutoML) frameworks have arisen in the last decades to automate that process and make ML and DL more accessible for researchers [23,24,25]. Furthermore, ML and DL models are considered unreliable in critical contexts such as medicine and still require human validation. Consequently, it is crucial to understand how models make decisions and objectively explain such understanding to the final users. Thus, a post-training process must be performed to transform the probabilities the models estimate into something easily understandable by the general public. This is known as explainable artificial intelligence (XAI). However, the explainability of the models is not easy and has two main limitations. First, there are several ways of interpreting models, ranging from inherently self-explanatory models, such as decision trees, to model agnostic algorithms like LIME or SHAP values. This diversity of explanations often leads to contradictory interpretations, making it difficult to distinguish the correct one. Secondly, the model explanation can be a time-consuming task and may require high-performance computing (HPC) platforms to carry out the calculations [26].



SIBILA is a novel software developed to automate the model development process, build several explanations, and save time for researchers. SIBILA can train, evaluate, and explain ML and DL models all at once and test various configurations in a single command line. It can be run on HPC platforms without configuration to address performance issues, resulting in competitive response times. SIBILA is containerized to cope with HPC platforms with different configurations. In consequence, it can be run on any host supporting Singularity. Moreover, SIBILA applies a diversity of XAI algorithms to provide the final user with a deep insight into the decisions that led the model to make the prediction. The users are provided with many global and sample-wise plots depicting all the metrics and explanations of the selected models. With this tool, researchers may save a great deal of time looking for models to mine their datasets and understanding the prediction process. To make it more accessible, SIBILA functionalities are also available through a freely accessible web server at https://bio-hpc.ucam.edu/sibila (accessed on 13 November 2024).



This manuscript is organized as follows. Section 2 summarizes some similar works and explains SIBILA’s usefulness against competitors. Next, Section 3 introduces the main features of SIBILA, including the supported models and metrics, the way interpretability is calculated, and containerization. Section 4 presents four case studies to show how to use SIBILA effectively. In Section 5, the advantages and limitations of the tool are discussed. Finally, the main conclusions and future works are available in Section 6.




2. Related Work


Building ML algorithms can be time-consuming due to the disparity of hyperparameters that must be tuned. Moreover, reusing already tuned models is not always possible when a new dataset comes along. In order to facilitate the model-building task and alleviate the tuning efforts, many AutoML frameworks have been developed in the last few years. In Truong et al. [27], the authors extensively reviewed the available AutoML frameworks to date. The authors summarize the main tools available for researchers, including H2O-AutoML [28] and Auto-sklearn [29]. Such tools are compared with others like AutoML-Zero [30] and FLAML [31], which have been developed recently. Similarly, Ferreira et al. [32] carried out another comparison of AutoML tools, including AutoGluon-Tabular [33]. On the contrary, Alsharef et al. [24] focused their review on ML models to forecast time-series data. In any case, the results of these, and other similar works, demonstrate the potential of the general-purpose AutoML tools to fully automate the selection and tuning of ML models. Among the most frequently used tools, it is worth mentioning the following:




	
Auto-SKLearn [29] is an automated machine-learning tool built upon the scikit-learn library. It relieves users from the tasks of algorithm selection and hyperparameter tuning. The package also integrates feature engineering techniques such as one-hot encoding, numerical feature standardization, and principal component analysis (PCA). It leverages SKLearn estimators to handle both classification and regression tasks. Auto-SKLearn constructs a pipeline and employs Bayesian search to optimize it. Within this machine-learning framework, two components are introduced to refine hyperparameter tuning using Bayesian inference: meta-learning is applied to initialize the optimizers through Bayesian methods and the automatic configuration setup is evaluated throughout the optimization process.



	
FLAML [31] identifies accurate models or configurations for common ML/AI tasks while minimizing computational resource use. It eliminates the need for users to manually choose models or hyperparameters for training and inference, while still allowing for easy customization. By automatically adapting large language models (LLMs) to specific applications, FLAML maximizes the advantages of these resource-intensive models while reducing associated costs. It allows users to create and deploy adaptive AI agents with minimal effort. FLAML also provides a rapid auto-tuning tool driven by a novel, cost-efficient approach, capable of managing large search spaces with varying evaluation costs, complex constraints, guidance, and early stopping mechanisms.



	
H2O-AutoML [28] is an open-source, distributed in-memory, machine-learning platform. It is compatible with both R and Python and supports a wide range of commonly used statistical and machine-learning algorithms, such as gradient boosted machines, generalized linear models, and deep learning. H2O features an automated machine-learning module that utilizes its proprietary algorithms to build pipelines. It employs exhaustive search techniques for feature engineering and hyperparameter optimization to enhance pipeline performance. The platform automates various complex tasks in data science and machine learning, including feature engineering, model validation, tuning, selection, and deployment. Additionally, it offers automated visualization tools and machine-learning interpretation.



	
AutoGluon [33] can generate models that predict the values in one column based on the other columns for standard tabular datasets (such as those stored in CSV files or extracted from databases). With a single call, it delivers high accuracy in typical supervised learning tasks, including both classification and regression, while automatically handling tasks like data cleaning, feature engineering, hyperparameter tuning, and model selection.








It can be observed that the presented frameworks implement several features, such as manipulating different data types (time series, images, or text), data pre-processing, and hyperparameter optimization. However, they still have some limitations. Firstly, commercial tools often require the use of the vendor platform, which is expensive. This is the case of Google AutoML and Azure ML. Although service providers offer money-saving plans, training many models with large amounts of data can be very costly in economic terms. Even more, the users are tied to the platform configuration and will have to adapt their code to make it run with the available packages. This is often a major limitation for users who have no experience with these types of tools because their field of knowledge is not related to AI or even computer science. Therefore, this problem can be a brake on the democratization of ML. In addition, despite the fact that users do not have to worry about the configuration and maintenance of the HPC infrastructure, they will have difficulties moving their code to other platforms.



Finally, it should also be noted that, although some frameworks offer interpretability features, as a general rule they are not focused on the interpretation of ML models. Current interpretability algorithms often result in contradictory explanations of the same model, the so-called Rashomon effect, which induces the use of data fusion techniques to resolve inconsistency in explanations. This situation is rarely addressed by AutoML tools, as they usually pay more attention to the choice of models.




3. Materials and Methods


This section describes SIBILA’s main features, including the list of models and interpretability algorithms available, the way tasks are parallelized, and how the data fusion works.



3.1. Architecture


SIBILA has been programmed in Python3 and relies on widely used libraries to implement both the models and interpretability algorithms. In addition, all packages are included within a Singularity container to make it portable. SIBILA has been designed to be modular and flexible, so that it can be extended in the future. Based on this idea, different modules have been implemented: models, evaluation, interpretability, and consensus (Figure 1).



Before running a task in SIBILA, users may need to customize the hyperparameter space search to fit their needs. This process can be done by simply modifying the configuration files of each model. Next, when the experiment is launched, SIBILA processes the input parameters and loads the dataset. Once the data have been loaded, pre-processing tasks such as data analysis, balancing, and normalization are performed. Then, the Python modules that implement each of the chosen models are dynamically loaded. Note that, to add a new model, it is sufficient to implement the corresponding module to train it and perform predictions and enable the new model in the input parameter settings. In addition, any number of models can be trained in a single run, for both classification and regression tasks. Once the models are trained, they are evaluated using the appropriate metrics according to the type of problem addressed. The complete state of the SIBILA run up to this point is persisted in a file. This allows one to stop the pipeline after the evaluation of the models and to perform the interpretation step later. The models are then interpreted with the interpretability algorithms supported by SIBILA. This process can be performed sequentially or in parallel. If SIBILA is run on an HPC cluster, the training and evaluation of the models will be executed in a single job, while the interpretability algorithms can be executed in that same job or in multiple separate jobs. Finally, SIBILA provides a command-line (CLI) script to combine the attributions computed by the interpretability algorithms into a single global attribution.



Execution through the web interface is exactly the same, the only difference being that the parameters are entered via the interface instead of by manually manipulating the model configuration files.




3.2. Machine-Learning and Deep-Learning Models


SIBILA provides a collection of ML and DL models that could easily be extended in the future. Selected models cover a wide range of approaches, including typical ML models (i.e., support vector machine, decision trees), ensemble models (bagging and random forest), DL models (neural networks), and rule-based models (RIPPERk and RuleFit). Table 1 summarizes the available models and libraries and whether or not they support regression and classification. All the implemented models support their own set of hyperparameters, which may have to be adjusted for each dataset. Hyperparameter tuning often requires code changes, which makes collaboration between researchers difficult. This problem has been addressed with a hyperparameter search system configured through external JSON (JavaScript Object Notation) files, allowing each researcher to have a custom configuration file for each model and dataset. Although JSON format is frequently used in web development, it is also helpful in other types of application due to its flexible syntax and portability. SIBILA uses JSON formatted files to simplify the configuration of the models and avoid code changes.




3.3. Evaluation Metrics


To assess the accuracy of the models, SIBILA implements the typical metrics for the different types of problem it supports. Table 2 lists the available metrics.




3.4. Data Cleaning


Data cleaning is a crucial step in obtaining accurate models. SIBILA provides two mechanisms to perform data pre-processing on the fly. A frequent problem encountered when analyzing datasets is unbalanced data. This problem happens when there are more samples of one class than the others, which generates a bias when training the model. Data imbalance can be tackled in SIBILA through various approaches. For example, the weighting of classes. This technique assigns a weight to each class based on the number of samples it contributes, which makes the model pay more attention to the errors of the minority class [40]. The random oversampling [41] technique is also available in SIBILA. This approach generates new random samples from perturbations in the minority class samples. Additionally, other more complex approaches, such as ADASYN (Adaptative Synthetic) [42] and SMOTE (Synthetic Minority Oversampling Technique) [43], can also be used through SIBILA. Another common problem is data denormalization. If the data for a feature are in a very sparse range, the stability of the model may be impaired [44]. This results in models that take longer to converge and whose accuracy is lower. SIBILA provides numerous algorithms for normalizing data, such as the min–max, standard scaler, or binary scaler.




3.5. Interpretability Algorithms


Machine learning and deep learning models can be very accurate in making predictions. However, there are some contexts where high accuracy is insufficient, and the models are still seen as black boxes [45]. Humans tend to rely more on the things they can easily understand, and this is a crucial factor in adopting AI in some critical contexts, such as medicine and engineering [46]. Based on that premise, XAI has emerged in recent decades. Aiming to bring light to how AI models make decisions, XAI embraces a diversity of techniques to explain to humans the decision-making process followed by AI models. Although the terms explainability and interpretability are often used interchangeably, some works make a slight difference [45,47,48]. It is not the purpose of this work to dig into the interpretability concept; thus, we will use both terms indistinctly. Aiming to contrast the different ways of explaining predictions, many interpretability algorithms are employed to detect the most relevant input features. Interpretability algorithms often assign a numerical value to each input feature to represent how much it contributed to the prediction—the more positive or negative the attribution, the more relevant the feature. SIBILA stores the attributions in text files (CSV format, comma-separated values) to perform consensus afterward. SIBILA implements a range of interpretability approaches. First, the global model-agnostic algorithms are those able to explain the entire dataset. This is the case of permutation feature importance, random forest, partial dependence plots (PDP), and accumulated local effects (ALE). These approaches take the entire dataset and assign a global attribution to each feature. Secondly, local model-agnostic methods explain every sample individually. The local model-agnostic approaches implemented in SIBILA are Shapley values, local interpretable model-agnostic explanations (LIME), integrated gradients, counterfactual explanations, and scoped rules. To better understand the local explanations, SIBILA averages the individual attributions into an overall explanation to give the user a summary of the feature’s importance at a glance. Table 3 shows the supported algorithms.




3.6. Consensus


Interpretability algorithms often produce contradictory explanations [60], leading to confusion and incoherence. Data fusion can be an excellent choice to reduce uncertainty in interpreting results. As SIBILA provides diverse interpretability approaches, it also provides a way of carrying out data fusion through the consensus of the attributions. SIBILA incorporates five predefined consensus methodologies: the arithmetic, geometric, and harmonic means of feature attributions; the average positional rank of a feature within a sorted list based on its attribution; and the frequency with which a feature appears among the top-10 most attributed. Through a streamlined command-line script that leverages information extracted from generated CSV files, users can effortlessly switch between these methods. Additionally, users retain the flexibility to devise and integrate their own consensus approaches. Consequently, each model’s interpretability is enhanced by assigning a unified attribution score to each input feature, derived from applying the chosen consensus function to the attribution scores produced by all interpretability algorithms.




3.7. Scalability and Performance


Training and explaining models are time-consuming tasks. SIBILA can perform both tasks on various models while testing various configurations of each. To speed up the process and deliver results in a short time, SIBILA makes use of HPC. Training is accelerated by graphics processing units (GPUs) and parallel computing. The ANN model is implemented with the Tensorflow framework, which automatically detects the available GPUs on the host machine and parallelizes the training. On the other hand, some models, such as RF and XGB, can perform multi-threaded training. The number of threads is configured by the hyperparameter “n_jobs”. If its value is set to −1, as many jobs as possible will be created. Model interpretability is another bottleneck in terms of speed. Many interpretability approaches perturb the trained model or the dataset to assess the impact of changes in model accuracy. This process is often computationally expensive, especially when dealing with large datasets or complex models. Since SIBILA explains models with nine different approaches, the process can take longer than training. This problem is overcome by using HPC clusters. SIBILA launches each interpretability algorithm in a separate job and waits until they are all finished before delivering the results. GPU computing is not essential for this task because the implemented algorithms do not support parallelization at the GPU level.




3.8. Containerization


SIBILA can train, evaluate, and explain several models in one go. This can become a time-consuming process with increasing dataset sizes. Hence, running SIBILA on a regular computer may not be feasible. To deal with performance issues, SIBILA has been implemented to run in a local environment or on HPC platforms. When it is run in a local environment, it is the responsibility of the user to set up the environment. To efficiently perform this task, the user is facilitated with a file with all the required dependencies. On the contrary, users may opt to build their models on an HPC platform. Nevertheless, each platform may have a different configuration, making it challenging to run SIBILA. Aiming to avoid users struggling with the configuration of several HPC machines or clusters, a Singularity [61] container has been created. This way, the entire ecosystem of SIBILA can be run on any computer that supports Singularity and Simple Linux Utility for Resource Management (SLURM) queues. The choice of Singularity as the container instead of Docker [62] was based on two premises. Firstly, the current trend is to use Singularity instead of Docker in most HPC infrastructures [63]. This makes SIBILA a highly portable tool with zero configuration. Secondly, it is available on most of the HPC platforms we have access to. Although Docker and other containers have been extensively used, they are not always available to scientists. Additionally, Singularity is transparent to the access to GPUs, which helps to accelerate the calculations and dramatically reduces the computing times.





4. Results


This section evaluates SIBILA’s ability to automatically build and explain ML and DL models. The tool has been used to build models for four different toy datasets, including binary classification, multiclass classification, and regression problems. All experiments have been run on an HPC cluster provided with Nvidia A100-SXM GPUs.



4.1. Model Search


The main purpose of SIBILA is to search for ML and DL models. In this experiment, its ability to find suitable models for four different tasks is tested, including two binary classification problems and multiclass and regression tasks. All the datasets are publicly available at the UCI Machine Learning Repository [64]. Table 4 summarizes the most relevant information about the datasets. A hyperparameter random search was carried out with all the models. This approach speeds up the search of a base model while leaving the exhaustive search for later with a reduced set of hyperparameter values. SIBILA supports extensive hyperparametrization of all models. Table A1 and Table A2 detail the hyperparametrization space configured for classification and regression experiments. In either case, the user can easily customize the search values by manually editing the parameter files. No cross-validation or class weighting was applied to preserve the default values of the search. Table 5 and Table 6 show each task’s best model and main metrics. In classification problems, the best model was chosen based on the area under the curve (AUC) metric, while in the regression task the coefficient of determination was the reference metric.



The results demonstrate that SIBILA can find suitable base models for different tasks and datasets. It must be pointed out that the displayed results were obtained with the default search space used by SIBILA. However, such values can be easily customized by modifying the JSON configuration files. The final hyperparameters of the best models (Table A3, Table A4, Table A5 and Table A6) and the complete list of metrics (Table A7, Table A8, Table A9 and Table A10) are provided in Appendix A.




4.2. Interpretability and Data Fusion


SIBILA interprets each model with a collection of interpretability algorithms (Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6). All interpretability algorithms supported by SIBILA calculate the contribution of each input feature to the model prediction. This contribution, known as attribution, is a numerical value whose range of values ranges from one algorithm to another. Local methods assign an attribution to each feature in the prediction of each individual sample, while global methods assign a single overall feature attribution for the entire dataset. Interpreting the graphs created by SIBILA is very simple since all algorithms assign higher attribution values to the most important features. In addition, the standard deviation of the individual attributions has been included in the graphs created to summarize the local methods in order to quickly understand the stability of the algorithm and the dispersion of the data. The attributions of the local methods are averaged into a global attribution that summarizes the interpretations of all samples. This facilitates the explanation of models with local methods by users.



The interpretations obtained for the same model can vary substantially depending on the algorithm used to generate them. SIBILA addresses this problem by employing data fusion, the so-called consensus. Consensus consists of combining the attributions assigned by each algorithm to each of the input features. Thus, a combined attribution value per feature is obtained for the same model that has been interpreted with different algorithms. This mechanism leads to more robust global interpretations in which possible deviations are minimized. SIBILA implements a collection of consensus functions. Table 7 shows each dataset’s five most relevant features after applying data fusion with the arithmetic mean. Note that the features are sorted by the absolute value of their attribution, as this represents the total importance of that feature in explaining the model. Figure 7 shows the consensus plots created by SIBILA for the best model found for each dataset. The length of the bars represents the attribution score; thus, the longer the bar, the more important the feature.




4.3. Parallelization and GPU Usage


Using cluster and GPU parallelization is crucial when training and explaining ML/DL models. SIBILA uses GPU processing for model training and HPC clusters to explain the models. This test aims to compare SIBILA’s performance when GPU and HPC clusters are used. Table 8 shows the training and interpretation times, in seconds, with and without GPU and HPC clusters of the most accurate models. Note that the interpretation of the models does not use GPU because the implemented algorithms do not support that sort of parallelization.



Regarding interpretability, the time with cluster parallelization is the time taken by the slowest algorithm to interpret the model. In contrast, the sequential time is the addition of the time taken to interpret a model with all the individual algorithms. It can be observed that the reduction ranged from 11.36% in the crime dataset to 70.25% in the wine dataset. On the other hand, the use of GPU to train the models accelerates the process by up to 50.20% with the cancer dataset. SIBILA depicts this information for every individual model, as shown in Figure 8.





5. Discussion


SIBILA has been benchmarked in three different tasks with four toy datasets. The primary purpose of SIBILA is to search for ML and DL models for a given dataset. In this regard, a complete search was performed across all the available models and three types of problem. The first search was carried out with the cervical cancer dataset. Some models, such as XGB, reached the maximum accuracy (AUC = 1). This test proved SIBILA to be helpful in binary classification tasks. However, the unusually high scores obtained for many of the models may indicate that cervical cancer is a too-simple dataset. Hence, another binary classification task was carried out with the spam classifier dataset. This dataset is bigger than the previous one (4601 samples and 57 features), but the accuracy of the models is also very high. The chosen model was the deep-learning approach (ANN) in this case. Although the ML models also reached high accuracy, the ANN model outperformed them. This may be due to the complexity of the data that makes the DL approach better than other simpler models. Regarding the multiclass classification task, the preferred model was again XGB. However, the accuracy was much lower than in binary classification (AUC = 0.536). The poor accuracy of the model suggests two improvements: (i) Pre-processing the data with more techniques (handle outliers, standardization…), (ii) training the models with advanced options like cross-validation and class weighting. In any case, XGB seems to be a good choice as a baseline. The last task was to predict the number of crimes in different cities in the USA. The suggested model was RF, which is an ensemble model. The metrics obtained for this model were acceptable (MAE = 0.087, MSE = 0.018), but the coefficient of determination was not so high (  R 2   = 0.628).   R 2   is a correlation metric that indicates if there is a linear relationship between the inputs and the target feature. The obtained value suggests a slight correlation, which is confirmed by the plot created by SIBILA (Figure 9).



The second experiment involves identifying the most relevant features for the models to make decisions. Figure 7 shows the top-10 attributed features after the data fusion. Our consensus function, the average mean, detects an evident influence of the “Dx:HPV” feature when explaining the XGB model for the cancer dataset. The HPV test examines cells to find infections with the high-risk types of HPV that sometimes cause cervical cancer. It is recommended every five years starting at age 30. Hence, it seems logical to consider it a relevant biomarker for our model. Concerning the spam dataset, the ANN model focuses on the appearance of the word “remove” so that an email containing this word frequently should be tagged as spam. Although this is the best discriminant, other words like “hp” and “free” or the character “$” could also serve to classify an email as spam. Again, the explanation of this model makes sense because the word “remove” could appear once or twice but not several times in an email. The explanation of the wine dataset targets “proline” as the most relevant feature. It has been proven that proline concentration in grapes is related to maturity and cannot be exploited by yeasts; as such, its concentration can be managed through specific viticultural practices. On the other hand, proline is easy to determine in wine and could be used to identify desirable sensory profiles [69]. Finally, the regression with the crime dataset was the hardest to explain because all the features received similar attention, and almost all were negatively attributed. The negative attribution values mean that the higher the feature values, the lower the probability of classifying the sample as the predicted class. SIBILA sorts the features by the absolute value of their attributions; thus, the most important ones may not be aligned with the highest attributions. Although the attributions were very similar, “NumStreet” received more attention than others. The negative importance of NumStreet indicates that this feature is associated with a reduction in the crime rate, i.e., the higher the number, the lower the crime rate. If a community has more streets, it could be interpreted as having better infrastructure, greater connectivity, or being better developed. This could correlate with lower crime rates, as indicated by the model. On the contrary, the features with the highest positive attribution were “community” and “county”, which indicates that specific communities and certain counties are more prone to high crime rates.



The last experiment aimed to demonstrate the ability of SIBILA to accelerate the training and interpretation of the models by using HPC platforms and parallelization. The training of the models is accelerated by GPU computing. The results show that GPU-intensive training outperforms the CPU in most cases. Training times can be reduced by up to 50.20% in the cervical cancer dataset. The wine dataset suffered a slight time reduction (0.16%) because it is a small dataset with insufficient data to take advantage of GPU. It is worth pointing out that the spam dataset took longer on GPU than on CPU. Different reasons might be behind this result, but the exclusiveness of cluster nodes should be considered first. Our configuration does not ensure that an entire cluster node is reserved for our jobs; consequently, if the GPU nodes were overloaded with other tasks but the CPU nodes were underutilized, the computation time on the GPU nodes may be higher than on the CPU. In any case, a deeper analysis would be required to explain such behavior. On the other hand, the interpretability algorithms do not profit from GPU parallelization; thus, HPC clustering is used instead. In HPC clustering, each interpretability algorithm was launched in a separate job. Thus, the time taken by the longest job was used as a reference because all the other jobs were finished before. Thanks to this approach, the computing time for interpretability tasks was reduced by between 11.36% and 70.25%.




6. Conclusions


Machine learning offers robust capabilities for decision-support systems, though its adoption is frequently hindered by time-consuming model development and interpretability issues. This becomes particularly critical in fields such as healthcare, where decision transparency is paramount. In the absence of interpretability, professionals in medicine, law, finance, and politics may hesitate to rely on these predictions, thereby forfeiting the potential benefits of these advanced techniques. To address these challenges, we have developed SIBILA, an AutoML tool that trains and explains ML/DL models by leveraging HPC infrastructures. SIBILA’s automated computation of interpretability significantly reduces the time scientists would traditionally spend on building bespoke models for individual datasets [70]. Additionally, it presents results in a user-friendly format accessible to professionals outside the IT sphere. Acknowledging the wide range of potential users, SIBILA is freely available at https://bio-hpc.ucam.edu/sibila (accessed on 10 November 2024). The results confirm that SIBILA can efficiently train, evaluate, and elucidate multiple models for regression, binary, and multiclass classification problems. It has found accurate base models for four datasets containing data of very dissimilar contexts. In addition, SIBILA could provide users with coherent explanations of the selected models. For each dataset, a few input features were clearly identified as the most influential in the model’s decision-making. The final subset was the result of interpreting the models with many explainability approaches and then applying a data-fusion process yielding a unique global explanation. Using GPU parallelization and HPC clustering, SIBILA drastically reduced the computation time required for the training and interpretability steps. The time reduction reached 70% when interpreting the wine dataset. Notwithstanding its many functionalities, SIBILA does have areas for future development. Integrating consensus calculation into the pipeline rather than conducting it through separate scripts could ease its usage. The set of models could be extended to include stacking or even unsupervised-learning models (i.e., clustering). Not only the model set but also the input data is susceptible to being extended. Image processing, natural language processing (NLP), and time series could benefit from SIBILA when looking for baseline models. Despite these limitations, we firmly believe that SIBILA holds promise in advancing the accessibility and applicability of interpretable machine-learning models, thus contributing to more transparent and trustworthy artificial-intelligence systems across various domains.
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Table A1. Tested hyperparameters for the classification problems.






Table A1. Tested hyperparameters for the classification problems.





	Model
	Hyperparameter Values





	ANN
	batch_size: 128, objective: accuracy, activate: [relu, elu, tanh, sigmoid, softmax, linear, exponential], dropout_rate: 0.15, optimizer: [Adam, RMSprop, SGD, Adagrad], loss: sparse_categorical_crossentropy, epochs: 100



	BAG
	n_estimators: [10, 20, 50], max_features: [0.25, 0.5, 1.0], oob_score: [true, false], bootstrap: [true, false], max_samples: [0.25, 0.5, 1.0]



	DT
	criterion: [gini, entropy], splitter: [best, random], max_depth: [2, 4, 6, 8, 10, 12], min_samples_split: [0.1, 0.2, 0.4, 0.8, 0.9], min_samples_leaf: [1, 2, 3, 4], max_features: [auto, sqrt, log2], max_leaf_nodes: [50, 100, 200, 300], min_impurity_decrease: [0, 0.1, 0.2, 0.3, 0.4, 0.5], ccp_alpha: [0, 0.1, 0.2, 0.3, 0.4, 0.5]



	KNN
	n_neighbors: [3, 4, 5, 6, 7], algorithm: [auto, ball_tree, kd_tree, brute], leaf_size: [10, 20, 30, 50], metric: [minkowski, euclidean, manhattan, chebyshev], p: [1, 2, 3]



	LR
	penalty: [l1, l2, elasticnet], tol: [0.001, 0.0001,   1 ×  10  − 5    ], C: [0.25, 0.3, 0.5, 0.6, 0.75, 0.9, 1], fit_intercept: [true, false], solver: [liblinear, newton-cg, sag, saga], max_iter: [50, 100, 500, 1000], l1_ratio: [0.1, 0.25, 0.5, 0.75, 1]



	RF
	n_estimators: [50, 100, 400, 800], criterion: [gini, entropy], max_depth: [25, 50, 250], min_samples_split: [2, 5, 10], min_samples_leaf: [2, 5, 10], max_features: [auto, sqrt, log2], oob_score: [true, false], bootstrap: [true, false]



	RLF
	tree_size: [4, 16, 32], max_rules: [50, 100, 500, 1000], memory_par: [0.01, 0.05, 0.1], lin_trim_quantile: [0.025, 0.05, 0.1], lin_standardise: [true, false], exp_rand_tree_size: [true, false], cv: [3, 5]



	RP
	n_discretize_bins: [10, 20, 50], k: [1, 2], prune_size: [0.25, 0.33, 0.5]



	SVM
	C: [0.5, 1, 1.5], kernel: [linear, poly, rbf, sigmoid], degree: [1, 2, 3, 4, 5], gamma: [scale, auto], coef0: [0, 0.5, 1], shrinking: [true, false], tol: [  1 ×  10  − 4    ,   5 ×  10  − 4    ,   1 ×  10  − 3    ,   2 ×  10  − 3    ], cache_size: [100, 200, 300], max_iter: [−1, 100, 150, 200, 500], decision_function_shape: [ovo, ovr]



	XGBOOST
	n_estimators: [50, 100, 300, 600], booster: [gbtree, gblinear, dart], eta: [0.1, 0.3, 0.5], gamma: [0, 0.5], max_depth: [4, 6, 8], min_child_weight: [1, 2], max_delta_step: [0, 5, 10], subsample: [0.1, 0.5, 1], lambda: [0.5, 1, 1.5], alpha: [0, 0.5, 1], tree_method: [auto, exact, approx, hist], grow_policy: [depthwise, lossguide], max_leaves: [0, 5, 15, 25], max_bin: [128, 256], sketch_eps: [0.01, 0.03, 0.05], refresh_leaf: [0, 1], scale_pos_weight: [1, 10, 25, 50, 75, 99, 100, 1000]










 





Table A2. Tested hyperparameters for the regression problem.






Table A2. Tested hyperparameters for the regression problem.





	Model
	Hyperparameter Values





	ANN
	batch_size: 128, objective: loss, activate: [relu, elu, tanh, sigmoid, softmax, linear, exponential], optimizer: [Adam, RMSprop, SGD, Adagrad], loss: mean_absolute_error, epochs: 120



	BAG
	n_estimators: [10, 20, 50], max_features: [0.25, 0.5, 1.0], oob_score: [true, false], bootstrap: [true, false], max_samples: [0.25, 0.5, 1.0]



	DT
	splitter: [best, random], max_depth: [2, 4, 6, 8, 10, 12], min_samples_split: [0.1, 0.2, 0.4, 0.8, 0.9], min_samples_leaf: [1, 2, 3, 4], max_features: [auto, sqrt, log2], max_leaf_nodes: [50, 100, 200, 300], min_impurity_decrease: [0, 0.1, 0.2, 0.3, 0.4, 0.5], ccp_alpha: [0, 0.1, 0.2, 0.3, 0.4, 0.5]



	KNN
	n_neighbors: [3, 4, 5, 6, 7], algorithm: [auto, ball_tree, kd_tree, brute], leaf_size: [10, 20, 30, 50], metric: [minkowski, euclidean, manhattan, chebyshev], p: [1, 2, 3]



	LR
	penalty: [l1, l2, elasticnet], tol: [  1 ×  10  − 3    ,   1 ×  10  − 4    ,   1 ×  10  − 5    ], C: [0.25, 0.3, 0.5, 0.6, 0.75, 0.9, 1], fit_intercept: [true, false], solver: [liblinear, newton-cg, sag, saga], max_iter: [50, 100, 500, 1000], l1_ratio: [0.1, 0.25, 0.5, 0.75, 1]



	RF
	n_estimators: [50, 100, 400, 800, 2000], max_depth: [25, 50, 250, 500], min_samples_split: [2, 5, 10, 20], min_samples_leaf: [2, 5, 10], max_features: [auto, sqrt, log2], oob_score: [true, false], bootstrap: [true, false], min_weight_fraction_leaf: [0, 0.5]



	SVM
	C: [0.5, 1, 1.5], kernel: [linear, poly, rbf, sigmoid], degree: [1, 2, 3, 4, 5], gamma: [scale, auto], coef0: [0, 0.5, 1], shrinking: [true, false], tol: [  1 ×  10  − 4    ,   5 ×  10  − 4    ,   1 ×  10  − 3    ,   2 ×  10  − 3    ], cache_size: [100, 200, 300], max_iter: [−1, 100, 150, 200, 500]



	XGBOOST
	n_estimators: [50, 100, 300, 600, 1000], booster: [gbtree, gblinear, dart], eta: [0.1, 0.3, 0.5], gamma: [0, 0.25, 0.5], max_depth: [4, 6, 8, 12, 20], min_child_weight: [1, 2], max_delta_step: [0, 5, 10], subsample: [0.1, 0.5, 1], lambda: [0.5, 1, 1.5], alpha: [0, 0.5, 1], tree_method: [auto, exact, approx, hist], grow_policy: [depthwise, lossguide], max_leaves: [0, 5, 15, 25, 35, 50], max_bin: [128, 256, 512], sketch_eps: [0.01, 0.03, 0.05], refresh_leaf: [0, 1], scale_pos_weight: [1, 10, 25, 50, 75, 99, 100, 1000]









Appendix A.2. Best Hyperparameters of Each Model Selected for Each Dataset




 





Table A3. Hyperparameters of the XGB model for the cancer dataset.
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	Hyperparameter
	Value





	N_estimators
	100



	Booster
	Dart



	Eta
	0.1



	Gamma
	0.5



	Max_depth
	8



	Min_child_weight
	2



	Max_delta_step
	10



	Subsample
	1



	Lambda
	1



	Alpha
	0



	Tree_method
	Approx



	Grow_policy
	Depthwise



	Max_leaves
	25



	Max_bin
	256



	Sketch_eps
	0.05



	Refresh_leaf
	1



	Scale_pos_weight
	100










 





Table A4. Hyperparameters of the ANN model for the spam dataset.
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	Hyperparameter
	Value





	Num_layers
	4



	Units
	[248, 12, 12, 184]



	Output_units
	2



	Activation
	Softmax



	Dropout
	False



	Optimizer
	Adam



	Learning_rate
	0.001131



	Loss_function
	Sparse_categorical_crosstentropy



	Epochs
	100










 





Table A5. Hyperparameters of the XGB model for the wine dataset.
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	Hyperparameter
	Value





	N_estimators
	600



	Booster
	Gbtree



	Eta
	0.5



	Gamma
	0.25



	Max_depth
	12



	Min_child_weight
	1



	Max_delta_step
	0



	Subsample
	0.1



	Lambda
	1.5



	Alpha
	0.5



	Tree_method
	Hist



	Grow_policy
	Depthwise



	Max_leaves
	25



	Max_bin
	256



	Sketch_eps
	0.03



	Refresh_leaf
	1



	Scale_pos_weight
	25










 





Table A6. Hyperparameters of the RF model for the crime dataset.






Table A6. Hyperparameters of the RF model for the crime dataset.





	Hyperparameter
	Value





	N_estimators
	400



	Criterion
	mse



	Max_depth
	50



	Min_samples_split
	20



	Min_samples_leaf
	2



	Min_weight_fraction_leaf
	0



	Max_features
	sqrt



	Oob_score
	False



	Bootstrap
	False









Appendix A.3. Metrics Obtained for Every Model with All the Datasets




 





Table A7. Evaluation metrics obtained for the cancer dataset.
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	Model
	Accuracy
	Precision
	F1 Score
	Recall
	Specificity
	AUC
	Matthews





	ANN
	97.674
	100.0
	50.0
	33.333
	100.0
	0.667
	0.571



	BAG
	98.837
	100.0
	80.0
	66.667
	100.0
	0.833
	0.812



	DT
	96.512
	0.0
	0.0
	0.0
	100.0
	0.500
	0.0



	KNN
	96.512
	0.0
	0.0
	0.0
	100.0
	0.500
	0.0



	LR
	97.093
	100.0
	28.571
	16.667
	100.0
	0.583
	0.402



	RF
	98.256
	100.0
	66.667
	50.000
	100.0
	0.750
	0.701



	RLF
	99.419
	100.0
	90.909
	83.333
	100.0
	0.917
	0.910



	RP
	100.0
	100.0
	100.0
	100.0
	100.0
	1.0
	1.0



	SVM
	96.512
	0.0
	0.0
	0.0
	100.0
	0.500
	0.0



	XGB
	100.0
	100.0
	100.0
	100.0
	100.0
	1.0
	1.0










 





Table A8. Evaluation metrics obtained for the spam dataset.
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	Model
	Accuracy
	Precision
	F1 Score
	Recall
	Specificity
	AUC
	Matthews





	ANN
	94.897
	92.818
	93.463
	94.118
	95.390
	0.948
	0.893



	BAG
	94.571
	94.236
	92.898
	91.597
	96.454
	0.940
	0.885



	DT
	77.199
	94.012
	59.924
	43.978
	98.227
	0.711
	0.534



	KNN
	87.079
	84.0
	83.168
	82.353
	90.071
	0.862
	0.727



	LR
	92.725
	92.151
	90.442
	88.796
	95.213
	0.920
	0.846



	RF
	95.223
	95.101
	93.750
	92.437
	96.986
	0.947
	0.899



	RLF
	94.137
	94.169
	92.286
	90.476
	96.454
	0.935
	0.876



	RP
	88.708
	93.471
	83.951
	76.190
	96.631
	0.864
	0.763



	SVM
	78.284
	67.253
	75.369
	85.714
	73.582
	0.796
	0.578



	XGB
	89.794
	80.510
	88.071
	97.199
	85.106
	0.912
	0.804










 





Table A9. Evaluation metrics obtained for the wine dataset.
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	Model
	Accuracy
	Precision
	F1 Score
	Recall
	Specificity
	AUC
	Matthews





	ANN
	69.444
	51.389
	54.193
	61.905
	29.098
	0.518
	0.600



	BAG
	94.444
	94.103
	94.447
	95.055
	32.717
	0.535
	0.917



	DT
	52.778
	43.452
	46.963
	56.695
	28.123
	0.525
	0.402



	KNN
	80.556
	78.974
	78.792
	78.816
	30.389
	0.526
	0.706



	LR
	94.444
	94.103
	94.447
	95.055
	32.717
	0.535
	0.917



	RF
	97.222
	96.667
	96.912
	97.436
	32.963
	0.535
	0.959



	RLF
	97.222
	96.667
	96.912
	97.436
	32.963
	0.535
	0.959



	SVM
	61.111
	53.968
	54.325
	63.146
	26.167
	0.529
	0.454



	XGB
	97.222
	97.619
	97.531
	97.619
	33.095
	0.536
	0.959










 





Table A10. Evaluation metrics obtained for the crime dataset.
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	Model
	Pearson
	    R 2    
	MAE
	MSE
	RMSE





	ANN
	40.340
	0.114
	0.139
	0.042
	0.205



	BAG
	77.408
	0.599
	0.091
	0.019
	0.138



	DT
	nan
	−0.004
	0.170
	0.048
	0.218



	KNN
	44.353
	0.162
	0.141
	0.040
	0.199



	LR
	76.354
	0.582
	0.100
	0.020
	0.141



	RF
	79.333
	0.628
	0.087
	0.018
	0.133



	SVM
	0.116
	−0.169
	0.196
	0.055
	0.235



	XGB
	73.440
	0.533
	0.100
	0.022
	0.149
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Figure 1. Architecture of SIBILA. First, an input file is received and data cleaning is performed. Next, the selected models are trained and evaluated on an HPC platform. If needed, the interpretability algorithms are run on separate jobs. Finally, the user can apply data fusion to combine the attributions calculated in the interpretation stage. 
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Figure 2. Average attribution plots created by SIBILA. Shapley values obtained for the ANN model after training the spam dataset. 
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Figure 3. Average attribution plots created by SIBILA. Random-forest-based permutation importance obtained for the ANN model after training the spam dataset. 
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Figure 4. Average attribution plots created by SIBILA. Permutation importance obtained for the ANN model after training the spam dataset. 
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Figure 5. Average attribution plots created by SIBILA. Integrated gradients attributions obtained for the ANN model after training the spam dataset. 
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Figure 6. Average attribution plots created by SIBILA. LIME attributions obtained for the ANN model after training the spam dataset. 
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Figure 7. Top 10 most important features of each dataset according to SIBILA consensus: (a) Cancer dataset; (b) Spam dataset; (c) Wine dataset; (d) Crime dataset. 
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Figure 8. Execution times of the XGB model after training and interpreting the wine dataset. 
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Figure 9. Correlation between the crime dataset’s inputs and output with the random-forest model. 
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Table 1. List of classification and regression models implemented by SIBILA.
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	Model
	Name
	Libraries
	Class./Reg.
	Ref.





	ANN
	Artificial Neural Network
	Tensorflow 2, Keras Tuner
	Both
	[34,35]



	BAG
	Bagging
	scikit-learn
	Both
	[36]



	DT
	Decision Tree
	scikit-learn
	Both
	[36]



	LR
	Linear/Logistic Regression
	scikit-learn
	Both
	[36]



	KNN
	K-Nearest Neighbours
	scikit-learn
	Both
	[36]



	RF
	Random Forest
	scikit-learn
	Both
	[36]



	RLF
	RuleFit
	rulefit
	Classification
	[37]



	RP
	Repated Incremental Pruning to Pruduce Error Reduction
	wittgenstein
	Classification
	[38]



	SVM
	Support Vector Machine
	scikit-learn
	Both
	[36]



	XGBOOST
	eXtreme Gradient Boosting Machine
	xgboost
	Both
	[39]
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	Problem
	Metrics





	Classification
	Accuracy, Area Under the Curve (AUC), Confusion Matrix, F1 Score, Matthews Correlation Coefficient (MCC), Precision, Recall, Specificity



	Regression
	Coefficient of Determination (  R 2  ), Mean Absolute Error (MAE), Pearson Coefficient, Root Mean Squared Error (RMSE)










 





Table 3. List of interpretability algorithms available in SIBILA.
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	Algorithm
	Library
	Ref.





	Accumulated Local Effects (ALE)
	alibi
	[49,50]



	Anchors (Scopes rules)
	alibi
	[51]



	Diverse Counterfactual Explanations (DiCE)
	dice-ml
	[52]



	Integrated Gradients
	alibi
	[53]



	Local Interpretable Model-Agnostic Explanations (LIME)
	lime
	[54]



	Partial Dependence Plots (PDP) + Individual Conditional Expectation (ICE)
	scikit-learn
	[55]



	Permutation Importance
	scikit-learn
	[56]



	Random Forest Feature Importance
	scikit-learn
	[57]



	Shapley Values
	shap
	[58,59]










 





Table 4. Description of the four toy datasets employed in the experiments.
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	Dataset
	Description
	Task
	Samples
	Features
	Ref.





	Cancer
	Prediction of indicators of cervical cancer
	Binary classification
	858
	40
	[65]



	Spam
	Identification of spam emails
	Binary classification
	4601
	57
	[66]



	Wine
	Classification of three types of Italian wine
	Multiclass classification
	178
	13
	[67]



	Crime
	Prediction of the number of crimes in the USA
	Regression
	1994
	4091
	[68]










 





Table 5. Best models built for classification tasks.
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	Dataset
	Task
	Model
	Specificity
	Precision
	Recall
	AUC





	Cancer
	Binary classification
	XGB
	100.000
	100.000
	100.000
	1.000



	Spam
	Binary classification
	ANN
	95.390
	92.818
	94.118
	0.948



	Wine
	Multiclass classification
	XGB
	33.095
	97.619