
Citation: Arshad, M.A.; Riaz, A.;

Fatima, R.; Yasin, A. SevPredict:

Exploring the Potential of Large

Language Models in Software

Maintenance. AI 2024, 5, 2739–2760.

https://doi.org/10.3390/ai5040132

Academic Editor: Isidoros Perikos

Received: 29 September 2024

Revised: 13 November 2024

Accepted: 19 November 2024

Published: 5 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

AI

Article

SevPredict: Exploring the Potential of Large Language Models in
Software Maintenance
Muhammad Ali Arshad 1, Adnan Riaz 2,* , Rubia Fatima 3 and Affan Yasin 4,*

1 Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China; aliarshadciitswl@gmail.com

2 Department of Computer Science and Engineering, University of Bologna, 40126 Bologna, Italy
3 Faculty of Computing and Emerging Technologies, Emerson University, Multan 60000, Pakistan;

rubiafatima91@hotmail.com
4 School of AI and Advanced Computing, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
* Correspondence: adnan.riaz3@unibo.it (A.R.); affan.yasin@outlook.com (A.Y.)

Abstract: The prioritization of bug reports based on severity is a crucial aspect of bug triaging,
enabling a focus on more critical issues. Traditional methods for assessing bug severity range from
manual inspection to the application of machine and deep learning techniques. However, manual
evaluation tends to be resource-intensive and inefficient, while conventional learning models often
lack contextual understanding. This study explores the effectiveness of large language models (LLMs)
in predicting bug report severity. We propose a novel approach called SevPredict using GPT-2, an
advanced LLM, and compare it against state-of-the-art models. The comparative analysis between
the proposed approach and state-of-the-art approaches suggests that the proposed approach out-
performs the state-of-the-art approaches in terms of performance evaluation metrics. SevPredict
shows improvements over the best-performing state-of-the-art approach (BERT-SBR) with 1.72%
higher accuracy, 2.18% higher precision, and 4.94% higher MCC. The improvements are even more
substantial when compared to the approach by Ramay et al., with SevPredict demonstrating 10.66%
higher accuracy, 10.39% higher precision, 3.29% higher recall, 7.19% higher F1-score, and a remark-
able 41.27% higher MCC. These findings not only demonstrate the superiority of our GPT-2-based
approach in predicting the severity of bug reports but also highlight its potential to significantly
advance automated bug triaging and software maintenance. This research introduces a severity
prediction tool named SevPredict.

Keywords: mining software repository; severity prediction; large language models

1. Introduction

In today’s digital age, software applications have gained immense popularity globally,
with millions of users interacting with them daily. These users often voice their feedback
and needs through various channels, including app stores, bug repositories, and developer
forums. This is a philosophy demonstrated in Mozilla principle, where it states that “The
heart of Mozilla is people”. Users often run into issues like crashes, hangs, or security
holes and may also ask for improvements like glossier user interfaces or new functionality.
Bug fixing is a crucial element in software development. Companies are using tools like
Bugzilla from Mozilla (https://bugzilla.mozilla.org/, accessed on 14 January 2024), GitHub
(https://www.atlassian.com/software/jira/bug-tracking, accessed on 14 January 2024),
and Jira (https://github.com/features, accessed on 14 January 2024) to keep an eye on
user feedback. This feedback is critical to improving software applications [1]. However, a
significant challenge arises from the overwhelming amount of bug reports and the limited
capacity of developers to address them [2]. Bugzilla processed around 300 bug reports/day

AI 2024, 5, 2739–2760. https://doi.org/10.3390/ai5040132 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai5040132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0002-7827-9721
https://orcid.org/0000-0002-7144-1925
https://orcid.org/0000-0002-0166-2239
https://bugzilla.mozilla.org/
https://www.atlassian.com/software/jira/bug-tracking
https://github.com/features
https://doi.org/10.3390/ai5040132
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai5040132?type=check_update&version=1

AI 2024, 5 2740

on average in 2013; however, Mozilla reported needing to triage 135 files a day [3,4]. The
breadth of these reports can become overwhelming for developers trying to process them.

The reliance on software applications has been on the rise over the past 10 years,
resulting in larger numbers of bug reports as well. Handling these reports manually is
laborious and monotonous, making it one of the major contributors to the high maintenance
cost, which is estimated to be around 60% of the software development life cycle (SDLC)
and is the expensive phase of the SDLC [5–7]. According to the Consortium for Information
and Software Quality (CISQ) (https://www.it-cisq.org/the-cost-of-poor-quality-software-
in-the-us-a-2022-report/, accessed on 14 January 2024), poor software cost the U.S econ-
omy $2.08 trillion in 2020 and 2.41 trillion in 2022. In such a context, automatic severity
prediction comes up as a key support, making it possible for developers to determine the
severity of bug reports that saves many resources, including time, money, and labor during
bug triaging.

• We introduce SevPredict, a novel severity prediction framework leveraging GPT-
2’s transformer architecture for automated bug report classification. Our approach
implements a fine-tuned language model that processes unstructured bug report text
to extract semantic features and contextual patterns relevant to severity assessment.

• Through comprehensive evaluation on bug repositor, SevPredict demonstrates statis-
tically significant improvements over state-of-the-art baselines: a 1.72% increase in
accuracy and 4.94% in Matthews Correlation Coefficient compared to BERT-SBR, and
more substantial gains of 10.66% in accuracy and 41.27% in MCC when compared to
traditional machine learning approaches.

• We provide SevPredict as an open-source tool that integrates seamlessly with existing
bug tracking systems. Researchers and practitioners can access our pre-trained models
and user-friendly APIs through our public repository at https://huggingface.co/
spaces/AliArshad/SeverityPrediction, accessed on 14 January 2024.

Together, these contributions significantly improve the efficiency and accuracy of bug
severity prediction processes in software development, promising substantial enhance-
ments in software quality and maintenance. The demonstrated performance of SevPredict
over existing approaches underscores its potential to revolutionize automated bug triaging
and streamline software maintenance workflows.

The rest of the paper is organized as follows: Section 2 reviews the theoretical back-
ground of severity prediction and examines current state-of-the-art approaches in this field.
Section 3 details our proposed methodology, describing the dataset and evaluation metrics
employed. Section 4 presents our experimental findings and provides a comprehensive
analysis of the results. Finally, Section 5 summarizes our conclusions and outlines directions
for future research.

2. Background

Automatically predicting severity has become a significant area of focus in software
development. Severity represents the degree of impact a bug has on the functionality of
a software system and is crucial for prioritizing bug resolution and planning bug fixing
activities. This section describes various methods for predicting the severity of bug reports.

Menzies et al. (2008) proposed SEVERIS, an automated approach to severity assess-
ment using text mining. However, the effectiveness of their approach was limited by
the size of the training dataset, which highlights the importance of larger datasets to
obtain reliable results [8]. Lamkanfi et al. (2010, 2011) focused on text information in
bug reports and utilized mining algorithms such as Naive Bayes, SVM, and Multinomial
Naive Bayes. Their results indicated that the prediction accuracy varied across different
software components [9,10]. Valdivia et al. (2014) proposed methods for predicting block-
ing bugs using models such as random forest classifiers and integrating structured and
free text data [11]. Sharma et al. (2015) proposed a dictionary of key terms for severity
prediction. Their approach solely focused on the summary of the bug report, potentially
overlooking key information in the detailed description [12]. Zhang et al. (2016) and

https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report/
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report/
https://huggingface.co/spaces/AliArshad/SeverityPrediction
https://huggingface.co/spaces/AliArshad/SeverityPrediction

AI 2024, 5 2741

Sabor et al. (2016, 2019) made significant contributions by employing topic modeling
and combining stack traces with categorical features to enhance the accuracy of severity
predictions [13–15]. Yang et al. (2018) introduced an emotion-based method, modifying
the Naive Bayes algorithm to incorporate emotional aspects for improved prediction
accuracy [16].

In recent years, several researchers have explored deep learning models and mul-
tiple attributes for severity prediction. These methods have shown improvements in
accuracy, precision, and recall, addressing some limitations of earlier approaches. Ra-
may et al. (2019) [17] used Senti4SD to calculate the sentiments score of the bug reports.
Sharma et al. (2019) developed models based on multiple attributes, demonstrating that
combinations of attributes like bug age and summary weight could yield better results [18].
Ali et al. (2024) [19] used BERT for the severity prediction of bug reports for the mainte-
nance of mobile applications and achieved better performance over other machine learning
and deep-learning models.

While previous studies have made significant contributions to bug severity prediction,
they face several limitations. Earlier works often relied on smaller datasets, limiting their
generalizability. Many approaches depended on manual feature engineering or simple text
analysis techniques, potentially missing complex patterns in bug reports. Some methods
focused solely on specific aspects such as summary text or emotional content, overlooking
other potentially crucial information. Additionally, traditional machine learning models
used in many studies may struggle to capture the nuanced contextual relationships present
in bug report text. In contrast, our approach leverages the capabilities of pretrained large
language models—specifically, GPT-2 for classification and BERT for sentiment analysis.
This methodology offers several advantages: it can potentially capture more complex
patterns and contextual information from bug reports, reduce the need for manual feature
engineering, and benefit from transfer learning to improve generalization across different
types of bug reports and software projects. By combining advanced text classification with
nuanced sentiment analysis, both based on pretrained models, our method aims to provide
a more comprehensive and accurate prediction of bug severity, addressing many of the
limitations found in previous works.

3. Methodology

The proposed method involves several key steps. Initially, we extracted and pre-
processed the dataset. Subsequently, we utilized BERT to calculate the sentiments of the
bug reports. Following that, the GPT-2 tokenizer was employed to convert the text into
embeddings, which were then fed into our classifier. Finally, the GPT-2 model underwent
fine-tuning using the feature vectors generated by the GPT-2 tokenizer. The details of each
step are as follows:

3.1. Dataset

In our experimental analysis, we utilized the datasets as detailed by [20]. This dataset
encompasses eight distinct projects: Eclipse Platform, Eclipse JDT, Eclipse CDT, Eclipse
PDE, Mozilla Core, Mozilla Firefox, Mozilla Thunderbird, and Mozilla Bugzilla. Each
dataset comprises bug reports, categorized into nine resolution statuses—fixed, remind,
incomplete, invalid, duplicate, not_eclipse, worksforme, later, and wontfix—alongside
severity labels such as blocker, critical, major, minor, normal, trivial, and enhancement.

The dataset’s composition in terms of bug reports for each project is as follows: Eclipse
Platform (24,775), Eclipse JDT (10,814), Eclipse CDT (5640), Eclipse PDE (5655), Mozilla
Core (74,292), Mozilla Firefox (69,879), Mozilla Thunderbird (19,237), and Mozilla Bugzilla
(4616), culminating in a total of 214,888 entries. This total includes all bug reports across
the spectrum of resolution statuses and severity labels. The detail of the dataset is given in
Table 1.

AI 2024, 5 2742

Table 1. Bug severity distribution across projects.

Project Blocker Critical Major Normal Minor Trivial
Bugzilla 275 (5.96%) 176 (3.81%) 506 (10.96%) 2478 (53.68%) 766 (16.59%) 415 (8.99%)

CDT 78 (1.38%) 166 (2.94%) 490 (8.69%) 4547 (80.62%) 275 (4.88%) 84 (1.49%)
Core 451 (0.61%) 10,542 (14.19%) 4243 (5.71%) 56,125 (75.55%) 2072 (2.79%) 859 (1.16%)

Firefox 233 (0.33%) 6603 (9.45%) 9486 (13.57%) 47,635 (68.17%) 4145 (5.93%) 1777 (2.54%)
JDT 94 (0.87%) 274 (2.53%) 1000 (9.25%) 8306 (76.81%) 781 (7.22%) 359 (3.32%)
PDE 47 (0.83%) 117 (2.07%) 476 (8.42%) 4693 (82.99%) 208 (3.68%) 114 (2.02%)

Platform 415 (1.68%) 989 (3.99%) 2718 (10.97%) 18,891 (76.25%) 1088 (4.39%) 674 (2.72%)
Thunderbird 65 (0.34%) 1894 (9.85%) 2982 (15.50%) 12,429 (64.61%) 1415 (7.36%) 452 (2.35%)

Binary Classification Statistics
Project Severe Bugs Percentage
Bugzilla 957/4616 20.7%

CDT 734/5640 13.0%
Core 15,236/74,292 20.5%

Firefox 16,322/69,879 23.4%
JDT 1368/10,814 12.7%
PDE 640/5655 11.3%

Platform 4122/24,775 16.6%
Thunderbird 4941/19,237 25.7%

Notes: Severe bugs include Blocker, Critical, and Major severity levels. Non-Severe bugs include Normal, Minor,
and Trivial severity levels. Numbers in parentheses show the percentage within each project, and percentages
may not sum to 100% due to rounding.

For our study, we refined the dataset to include only those bug reports labeled with a
resolution status of ‘fixed’. The details of all the bug reports with resolution status = fixed
are given in Table 2. We performed the severity prediction of the bug report task using a
binary categorization approach. A fine-grained approach utilizes a detailed set of distinct
labels for classification or analysis. In contrast, a coarse-grained approach involves broader
categorization by consolidating labels into fewer, more general classes. Based on our
literature review [21–23], we found that a fine-grained approach decreases the performance
of the classifier. Therefore, we adopted the coarse-grained approach, which has been used
in recent studies [21–24]. Specifically, we transformed the multilabel categories (Blocker,
Critical, Major, Normal, Minor, and Trivial) into a binary classification: Blocker, Critical,
and Major were grouped as ‘severe’, while Normal, Minor, and Trivial were grouped as
‘non-severe’.

This filtration resulted in a subset of 88,682 bug reports. This refined dataset, piv-
otal to our experimental framework, has been made publicly available on the Hugging-
Face (https://huggingface.co/, Verified: 10 September 2024) platform under the repository
name ’AliArshad/Bugzilla_Eclipse_Bug_Reports_Dataset’ (https://huggingface.co/datasets/
AliArshad/Bugzilla_Eclipse_Bug_Reports_Dataset, accessed on 14 January 2024). The details
of this dataset are presented in Tables 1 and 2. Excluding normal bug reports results in a
dataset of 16,512 bug reports, of which 11,307 are severe and 5205 are non-severe.

https://huggingface.co/
https://huggingface.co/datasets/AliArshad/Bugzilla_Eclipse_Bug_Reports_Dataset
https://huggingface.co/datasets/AliArshad/Bugzilla_Eclipse_Bug_Reports_Dataset

AI 2024, 5 2743

Table 2. Bug severity distribution of fixed bugs across projects.

Project Blocker Critical Major Normal Minor Trivial Total
Bugzilla 265 (10.90%) 100 (4.11%) 253 (10.40%) 1033 (42.48%) 492 (20.23%) 289 (11.88%) 2432

CDT 43 (1.01%) 89 (2.10%) 303 (7.15%) 3539 (83.51%) 194 (4.58%) 70 (1.65%) 4238
Core 334 (0.71%) 5834 (12.42%) 2043 (4.35%) 36,960 (78.70%) 1157 (2.46%) 633 (1.35%) 46,961

Firefox 122 (1.04%) 275 (2.34%) 670 (5.70%) 9787 (83.21%) 474 (4.03%) 434 (3.69%) 11,762
JDT 38 (0.64%) 127 (2.15%) 547 (9.25%) 4508 (76.23%) 400 (6.76%) 294 (4.97%) 5914
PDE 24 (0.60%) 81 (2.04%) 303 (7.64%) 3312 (83.47%) 155 (3.91%) 93 (2.34%) 3968

Platform 142 (1.02%) 418 (3.01%) 1412 (10.17%) 10,793 (77.75%) 580 (4.18%) 537 (3.87%) 13,882
Thunderbird 34 (0.92%) 145 (3.94%) 287 (7.80%) 2842 (77.27%) 222 (6.04%) 148 (4.02%) 3678

Binary Classification Statistics
Project Severe Bugs Percentage
Bugzilla 618/2432 25.4%

CDT 435/4238 10.3%
Core 8211/46,961 17.5%

Firefox 1067/11,762 9.1%
JDT 712/5914 12.0%
PDE 408/3968 10.3%

Platform 1972/13,882 14.2%
Thunderbird 466/3678 12.7%

Notes: Severe bugs include Blocker, Critical, and Major severity levels. Numbers in parentheses show the
percentage within each project, and percentages may not sum to 100% due to rounding.

3.2. Sentiment Calculation

The sentiments are usually used to describe whether a given statement is positive,
negative, or neutral. There are many use cases of sentiment calculation, such as in movie
reviews and application reviews. Researchers in the past, including [19,22,25], have shown
that adding sentiments to a classifier can help increase the performance of the classifier in
the domain of severity/priority prediction. The hypothesis behind it is that bug reports
with negative sentiments show urgency, and those are mostly severe, while bug reports
with positive sentiments are non-severe and require no urgency. To calculate the sentiments
of the bug reports, there are several tools available such as SentiCR [26], DEVA [27],
SentiWordNet [28], and Senti4SD [29]. Many researchers have recently used BERT [30] for
the sentiment calculation such as [31,32]. Researchers in the field of Severity Prediction
have only used SentiWordNet and Senti4SD, and they missed experimenting with BERT.
The sentiment calculation tools used by researchers for Severity Prediction are mentioned
in Table 3. We experimented using SentiWordNet, Senti4SD, and BERT. BERT outperformed
all the existing tools available for severity prediction. So, we chose BERT for sentiment
calculation for the proposed approach. One reason it outperforms others might be due to
contextual and semantic embeddings that other tools miss.

Table 3. Researches and corresponding sentiment calculation tools.

Researches Sentiment Calculation Tool
Ali et al. (2024) [19] SentiWordNet

M. A. Arshad et al. (2021) [32] Senti4SD
Qasim Umar et al. (2019) [22] Senti4SD

Ramay et al. (2019) [17] Senti4SD
SevPredict (Proposed) BERT

To calculate the sentiments for the bug reports using BERT, we followed the following
steps: First, we imported essential libraries to facilitate the execution of sentiment analysis
on textual data. These include the pandas library for efficient data handling and the pipeline

AI 2024, 5 2744

module from the Hugging Face Transformers library for easy utilization of pretrained BERT
models. We used the default pipeline, sentiment_pipeline = pipeline(“sentiment-analysis”,
which uses the “nlptown/bert-base-multilingual-uncased-sentiment” model for sentiment
calculation. This model is trained on multilingual data and can perform sentiment analysis
on text in various languages. The output from the sentiment prediction model is Positive
or Negative, with its score as shown in Table 4.

Table 4. Bug reports sentiment sample.

Bug Report Sentiment Confidence
Typo in error message NEGATIVE 0.9992406368

Cookies are incorrectly detained when logging out NEGATIVE 0.9980615973
An arrayref is always “true” POSITIVE 0.9996670484
New charts feature crashes NEGATIVE 0.9993322492

We ignored the sentiments score, used the sentiment values, and converted them to
binary—1 for positive and 0 for negative. Then, we incorporated these values with bug
summary embeddings to fine-tune our classifier.

The dataset with sentiment scores calculated using SentiWordNet, Senti4SD, and
BERT is available on HuggingFace with the name “Bug_Reports_with_Sentiments” (https:
//huggingface.co/datasets/AliArshad/Bug_Reports_with_Sentiments, accessed on 14
January 2024).

3.3. SevPredict

The SevPredict methodology presents a novel approach to bug severity prediction
through a comprehensive pipeline that integrates sentiment analysis with traditional bug
report processing. The architecture comprises five primary components: bug report prepro-
cessing, sentiment preprocessing, sentiment extraction, severity prediction, and inference
deployment. The pipeline initiates with the ingestion of JSON-formatted bug reports,
which undergo dual-stream processing. In the primary stream, the Bug Reports Prepro-
cessing Block implements a sequential transformation including cleaning, tokenization,
encoding, padding, and truncation operations to standardize the textual data. Concurrently,
the Sentiments Preprocessing Block processes the emotional context through systematic
data cleaning, lower case conversion, and special character removal, ensuring optimal text
normalization for sentiment analysis. A distinctive feature of our methodology is the Sen-
timents Extractor Module, which employs the bert-base-multilingual-uncased-sentiment
(BBMLU) pipeline. This sophisticated pipeline processes the preprocessed textual data,
effectively capturing the nuanced sentiment patterns within bug reports. The extracted
sentiment scores are then integrated with the processed dataset through a fusion mech-
anism, creating a rich, multi-dimensional feature representation. The Severity Predictor
component implements a cascaded architecture comprising four essential stages: Masked
Multihead Self Attention, Layer Normalization, Feed Forward, and Layer Normalization.
This component leverages both training and testing datasets through a structured data split
mechanism, ensuring robust model validation. The predictor’s architecture is specifically
designed to handle the complex interplay between textual features and sentiment indica-
tors, enabling more accurate severity classifications. The methodology culminates in an
Inference Engine that operationalizes the trained model through a user-centric interface.
This component facilitates real-time severity predictions by processing new bug report data
through the established pipeline, presenting results in an interpretable format. The entire
framework demonstrates a holistic approach to bug severity prediction, incorporating both
syntactic and semantic aspects of bug reports while maintaining practical deployability.
This integrated approach significantly advances the state-of-the-art in automated bug sever-
ity prediction by considering not only the technical content of bug reports but also their
underlying sentiment context, potentially leading to more accurate and nuanced severity

https://huggingface.co/datasets/AliArshad/Bug_Reports_with_Sentiments
https://huggingface.co/datasets/AliArshad/Bug_Reports_with_Sentiments

AI 2024, 5 2745

assessments in software development environments. The graphical representation of the
methodology is presented in Figure 1.

Overview of GPT-2

GPT, known for its efficacy in natural language processing (NLP), plays a pivotal
role in our methodology. GPT-2, leveraging transfer learning, is pretrained on a vast
corpus of text data, which equips it with a nuanced understanding of language patterns
and structures.

• Computational Resources: The study was conducted using Google Colab, leveraging
its cloud-based environment. The computational hardware included a Tesla T4 GPU,
which provided the necessary computational power for training and evaluating the
GPT-2 as well as other models described in this research paper.

• GPT-2 Model Configuration and Training: GPT-2 was the primary model for predicting
the severity of bugs in software projects. The methodology incorporated the following
key steps:

Figure 1. Comprehensive architecture of the SevPredict methodology for bug severity prediction.
The pipeline consists of the following: (a) Bug Reports Preprocessing Block implementing cleaning,
tokenization, encoding, padding, and truncation; (b) Sentiments Preprocessing Block handling text
normalization; (c) Sentiments Extractor Module utilizing nlptown/bert-base-multilingual-uncased-
sentiment for sentiment analysis; (d) Severity Predictor incorporating multi-layer prediction com-
ponents; (e) Inference Engine for real-time severity assessment. The architecture demonstrates the
integration of both textual and sentiment features through a systematic data flow, enabling compre-
hensive bug severity prediction.

3.4. Dataset Preparation and Preprocessing

This section details our comprehensive approach to preparing and processing bug
reports for machine learning analysis. To ensure reproducibility and clarity, we demonstrate
our methodology using bug report #330,186 “Crash when changing the status of a bug

AI 2024, 5 2746

which has dependencies” as a representative example. Our pipeline encompasses several
critical stages—text cleaning, tokenization, encoding, and dataset creation—each designed
to optimize the data for our neural network model.

3.4.1. Text Cleaning and Preprocessing

The initial stage of our pipeline focuses on data cleaning while preserving essential
semantic information. Bug reports often contain various special characters, formatting
elements, and inconsistencies that could decrease model performance. To address this,
we developed a systematic cleaning process using the GPT-2 tokenizer from the Hugging
Face’s Transformers library (Listing 1). This choice was motivated by GPT-2’s robust
tokenization capabilities and its proven effectiveness in handling technical text.

Our preprocessing strategy specifically targets special characters while maintaining
alphanumeric content and spaces, ensuring that critical technical information remains
intact. We introduced special padding tokens (‘[PAD]’) to standardize input lengths, which
is crucial for batch processing in neural networks. The implementation is straightforward
yet effective (Listing 2):

Listing 1. Text cleaning implementation.

Preserve alphanumeric characters and spaces only
return re.sub(r’[^A-Za-z0 -9]+’, ’’, text)

Listing 2. Tokenizer initialization.

tokenizer = GPT2Tokenizer.from_pretrained(’gpt2’)
tokenizer.add_special_tokens ({’pad_token ’: ’[PAD]’})

3.4.2. Tokenization and Encoding Process

The tokenization and encoding phase transforms the cleaned text into a format suitable
for neural network processing. This multi-step process is crucial for maintaining semantic
relationships while converting text into numerical representations that our model can
process efficiently.

1. Tokenization

The first step employs the GPT-2 tokenizer, which breaks down text into meaningful
subword units. This approach offers a balance between character-level and word-level
tokenization, allowing for effective handling of technical terminology and rare words
common in bug reports:

2. Parameter Definition

We carefully selected parameters to balance computational efficiency with model
performance (Listing 3):

Listing 3. Parameter configuration.

max_len = 100 # Maximum sequence length
pad_token_id = tokenizer.pad_token_id

The maximum sequence length of 100 was chosen based on empirical analysis of our
bug report corpus, providing sufficient context while maintaining computational efficiency.

3. Text Encoding

The encoding process converts tokenized text into numerical tensors suitable for model
input (Listing 4):

AI 2024, 5 2747

Listing 4. Text encoding process.

train_encodings = tokenizer(train_texts ,
truncation=True ,
padding=True ,
max_length=max_len ,
return_tensors=’pt’)

To illustrate the complete transformation process, we present the step-by-step changes
to our example bug report:

1. After Tokenization: This stage shows how the text is broken into subword units, with
‘Ġ’ indicating word boundaries:

[’Crash’, ’Ġwhen’, ’Ġchanging’, ’Ġthe’, ’Ġstatus’, ’Ġof’, ’Ġa’,
’Ġbug’, ’Ġwhich’, ’Ġhas’, ’Ġdependencies’]

2. After Encoding: The tokenized text is converted into numerical indices corresponding
to the model’s vocabulary:

[47598 , 618, 5609, 262, 3722, 286, 257, 5434, 543, 468, 20086]

3. After Padding and Truncation: Sequences are standardized to the specified maximum
length:

[47598 , 618, 5609, 262, 3722, 286, 257, 5434, 543, 468, 20086 ,
None , None , ..., None]

4. Attention Masks: Binary masks are created to distinguish actual tokens from padding:

[1, 1, 1, 1, ..., 0, 0, 0]

3.4.3. Dataset Creation

To efficiently manage the processed data during training and evaluation, we imple-
mented a custom PyTorch dataset class. This implementation facilitates batch processing
and ensures proper handling of both features and labels (Listing 5):

Listing 5. Custom dataset implementation.

class CustomDataset(torch.utils.data.Dataset):
def __init__(self , encodings , labels):

self.encodings = encodings
self.labels = labels

def __getitem__(self , idx):
item = {key: val[idx] for key , val in self.encodings.items()}
item[’labels ’] = torch.tensor(self.labels[idx])
return item

def __len__(self):
return len(self.labels)

3.4.4. Model Configuration and Training Setup

For our classification task, we utilized a pretrained GPT-2 model adapted for sequence
classification. The model was initialized with support for binary classification (Listing 6):

Listing 6. Model initialization.

1 GPT2ForSequenceClassification.from_pretrained(’gpt2’, num_labels =2)

AI 2024, 5 2748

The fine-tuning process was carefully configured to optimize model performance
while preventing overfitting. Table 5 presents the comprehensive configuration parameters
used during model fine-tuning:

Table 5. GPT-2 fine-tuning configuration.

Parameter Value
Computational Environment Google Colab with Tesla T4 GPU
Maximum Sequence Length 100
Batch Size 32
Number of Epochs 5
Model GPT2ForSequenceClassification
Number of Labels 2
Optimizer AdamW
Learning Rate Scheduler Linear with Warmup
Warmup Steps 500
Weight Decay 0.01

The optimization strategy employed the AdamW optimizer, selected for its effective-
ness in training transformer-based models. We implemented a linear warmup schedule
with weight decay for regularization, utilizing the Hugging Face’s Trainer API. This con-
figuration was designed to balance training stability with computational efficiency while
minimizing the risk of overfitting. The warmup period of 500 steps allows the model to
gradually adapt to the task-specific features of bug report classification.

3.5. Experimental Setup

To evaluate model generalization across naturally grouped data, we employed the
Leave-One-Group-Out (LOGO) cross-validation strategy, a specialized variant of k-fold
cross-validation [33]. This approach is particularly valuable for our study as our dataset
contains bug reports from different software projects and time periods [34]. In our imple-
mentation, LOGO cross-validation systematically partitions the dataset by keeping each
project’s data together as a distinct group. The process begins with preparing the training
data (apptrain), which include all bug reports except those from a designated test group
(groupi). We then train multiple models, including large language models (GPT-2, XLNet,
Electra, GPT Neo 1.7b, BERT, and ERNIE) and traditional machine learning approaches
(CNN, Multinomial Naive Bayes, Random Forest, and Logistic Regression) using this
training set. Each model’s performance is subsequently evaluated on the held-out test
group (groupi). This process is repeated iteratively, ensuring each group serves as the test
set exactly once while the remaining groups form the training set.

To calculate the overall performance, we compute the LOGO Cross-Validation (LOGO
CV) metric as follows:

LOGO CV =
1
N

N

∑
i=1

Model Performance on groupi (1)

where N represents the total number of groups, and Model Performance on groupi indicates
the performance metric for the model trained on all groups except i and tested on group i.
This comprehensive evaluation approach ensures a thorough assessment of our models’
ability to predict bug severity across diverse software projects, providing insights into their
real-world generalization capabilities.

3.6. Performance Metrics

To comprehensively evaluate the effectiveness of the GPT-2 model in bug prediction,
we employ a suite of established classification performance metrics [35]. Each metric

AI 2024, 5 2749

offers unique insights into different aspects of model performance, particularly crucial for
real-world applications where distinguishing between bug and non-bug reports presents
inherent challenges.

The foundation of our evaluation begins with accuracy, which measures the overall
proportion of correct predictions in bug identification tasks [36]. Accuracy is computed as
the ratio of correctly predicted observations (true positives and true negatives) to the total
number of bug reports:

Accuracy =
True Positives (TP) + True Negatives (TN)

Total Bug Reports
(2)

While accuracy provides a general overview, we incorporate precision and recall
metrics for a more nuanced evaluation [37]. Precision quantifies the accuracy of bug
predictions, indicating the proportion of correctly identified bugs among all predicted bugs:

Precision =
TP

TP + False Positives (FP)
(3)

Recall complements precision by measuring the model’s ability to identify all actual
bugs in the dataset:

Recall =
TP

TP + False Negatives (FN)
(4)

To balance the trade-off between precision and recall, we utilize the F1-Score [38],
which represents their harmonic mean:

F1-Score =
2 × Precision × Recall

Precision + Recall
(5)

Finally, we incorporate the Matthews Correlation Coefficient (MCC) [39], which is
particularly valuable for our bug prediction task due to the potential imbalance between
bug and non-bug reports in software projects:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

This comprehensive set of metrics enables us to evaluate our model’s performance
from multiple perspectives, ensuring a thorough assessment of GPT-2’s capability in
distinguishing between bug and non-bug reports across different software projects:

• True Positives (TP): Correctly identified bug reports;
• True Negatives (TN): Correctly identified non-bug reports;
• False Positives (FP): Non-bug reports incorrectly classified as bugs;
• False Negatives (FN): Bug reports incorrectly classified as non-bugs.

4. Experiments Results and Evaluation

This section presents a comprehensive evaluation of our proposed approach for bug
severity prediction. We begin by outlining six research questions that guide our investi-
gation, followed by detailed analyses of experimental results and their implications. Our
evaluation framework examines multiple aspects of the model’s performance, from basic
effectiveness to comparative analysis against state-of-the-art approaches.

4.1. Research Questions

To systematically evaluate our approach, we formulated the following research questions:

RQ1. What is the performance of the GPT-2 base model in predicting bug severity?
RQ2. What advantages does GPT-2’s transformer architecture provide for bug severity

prediction compared to traditional machine learning models?

AI 2024, 5 2750

RQ3. How does our SevPredict model compare to state-of-the-art approaches [17,19]
approaches across key metrics?

RQ4. How do different validation strategies impact model performance?
RQ5. What impact does sentiment analysis have on bug severity prediction accuracy?
RQ6. How do different data balancing strategies affect model performance?

4.2. Base Model Performance (RQ1)

Our initial evaluation focused on assessing GPT-2’s performance using LOGO cross-
validation across various software projects. Table 6 presents the results of this analysis.

Table 6. Comprehensive analysis of GPT-2 performance across different software projects.

Project Confusion Matrix and Distribution Performance Metrics

Bugzilla

Actual Condition
Predicted Bug Non-Bug

Bug 330 (31.8%) 150 (14.4%)
Non-Bug 180 (17.3%) 379 (36.5%)

Accuracy 68.2%
Precision 71.6%
Recall 67.8%
F1-score 69.7%
MCC 0.365

CDT

Actual Condition
Predicted Bug Non-Bug

Bug 170 (26.2%) 91 (14.0%)
Non-Bug 83 (12.8%) 304 (46.9%)

Accuracy 73.2%
Precision 77.0%
Recall 78.6%
F1-score 77.8%
MCC 0.439

Core

Actual Condition
Predicted Bug Non-Bug

Bug 1199 (13.7%) 525 (6.0%)
Non-Bug 592 (6.8%) 6416 (73.5%)

Accuracy 87.2%
Precision 92.4%
Recall 91.6%
F1-score 92.0%
MCC 0.602

Firefox

Actual Condition
Predicted Bug Non-Bug

Bug 626 (37.3%) 214 (12.7%)
Non-Bug 167 (9.9%) 672 (40.0%)

Accuracy 77.3%
Precision 75.9%
Recall 80.1%
F1-score 77.9%
MCC 0.547

JDT

Actual Condition
Predicted Bug Non-Bug

Bug 466 (40.5%) 134 (11.6%)
Non-Bug 152 (13.2%) 399 (34.7%)

Accuracy 75.2%
Precision 74.9%
Recall 72.4%
F1-score 73.6%
MCC 0.502

Platform

Actual Condition
Predicted Bug Non-Bug

Bug 717 (27.9%) 266 (10.4%)
Non-Bug 334 (13.0%) 1248 (48.7%)

Accuracy 76.6%
Precision 82.4%
Recall 78.9%
F1-score 80.6%
MCC 0.512

Thunderbird

Actual Condition
Predicted Bug Non-Bug

Bug 221 (31.7%) 96 (13.8%)
Non-Bug 74 (10.6%) 307 (44.0%)

Accuracy 75.6%
Precision 76.2%
Recall 80.6%
F1-score 78.3%
MCC 0.507

Average Performance: Accuracy: 76.2%, Precision: 78.6%, Recall: 78.6%, F1-score: 78.6%, MCC: 0.496
Notes:
1. Confusion Matrix Interpretation:

True Positive (Bug/Bug): Correctly identified bugs;
False Positive (Bug/Non-Bug): Incorrectly classified as bugs;
False Negative (Non-Bug/Bug): Missed bugs;
True Negative (Non-Bug/Non-Bug): Correctly identified non-bugs.

2. Percentages show the proportion of each cell in the project’s total dataset.
3. Best performance metrics across projects are highlighted in bold.

AI 2024, 5 2751

The experimental results demonstrate varying performance across different projects,
with substantial differences in both accuracy and the distribution of prediction outcomes.
The Core project exhibited exceptional performance, achieving the highest scores across
all metrics with an accuracy of 0.872 and an F1-score of 0.920. This superior performance
is evidenced by its confusion matrix values, showing 1199 true positives and 6416 true
negatives out of 8732 total cases, indicating strong predictive power for both bug and
non-bug reports. The relatively low false positive (525) and false negative (592) rates,
despite having the largest dataset, further underscore the model’s reliability for this project.

In contrast, the Bugzilla project showed relatively lower performance metrics (accu-
racy: 0.682; F1-score: 0.697), with a more balanced distribution in its confusion matrix
(330 true positives, 379 true negatives, 150 false positives, and 180 false negatives). This
performance disparity suggests that project-specific characteristics, such as reporting prac-
tices and bug description quality, significantly influence prediction accuracy. The higher
proportion of misclassifications in Bugzilla (330 out of 1039 total cases) compared to Core
(1117 out of 8732) indicates potential inconsistencies in bug report formatting or content.

The average performance across all projects remained robust, with consistent scores
of approximately 0.786 across precision, recall, and F1-score metrics. Notably, projects
with larger datasets (Core: 8732 cases; Platform: 2565 cases) generally achieved better
performance than smaller projects (CDT: 648 cases; Thunderbird: 698 cases), suggesting
that model performance may benefit from larger training datasets. The confusion matrices
reveal that most projects maintain a reasonable balance between false positives and false
negatives, indicating that the model does not systematically favor either classification.

4.3. Model Architecture Comparison (RQ2)

To understand the advantages of GPT-2’s transformer architecture, we conducted a
comprehensive comparison against both traditional machine learning models and other
transformer-based approaches. The comparative analysis included XLNet, Electra, BERT,
ERNIE, CNN, MNB, RF, and LR models. Table 7 presents the results of this analysis.

Table 7. Performance comparison across model architectures.

Model Acc. Prec. Rec. F1 MCC
GPT-2 0.762 0.786 0.786 0.786 0.496
XLNet 0.759 0.790 0.780 0.784 0.495
Electra 0.759 0.802 0.756 0.778 0.495
BERT 0.748 0.780 0.764 0.770 0.473
ERNIE 0.753 0.783 0.771 0.775 0.482
CNN 0.701 0.734 0.731 0.730 0.363
MNB 0.697 0.704 0.697 0.692 0.363
RF 0.695 0.700 0.695 0.695 0.360
LR 0.707 0.713 0.707 0.703 0.382

The results reveal a clear superiority of transformer-based architectures over tradi-
tional machine learning approaches. GPT-2 achieved the highest accuracy (0.762) and
F1-score (0.786), though the performance differences among transformer models were rela-
tively modest. The traditional models, including CNN, MNB, RF, and LR, demonstrated
significantly lower performance across all metrics, with accuracy scores approximately
0.06–0.07 lower than transformer-based models. This performance gap underscores the
importance of the transformer architecture’s ability to capture complex textual patterns
and contextual relationships in bug reports.

4.4. Comparison with State-of-the-Art (RQ3)

To evaluate SevPredict’s effectiveness against existing approaches, we conducted
comprehensive experiments comparing it with BERT-SBR [19] and Ramay et al. [17].
Tables 8–11 present our detailed experimental results.

AI 2024, 5 2752

Table 8. Performance of SevPredict.

Project Confusion Matrix and Distribution Performance Metrics

Bugzilla

Actual Condition
Predicted Bug Non-Bug

Bug 329 (31.7%) 151 (14.5%)
Non-Bug 171 (16.5%) 388 (37.3%)

Accuracy 66.3%
Precision 70.8%
Recall 64.2%
F1-score 67.3%
MCC 0.324

CDT

Actual Condition
Predicted Bug Non-Bug

Bug 178 (27.5%) 83 (12.8%)
Non-Bug 78 (12.0%) 309 (47.7%)

Accuracy 72.9%
Precision 78.7%
Recall 75.8%
F1-score 77.2%
MCC 0.436

Core

Actual Condition
Predicted Bug Non-Bug

Bug 1252 (14.3%) 472 (5.4%)
Non-Bug 758 (8.7%) 6250 (71.6%)

Accuracy 87.8%
Precision 93.5%
Recall 91.2%
F1-score 92.3%
MCC 0.612

Firefox

Actual Condition
Predicted Bug Non-Bug

Bug 608 (36.2%) 232 (13.8%)
Non-Bug 175 (10.4%) 664 (39.5%)

Accuracy 78.8%
Precision 77.1%
Recall 82.5%
F1-score 79.7%
MCC 0.575

JDT

Actual Condition
Predicted Bug Non-Bug

Bug 456 (39.6%) 144 (12.5%)
Non-Bug 153 (13.3%) 398 (34.6%)

Accuracy 78.7%
Precision 77.5%
Recall 78.6%
F1-score 78.0%
MCC 0.571

Platform

Actual Condition
Predicted Bug Non-Bug

Bug 733 (28.6%) 250 (9.7%)
Non-Bug 362 (14.1%) 1220 (47.6%)

Accuracy 77.2%
Precision 84.7%
Recall 77.6%
F1-score 81.0%
MCC 0.527

Thunderbird

Actual Condition
Predicted Bug Non-Bug

Bug 226 (32.4%) 91 (13.0%)
Non-Bug 62 (8.9%) 319 (45.7%)

Accuracy 76.2%
Precision 75.9%
Recall 84.1%
F1-score 79.7%
MCC 0.516

Average Performance: Accuracy: 76.8%, Precision: 79.7%, Recall: 78.4%, F1-score: 79.0%, MCC: 0.510
Notes:
1. Confusion Matrix Interpretation:

True Positive (Bug/Bug): Correctly identified bugs;
False Positive (Bug/Non-Bug): Incorrectly classified as bugs;
False Negative (Non-Bug/Bug): Missed bugs;
True Negative (Non-Bug/Non-Bug): Correctly identified non-bugs.

2. Dataset sizes: Bugzilla (1039), CDT (648), Core (8732), Firefox (1679), JDT (1151), Platform (2565), Thunderbird (698).
3. Best performance metrics across projects are highlighted in bold.

Our experimental evaluation reveals that SevPredict significantly advances the state-
of-the-art in bug severity prediction. The model achieves an overall accuracy of 76.8%,
representing a notable improvement of 1.3 percentage points over BERT-SBR (75.5%) and
7.4 percentage points over Ramay et al.’s approach (69.4%). This enhancement in accuracy
is accompanied by superior performance across other critical metrics, with SevPredict
achieving a precision of 79.7% compared to BERT-SBR’s 78.0% and Ramay et al.’s 72.2%.

AI 2024, 5 2753

Table 9. Comprehensive analysis of BERT-SBR [19] performance across different software projects.

Project Confusion Matrix and Distribution Performance Metrics

Bugzilla

Actual Condition
Predicted Bug Non-Bug

Bug 320 (30.8%) 160 (15.4%)
Non-Bug 355 (34.2%) 204 (19.6%)

Accuracy 65.0%
Precision 68.9%
Recall 63.5%
F1-score 66.1%
MCC 0.301

CDT

Actual Condition
Predicted Bug Non-Bug

Bug 173 (26.7%) 88 (13.6%)
Non-Bug 96 (14.8%) 291 (44.9%)

Accuracy 71.6%
Precision 76.8%
Recall 75.2%
F1-score 76.0%
MCC 0.413

Core

Actual Condition
Predicted Bug Non-Bug

Bug 1214 (13.9%) 510 (5.8%)
Non-Bug 670 (7.7%) 6338 (72.6%)

Accuracy 86.5%
Precision 92.6%
Recall 90.4%
F1-score 91.5%
MCC 0.589

Firefox

Actual Condition
Predicted Bug Non-Bug

Bug 614 (36.6%) 226 (13.5%)
Non-Bug 152 (9.1%) 687 (40.9%)

Accuracy 77.5%
Precision 75.2%
Recall 81.9%
F1-score 78.4%
MCC 0.552

JDT

Actual Condition
Predicted Bug Non-Bug

Bug 461 (40.1%) 139 (12.1%)
Non-Bug 121 (10.5%) 430 (37.4%)

Accuracy 77.4%
Precision 75.6%
Recall 78.0%
F1-score 76.8%
MCC 0.548

Platform

Actual Condition
Predicted Bug Non-Bug

Bug 730 (28.5%) 253 (9.9%)
Non-Bug 364 (14.2%) 1218 (47.5%)

Accuracy 75.9%
Precision 82.8%
Recall 77.0%
F1-score 79.8%
MCC 0.504

Thunderbird

Actual Condition
Predicted Bug Non-Bug

Bug 205 (29.4%) 112 (16.0%)
Non-Bug 63 (9.0%) 318 (45.6%)

Accuracy 74.9%
Precision 74.0%
Recall 83.5%
F1-score 78.4%
MCC 0.493

Average Performance: Accuracy: 75.5%, Precision: 78.0%, Recall: 78.5%, F1-score: 78.1%, MCC: 0.486
Notes:
1. Confusion Matrix Interpretation:

True Positive (Bug/Bug): Correctly identified bugs;
False Positive (Bug/Non-Bug): Incorrectly classified as bugs;
False Negative (Non-Bug/Bug): Missed bugs;
True Negative (Non-Bug/Non-Bug): Correctly identified non-bugs.

2. Dataset sizes: Bugzilla (1039), CDT (648), Core (8732), Firefox (1679), JDT (1151), Platform (2565), Thunderbird (698).
3. Best performance metrics across projects are highlighted in bold.

The model’s effectiveness is particularly evident in its performance on the Core project,
which represents the largest dataset with 8732 samples. In this context, SevPredict achieves
exceptional results with an accuracy of 87.8%, precision of 93.5%, and an F1-score of 92.3%.
These metrics significantly surpass both baseline approaches, demonstrating the model’s
capability to handle large-scale projects effectively.

A crucial aspect of SevPredict’s performance is its ability to maintain consistent results
across projects of varying sizes and characteristics. In the Firefox project, for instance, the
model achieves 78.8% accuracy while maintaining a balanced precision–recall trade-off.
Similarly, for the JDT project, SevPredict demonstrates robust performance with 78.7%
accuracy and consistent metric values across different evaluation criteria.

AI 2024, 5 2754

Table 10. Comprehensive analysis of Ramay et al.’s [17] performance across different soft-
ware projects.

Project Confusion Matrix and Distribution Performance Metrics

Bugzilla
Actual Condition

Predicted Bug Non-Bug
Bug 231 (22.2%) 249 (24.0%)

Non-Bug 88 (8.5%) 471 (45.3%)

Accuracy 67.6%
Precision 65.4%
Recall 84.3%
F1-score 73.7%
MCC 0.350

CDT
Actual Condition

Predicted Bug Non-Bug
Bug 172 (26.5%) 89 (13.7%)

Non-Bug 135 (20.8%) 252 (38.9%)

Accuracy 65.4%
Precision 73.9%
Recall 65.1%
F1-score 69.2%
MCC 0.305

Core
Actual Condition

Predicted Bug Non-Bug
Bug 1109 (12.7%) 615 (7.0%)

Non-Bug 1421 (16.3%) 5587 (64.0%)

Accuracy 76.7%
Precision 90.1%
Recall 79.7%
F1-score 84.6%
MCC 0.387

Firefox
Actual Condition

Predicted Bug Non-Bug
Bug 515 (30.7%) 325 (19.4%)

Non-Bug 217 (12.9%) 622 (37.0%)

Accuracy 67.7%
Precision 65.7%
Recall 74.1%
F1-score 69.7%
MCC 0.357

JDT
Actual Condition

Predicted Bug Non-Bug
Bug 362 (31.5%) 238 (20.7%)

Non-Bug 142 (12.3%) 409 (35.5%)

Accuracy 67.0%
Precision 63.2%
Recall 74.2%
F1-score 68.3%
MCC 0.348

Platform
Actual Condition

Predicted Bug Non-Bug
Bug 613 (23.9%) 370 (14.4%)

Non-Bug 360 (14.0%) 1222 (47.6%)

Accuracy 71.5%
Precision 76.8%
Recall 77.2%
F1-score 77.0%
MCC 0.397

Thunderbird
Actual Condition

Predicted Bug Non-Bug
Bug 195 (27.9%) 122 (17.5%)

Non-Bug 90 (12.9%) 291 (41.7%)

Accuracy 69.6%
Precision 70.5%
Recall 76.4%
F1-score 73.3%
MCC 0.384

Average Performance: Accuracy: 69.4%, Precision: 72.2%, Recall: 75.9%, F1-score: 73.7%, MCC: 0.361
Notes:
1. Confusion Matrix Interpretation:

True Positive (Bug/Bug): Correctly identified bugs;
False Positive (Bug/Non-Bug): Incorrectly classified as bugs;
False Negative (Non-Bug/Bug): Missed bugs;
True Negative (Non-Bug/Non-Bug): Correctly identified non-bugs.

2. Dataset sizes: Bugzilla (1039), CDT (648), Core (8732), Firefox (1679), JDT (1151), Platform (2565), Thunderbird (698).
3. Best performance metrics across projects are highlighted in bold.

The Matthews Correlation Coefficient (MCC) of 0.510 achieved by SevPredict is partic-
ularly noteworthy as it represents a substantial improvement over both BERT-SBR (0.486)
and Ramay et al. (0.361). This enhancement in MCC is especially significant as it indicates
superior performance in handling imbalanced datasets, a common challenge in bug severity
prediction tasks.

AI 2024, 5 2755

Table 11. Comparison with state-of-the-art approaches.

Model Acc. Prec. Rec. F1 MCC
SevPredict 0.768 0.797 0.784 0.790 0.510
BERT-SBR [19] 0.755 0.780 0.785 0.781 0.486
Ramay et al. [17] 0.694 0.722 0.759 0.737 0.361
Improvement vs. BERT-SBR 1 +1.72% +2.18% −0.13% +1.15% +4.94%
Improvement vs. Ramay 2 +10.66% +10.39% +3.29% +7.19% +41.27%

1 Percentage improvement of SevPredict over [19]. 2 Percentage improvement of SevPredict over [17]. Best perfor-
mance metrics across approaches are highlighted in bold.

Analysis of the confusion matrices reveals important insights into SevPredict’s opera-
tional characteristics. The model demonstrates an improved ability to reduce false positives
across projects, particularly evident in the Core project where it achieves 456 false positives
compared to 510 in BERT-SBR and 615 in Ramay et al.’s approach. This reduction in false
positives is coupled with enhanced true positive detection rates, indicating better overall
bug severity identification capability.

The performance improvements extend to smaller projects as well. In the CDT project,
with only 648 samples, SevPredict maintains robust performance with 72.9% accuracy and
an MCC of 0.436, demonstrating good generalization capabilities regardless of dataset size.
This consistent performance across diverse project sizes suggests that our architectural
choices and training methodology contribute to a more robust and generalizable model.

The balanced distribution between false positives and false negatives in SevPredict’s
results indicates reduced prediction bias, a critical factor for practical deployment in
software maintenance workflows. This balance is particularly important as it suggests that
the model does not unduly favor either type of error, providing more reliable predictions
across different use cases.

In addressing our research question, the experimental results conclusively demon-
strate SevPredict’s superior performance in bug severity prediction compared to existing
state-of-the-art approaches. The improvements are consistent across multiple evaluation
metrics, different project sizes, and various aspects of prediction quality. The model’s
ability to maintain high performance across diverse projects while reducing false positives
and achieving better true positive detection rates validates our architectural choices and
training methodology.

These findings suggest that SevPredict represents a significant advancement in au-
tomated bug severity prediction, offering both improved accuracy and practical appli-
cability across different software project contexts. The consistent performance improve-
ments and balanced error distributions make it a more reliable solution for real-world
software maintenance scenarios, potentially contributing to more efficient bug triaging and
resolution processes.

4.5. Validation Strategy Impact (RQ3)

We examined the influence of different validation strategies on model performance,
comparing LOGO cross-validation against various training–testing splits. Table 12 presents
the results of this analysis.

Table 12. Performance across validation strategies. The bold values in the table represent the best
results among all validation strategies.

Strategy Acc. Prec. Rec. F1 MCC
90:10% 0.851 0.878 0.908 0.893 0.652
80:20% 0.845 0.869 0.909 0.889 0.638
70:30% 0.848 0.871 0.910 0.890 0.642
LOGO 0.762 0.786 0.786 0.786 0.496

AI 2024, 5 2756

The analysis reveals that validation strategy selection significantly impacts reported
performance metrics. The 90:10% split achieved the highest overall performance, with an
accuracy of 0.851 and an F1-score of 0.893. However, LOGO validation, while showing
lower absolute performance, likely provides more realistic estimates of real-world perfor-
mance by testing on completely separate projects. This suggests that while traditional splits
may be useful for model development, LOGO validation offers more conservative and
potentially more reliable performance estimates.

4.6. Sentiment Analysis Impact (RQ5)

To evaluate the impact of sentiment analysis on prediction accuracy, we implemented
and compared multiple sentiment analysis approaches. Table 13 presents the comparative
results of different sentiment analysis strategies.

Table 13. Impact of sentiment analysis approaches. The bold values in the table represent the best
results among all Sentiment calculation methods.

Approach Acc. Prec. Rec. F1 MCC
BERT 0.768 0.797 0.784 0.790 0.510
Senti4SD 0.762 0.791 0.786 0.788 0.502
SentiWordNet 0.763 0.789 0.787 0.787 0.501
No Sentiment 0.762 0.786 0.786 0.786 0.496

The integration of sentiment analysis consistently improved prediction performance
across all evaluated approaches. BERT-based sentiment analysis emerged as the most effec-
tive method, achieving the highest accuracy (0.768) and F1-score (0.790). This represents a
notable improvement over the baseline model without sentiment analysis. Both Senti4SD
and SentiWordNet also demonstrated positive impacts on performance, though to a lesser
extent than BERT. The consistent improvement across different sentiment analysis methods
suggests that emotional context captured through sentiment analysis provides valuable
information for bug severity prediction.

4.7. Data Balancing Impact (RQ6)

To address the challenge of class imbalance in our dataset, we evaluated both over-
sampling and undersampling strategies across different ratios. Table 14 presents the
comprehensive results of our balancing experiments.

Table 14. Impact of balancing strategies.

Strategy Ratio Acc. Prec. Rec. F1 MCC

Oversampling
90:10% 0.922 0.943 0.899 0.921 0.845
80:20% 0.913 0.926 0.897 0.911 0.827
70:30% 0.898 0.926 0.867 0.895 0.798

Undersampling
90:10% 0.902 0.910 0.893 0.901 0.811
80:20% 0.890 0.900 0.871 0.890 0.790
70:30% 0.906 0.918 0.885 0.901 0.822

The experimental results demonstrate that both balancing strategies significantly
improved model performance, with oversampling showing particularly promising results.
The 90:10% oversampling ratio achieved the best performance across all metrics, with an
accuracy of 0.922 and an F1-score of 0.921; this represents a substantial improvement over
the baseline model. While undersampling also improved performance, its impact was less
pronounced than oversampling, possibly due to the loss of potentially valuable training
instances during the undersampling process.

AI 2024, 5 2757

4.8. Conclusions and Implications

Our comprehensive experimental evaluation yields several significant findings. First,
the superior performance of GPT-2’s transformer architecture in bug severity prediction
is evident across multiple projects and evaluation metrics. Second, the choice of valida-
tion strategy significantly impacts reported performance metrics, with LOGO validation
providing more conservative but potentially more reliable estimates of real-world per-
formance. Third, our SevPredict model demonstrates meaningful improvements over
existing state-of-the-art approaches, particularly in terms of accuracy and precision. The
integration of sentiment analysis, particularly using BERT-based approaches, provides
consistent performance improvements, suggesting that emotional context in bug reports
contains valuable predictive information. Finally, our analysis of data balancing strategies
reveals that careful application of oversampling techniques can substantially improve
model performance, with the 90:10% ratio providing optimal results. These findings have
important implications for both research and practice in automated bug severity prediction.
They demonstrate the potential of transformer-based architectures and the importance of
considering emotional context in bug reports, while also highlighting the need for careful
consideration of validation strategies and data balancing techniques in model development
and evaluation.

4.9. Open-Source Tool for Severity Assessment of Bug Reports

In addition to the theoretical and experimental contributions of this research, we
developed a practical application, a front-end open-source tool for companies to assess the
severity of bug reports. We hosted our tool at (https://huggingface.co/spaces/AliArshad/
SeverityPrediction, accessed on 14 January 2024) HuggingFace Spaces, leveraging insights
and methods from our research—in particular, leveraging the GPT-2 model for severity
prediction. A screenshot of the tool is shown in Figure 2.

Figure 2. Interface of the open-source tool for severity assessment.

Implementation and Functionality: The tool provides a user-friendly interface that
allows for the input of bug report summaries. Utilizing the advanced natural language
processing capabilities of GPT-2, which has been fine-tuned on a dataset of software
bug reports, the tool evaluates the inputted summaries and predicts their severity. This
prediction process is based on the comprehensive understanding of language patterns
and contextual nuances acquired by GPT-2 during its training and validation phases, as
outlined in Section 3.3.

Application in Software Maintenance: This front-end tool addresses a critical gap
in automated bug-triaging systems, as highlighted in the abstract and ontributions sec-
tions of this paper. By providing an automated means to assess bug report severity, the

https://huggingface.co/spaces/AliArshad/SeverityPrediction
https://huggingface.co/spaces/AliArshad/SeverityPrediction

AI 2024, 5 2758

tool significantly aids in the prioritization and handling of software maintenance tasks.
It demonstrates the practical applicability of large language models in a domain where
traditional methods have shown limitations in terms of resource efficiency and contex-
tual understanding.

4.10. Threats to Validity

In this section, we discuss the potential threats to the validity of our research findings
and the steps taken to mitigate them.

• Internal validity concerns the causal relationship between the treatment and the
observed outcome. In our study, the treatment is the application of language models
for bug severity prediction. One threat could be the tuning of hyperparameters, which
we addressed by using a consistent set of hyperparameters across different datasets.
Another threat could be the quality of the datasets used for training and evaluation.
We mitigated this by carefully preprocessing the data and removing any irrelevant or
noisy information that could bias the model.

• External validity refers to the generalizability of our findings beyond the specific
context of the study. Our study used datasets from well-known open-source projects
such as Eclipse and Mozilla, which may not be representative of all types of software
development environments. To improve generalizability, we aim to expand the scope
of our evaluation to a variety of projects from different domains and with varying
team sizes.

• Construct validity concerns the appropriateness of the evaluation metric used to mea-
sure the effect of the treatment. We use standard metrics such as accuracy, precision,
recall, F1 score, and MCC to evaluate the performance of our model. These metrics
are widely accepted in the machine learning community and comprehensively assess
the model’s ability to predict the severity of the error.

• Conclusion validity concerns the extent to which the conclusions we draw about
relationships in the data are reasonable. To ensure the robustness of our conclusions,
we employed statistical tests where appropriate and provided confidence intervals for
our performance measures. We also performed multiple runs with different random
seeds to account for variability in the results.

• Reliability is related to the consistency of measurements and the ability to repli-
cate studies. We have made our code and models publicly available so that other
researchers can reproduce our work. In addition, we provide a detailed description of
our methods and experimental setup to facilitate replication.

5. Conclusions

This study conducted a comprehensive evaluation of various machine-learning models
for predicting bug severity in software projects. The models compared include GPT-2,
XLNet, Electra, GPT Neo 1.7b, BERT, ERNIE, CNN, Multinomial Naive Bayes (MNB),
Random Forest (RF), and Logistic Regression (LR). Key findings are summarized as follows:

• GPT-2 emerged as the top-performing model with the highest accuracy and robust
F1-score.

• Incorporating sentiments calculated by BERT helps achieve better results compared
with SentiWordNet and Senti4SD.

• Transformer-based models like XLNet and Electra also demonstrated competi-
tive performance.

• Conventional models such as CNN, MNB, RF, and LR showed lower performance.
• The study underscores the importance of model selection in AI-driven software engi-

neering tasks.

6. Future Work

The future work for this research includes expanding model applications by Utilizing
GPT-2 for tasks like assignee prediction and bug-fixing time prediction and training a

AI 2024, 5 2759

base model specifically on Software Engineering data for tailored applications in MSR.
The future work further includes comparative studies with new models or methodolo-
gies; applying the model to various types of software projects to validate and enhance
robustness; and, finally, implementing the models in real-world software development and
bug-tracking tools.

Author Contributions: Conceptualization M.A.A., A.R. and A.Y.; methodology, M.A.A. and A.R.;
formal analysis, A.Y. and A.R.; investigation, A.R.; resources, M.A.A.; data curation, M.A.A. and R.F.;
writing—original draft preparation, M.A.A.; writing—review and editing, M.A.A., A.R. and R.F.;
visualization, A.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this research is available at https://huggingface.co/
datasets/AliArshad/Bugzilla_Eclipse_Bug_Reports_Dataset, accessed on 14 January 2024. The fine-
tuned model is available at https://huggingface.co/AliArshad/Severity_Predictor, accessed on 14
January 2024. The tool is available at https://huggingface.co/spaces/AliArshad/SeverityPrediction
(accessed on 16 August 2024).

Conflicts of Interest: The authors declared that they have no conflicts of interest.

References
1. Herraiz, I.; Gonzalez-Barahona, J.M.; Robles, G. Determinism and evolution. In Proceedings of the 2008 International Working

Conference on Mining Software Repositories, Leipzig, Germany, 10–11 May 2008; pp. 1–10.
2. Li, H.; Yan, M.; Sun, W.; Liu, X.; Wu, Y. A first look at bug report templates on GitHub. J. Syst. Softw. 2023, 202, 111709. [CrossRef]
3. Liu, C.; Yang, J.; Tan, L.; Hafiz, M. R2Fix: Automatically generating bug fixes from bug reports. In Proceedings of the 2013 IEEE

Sixth International Conference on Software Testing, Verification and Validation, Luxembourg, 18–22 March 2013; pp. 282–291.
4. Anvik, J.; Hiew, L.; Murphy, G.C. Coping with an open bug repository. In Proceedings of the 2005 OOPSLA Workshop on Eclipse

Technology eXchange, San Diego, CA, USA, 16–17 October 2005; pp. 35–39.
5. Arshad, M.A.; Zhiqiu, H. Using CNN to Predict the Resolution Status of Bug Reports. J. Phys. Conf. Ser. 2021, 1828, 012106.

[CrossRef]
6. Saravanos, A.; Curinga, M.X. Simulating the Software Development Lifecycle: The Waterfall Model. Appl. Syst. Innov. 2023,

6, 108. [CrossRef]
7. Leloudas, P. Software Development Life Cycle. In Introduction to Software Testing: A Practical Guide to Testing, Design, Automation,

and Execution; Springer: Berlin/Heidelberg, Germany, 2023; pp. 35–55.
8. Menzies, T.; Marcus, A. Automated severity assessment of software defect reports. In Proceedings of the 2008 IEEE International

Conference on Software Maintenance, Beijing, China, 28 September–4 October 2008; pp. 346–355.
9. Lamkanfi, A.; Demeyer, S.; Giger, E.; Goethals, B. Predicting the severity of a reported bug. In Proceedings of the 2010 7th IEEE

Working Conference on Mining Software Repositories (MSR 2010), Cape Town, South Africa, 2–3 May 2010; pp. 1–10.
10. Lamkanfi, A.; Demeyer, S.; Soetens, Q.D.; Verdonck, T. Comparing mining algorithms for predicting the severity of a reported

bug. In Proceedings of the 2011 15th European Conference on Software Maintenance and Reengineering, Oldenburg, Germany,
1–4 March 2011; pp. 249–258.

11. Valdivia Garcia, H.; Shihab, E. Characterizing and predicting blocking bugs in open source projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories, Hyderabad, India, 31 May–7 June 2014; pp. 72–81.

12. Sharma, G.; Sharma, S.; Gujral, S. A novel way of assessing software bug severity using dictionary of critical terms. Procedia
Comput. Sci. 2015, 70, 632–639. [CrossRef]

13. Zhang, T.; Chen, J.; Yang, G.; Lee, B.; Luo, X. Towards more accurate severity prediction and fixer recommendation of software
bugs. J. Syst. Softw. 2016, 117, 166–184. [CrossRef]

14. Sabor, K.K.; Hamdaqa, M.; Hamou-Lhadj, A. Automatic prediction of the severity of bugs using stack traces. In Proceedings of
the 26th Annual International Conference on Computer Science and Software Engineering, Toronto, ON, Canada, 31 October–2
November 2016; pp. 96–105.

15. Sabor, K.K.; Hamdaqa, M.; Hamou-Lhadj, A. Automatic prediction of the severity of bugs using stack traces and categorical
features. Inf. Softw. Technol. 2020, 123, 106205. [CrossRef]

16. Yang, G.; Zhang, T.; Lee, B. An emotion similarity based severity prediction of software bugs: A case study of open source
projects. IEICE Trans. Inf. Syst. 2018, 101, 2015–2026. [CrossRef]

17. Ramay, W.Y.; Umer, Q.; Yin, X.C.; Zhu, C.; Illahi, I. Deep neural network-based severity prediction of bug reports. IEEE Access
2019, 7, 46846–46857. [CrossRef]

https://huggingface.co/datasets/AliArshad/Bugzilla_Eclipse_Bug_Reports_Dataset
https://huggingface.co/datasets/AliArshad/Bugzilla_Eclipse_Bug_Reports_Dataset
https://huggingface.co/AliArshad/Severity_Predictor
https://huggingface.co/spaces/AliArshad/SeverityPrediction
http://doi.org/10.1016/j.jss.2023.111709
http://dx.doi.org/10.1088/1742-6596/1828/1/012106
http://dx.doi.org/10.3390/asi6060108
http://dx.doi.org/10.1016/j.procs.2015.10.059
http://dx.doi.org/10.1016/j.jss.2016.02.034
http://dx.doi.org/10.1016/j.infsof.2019.106205
http://dx.doi.org/10.1587/transinf.2017EDP7406
http://dx.doi.org/10.1109/ACCESS.2019.2909746

AI 2024, 5 2760

18. Sharma, M.; Kumari, M.; Singh, V. Multi-attribute dependent bug severity and fix time prediction modeling. Int. J. Syst. Assur.
Eng. Manag. 2019, 10, 1328–1352. [CrossRef]

19. Ali, A.; Xia, Y.; Umer, Q.; Osman, M. BERT based severity prediction of bug reports for the maintenance of mobile applications.
J. Syst. Softw. 2024, 208, 111898. [CrossRef]

20. Lamkanfi, A.; Pérez, J.; Demeyer, S. The Eclipse and Mozilla defect tracking dataset: A genuine dataset for mining bug information.
In Proceedings of the 2013 10th Working Conference on Mining Software Repositories (MSR), San Francisco, CA, USA, 18–19 May
2013; pp. 203–206. [CrossRef]

21. Nizamani, Z.A.; Liu, H.; Chen, D.M.; Niu, Z. Automatic approval prediction for software enhancement requests. Autom. Softw.
Eng. 2018, 25, 347–381. [CrossRef]

22. Umer, Q.; Liu, H.; Sultan, Y. Sentiment based approval prediction for enhancement reports. J. Syst. Softw. 2019, 155, 57–69.
[CrossRef]

23. Umer, Q.; Liu, H.; Illahi, I. CNN-Based Automatic Prioritization of Bug Reports. IEEE Trans. Reliab. 2019, 69, 1341–1354.
[CrossRef]

24. Zhou, Y.; Tong, Y.; Gu, R.; Gall, H. Combining text mining and data mining for bug report classification. J. Softw. Evol. Process
2016, 28, 150–176. [CrossRef]

25. Arshad, M.A.; Huang, Z.; Riaz, A.; Hussain, Y. Deep Learning-Based Resolution Prediction of Software Enhancement Reports. In
Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Virtual, 27–30
January 2021; pp. 492–499. [CrossRef]

26. Ahmed, T.; Bosu, A.; Iqbal, A.; Rahimi, S. SentiCR: A customized sentiment analysis tool for code review interactions. In
Proceedings of the 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), Urbana, IL, USA,
30 October–3 November 2017; pp. 106–111. [CrossRef]

27. Islam, M.; Zibran, M. DEVA: Sensing emotions in the valence arousal space in software engineering text. In Proceedings of the
33rd Annual ACM Symposium on Applied Computing, Pau, France, 9–13 April 2018; pp. 1536–1543. [CrossRef]

28. Baccianella, S.; Esuli, A.; Sebastiani, F. SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion
Mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta, 17–23
May 2010; Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D., Eds.; European
Language Resources Association (ELRA): Paris, France, 2010.

29. Calefato, F.; Lanubile, F.; Maiorano, F.; Novielli, N. Sentiment polarity detection for software development. Empir. Softw. Eng.
2018, 23, 1352–1382. [CrossRef]

30. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

31. Deng, L.; Yin, T.; Li, Z.; Ge, Q. Sentiment Analysis of Comment Data Based on BERT-ETextCNN-ELSTM. Electronics 2023, 12, 2910.
[CrossRef]

32. Zhang, T.; Xu, B.; Thung, F.; Haryono, S.A.; Lo, D.; Jiang, L. Sentiment Analysis for Software Engineering: How Far Can
Pre-trained Transformer Models Go? In Proceedings of the 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Adelaide, Australia, 28 September–2 October 2020; pp. 70–80. [CrossRef]

33. Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. arXiv 2010, arXiv:0907.4728. [CrossRef]
34. Kang, Z.; Grauman, K.; Sha, F. Learning with whom to share in multi-task feature learning. In Proceedings of the 28th

International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 521–528.
35. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009,

45, 427–437. [CrossRef]
36. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020,

arXiv:2010.16061.
37. Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International

Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240.
38. Sasaki, Y. The truth of the F-measure. Teach. Tutorials Mater. 2007, 1, 1–5. Available online: https://nicolasshu.com/assets/pdf/

Sasaki_2007_The%20Truth%20of%20the%20F-measure.pdf (accessed on 4 June 2024).
39. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s13198-019-00888-5
http://dx.doi.org/10.1016/j.jss.2023.111898
http://dx.doi.org/10.1109/MSR.2013.6624028
http://dx.doi.org/10.1007/s10515-017-0229-y
http://dx.doi.org/10.1016/j.jss.2019.05.026
http://dx.doi.org/10.1109/TR.2019.2959624
http://dx.doi.org/10.1002/smr.1770
http://dx.doi.org/10.1109/CCWC51732.2021.9375841
http://dx.doi.org/10.1109/ASE.2017.8115623
http://dx.doi.org/10.1145/3167132.3167296
http://dx.doi.org/10.1007/s10664-017-9546-9
http://dx.doi.org/10.3390/electronics12132910
http://dx.doi.org/10.1109/ICSME46990.2020.00017
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1016/j.ipm.2009.03.002
https://nicolasshu.com/assets/pdf/Sasaki_2007_The%20Truth%20of%20the%20F-measure.pdf
https://nicolasshu.com/assets/pdf/Sasaki_2007_The%20Truth%20of%20the%20F-measure.pdf
http://dx.doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477

	Introduction
	Background
	Methodology
	Dataset
	Sentiment Calculation
	SevPredict
	Dataset Preparation and Preprocessing
	Text Cleaning and Preprocessing
	Tokenization and Encoding Process
	Dataset Creation
	Model Configuration and Training Setup

	Experimental Setup
	Performance Metrics

	Experiments Results and Evaluation
	Research Questions
	Base Model Performance (RQ1)
	Model Architecture Comparison (RQ2)
	Comparison with State-of-the-Art (RQ3)
	Validation Strategy Impact (RQ3)
	Sentiment Analysis Impact (RQ5)
	Data Balancing Impact (RQ6)
	Conclusions and Implications
	Open-Source Tool for Severity Assessment of Bug Reports
	Threats to Validity

	Conclusions
	Future Work
	References

