
Citation: Yonekura, K.; Yamada, R.;

Ogawa, S.; Suzuki, K. Hypervolume-

Based Multi-Objective Optimization

Method Applying Deep

Reinforcement Learning to the

Optimization of Turbine Blade Shape.

AI 2024, 5, 1731–1742. https://

doi.org/10.3390/ai5040085

Academic Editor: Gianni D’Angelo

Received: 19 August 2024

Revised: 10 September 2024

Accepted: 13 September 2024

Published: 24 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Hypervolume-Based Multi-Objective Optimization Method
Applying Deep Reinforcement Learning to the Optimization of
Turbine Blade Shape
Kazuo Yonekura * , Ryusei Yamada, Shun Ogawa and Katsuyuki Suzuki

Department of Systems Innovation, The University of Tokyo, Tokyo 113-8654, Japan
* Correspondence: yonekura@struct.t.u-tokyo.ac.jp

Abstract: A multi-objective turbine shape optimization method based on deep reinforcement learning
(DRL) is proposed. DRL-based optimization methods are useful for repeating optimization tasks that
arise in applications such as the design of turbines and automotive parts. In conventional research,
DRL is applied only to single-optimization tasks. In this study, a multi-objective optimization method
using improvements in hypervolume is proposed. The proposed method is applied to a benchmark
problem and a turbine optimization problem. It succeeded in efficiently solving the problems, and
Pareto optimal solutions are obtained.

Keywords: deep reinforcement learning; repeating optimization task; multi-objective optimization;
Pareto solutions

1. Introduction

Deep reinforcement learning (DRL) utilizes deep neural networks (DNNs) in rein-
forcement learning algorithms. DRL is utilized in various industrial fields, mainly for
control problems such as robotics [1–3], path planning [4,5], and automobile control [6,7].
DRL is also utilized in mechanical design applications [8], including the designs of airfoil
shapes [9–11], turbine blades [12], and flow controls [13,14], as well as involving topology
optimization [15].

In mechanical optimization, designers must find solutions to multi-objective optimiza-
tion problems. In multi-objective optimization, it is necessary to obtain Pareto solutions [16].
Genetic algorithms, including the multi-objective GA (MOGA) [17], non-dominated sorting
GA (NSGA) [18], and NSGA-II [19], are among the major methods used to perform multi-
objective optimization [20]. Moreover, reinforcement learning has recently been utilized in
mechanical design applications because of its high generalization capability. A properly
trained RL agent has good generalization capability [9,12,21]. Hence, once trained, an RL
agent is applicable to slightly different optimization problems. However, multi-objective
DRL (MODRL) methods for mechanical designs have not been extensively studied.

Therefore, this study focuses on MODRL for use in multi-objective optimization
problems. Several MODRL methods have been proposed for use in the field of computer
science [5,22,23]. The weighted-sum method (WSM) is often used [24–26]. The WSM takes
the weighted sum of the objective functions and treats the problem as a single-objective
optimization problem. However, in using the WSM to obtain the Pareto front, we have
to solve multiple weighted-sum problems by changing the weights. The computational
cost of this procedure is high, and a non-convex Pareto front cannot be obtained using this
procedure. Another commonly used method is the ε-constrained method [27–29], which
uses only one primary objective function and uses the others as constraints.

The hypervolume, which is the volume of the hypercubes generated by the Pareto
solutions, is often considered to obtain good Pareto solutions. Moreover, it is often used as
both an indicator to measure the goodness of the obtained Pareto solutions and an objective

AI 2024, 5, 1731–1742. https://doi.org/10.3390/ai5040085 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai5040085
https://doi.org/10.3390/ai5040085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0000-0002-1955-069X
https://orcid.org/0000-0002-1304-9036
https://doi.org/10.3390/ai5040085
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai5040085?type=check_update&version=1

AI 2024, 5 1732

function to be maximized [30–33]. Good Pareto solutions can be obtained by maximizing
the hypervolumes.

In DRL, an extensive computational cost is incurred in the model training. Once
trained, the agent can adapt to various problems, but if the objective function changes, then
the agent must be retrained. Therefore, if DRL is coupled with the WSM or ε-constrained
method, then the DRL agent must be trained multiple times to change the weights or
constraints. In such cases, the computational costs are extremely high. In contrast, if the
hypervolume-based method is coupled with DRL, then only one training phase is required,
as the objective function and constraints do not change. Therefore, in this study, we propose
a novel MODRL method that couples the hypervolume method with DRL.

The remainder of this paper is organized as follows. In Section 2, we formulate the
proposed method by using the hypervolume. In Section 3, we describe the application
of the proposed method to a benchmark problem. In Section 4, we formulate and solve
the turbine optimization problem by using the proposed method. Finally, in Section 5, we
conclude the paper.

2. Hypervolume-Based Multi-Objective Deep Reinforcement Learning
2.1. Deep Reinforcement Learning for Turbine Blades

RL obtains the optimal strategy for a Markov decision process (MDP). An MDP is a
stochastic process that consists of states st, actions at, and rewards rt, where t is the time
step. In MDP, the state st and action at are related only to those values of the previous time
step t − 1. They are not related to the values of the other steps.

The proximal policy optimization (PPO) [34] algorithm was used in this study. PPO
uses an actor network and a critic network. The actor network performs actions, whereas
the critic network estimates the values of the actions and evaluates the policy of the
actor network.

Ref. [12] proposed a DRL-based turbine optimization method that uses computational
fluid dynamics (CFD) as an environment. In this method, an agent takes actions to modify
turbine shapes. In this study, we coupled this DRL-based optimization method [12] with
the hypervolume method.

2.2. Hypervolumes of Pareto Solutions

In multi-objective optimization, the solutions are divided into non-dominated so-
lutions (i.e., Pareto solutions) and dominated solutions. We assume that the number of
objective functions is d and that all functions are minimized. Let zi ∈ ℜd (i = 1, 2, . . . , n) be
a solution, where i is the suffix and n is the number of solutions. A solution z∗ ∈ ℜd is the
dominant solution if

z∗k > zi
k, ∀k(1 ≤ k ≤ d)

holds. Pareto solutions are defined as non-dominated solutions.
Let Pt be a set of Pareto solutions at time step t and Pt = {p1, p2, . . . , pn}, where n is

the number of Pareto solutions. In the two-dimensional case, pi = (xi, yi). A hypercube
C(pi) of solution pi is defined as a hypercube with pi and reference point p0 as its diagonal
points. In the two-dimensional case, C(pi) is defined as

C(pi) = {(x, y) | xi ≤ x ≤ x0, yi ≤ y ≤ y0}.

The hypervolume V of the Pareto solutions P is defined as the hypervolume of the union
of sets C(pi):

V(P) = ∥∪iC(pi)∥,

where ∥ · ∥ denotes the hypervolume.

AI 2024, 5 1733

2.3. Reward Function

The reward function is defined according to three patterns: having the CFD com-
putation fail, obtaining dominated solutions, and successfully finding a Pareto solution.
The agent receives penalties in the first two patterns and rewards in the final pattern. An
overview of rewards and penalties is provided in Figure 1, where C1, C2, C3, and C4 are the
constants and we let C1 = 100, C2 = 10, C3 = 20, and C4 = 50.

Pattern 1: Failed CFD
If the CFD computation does not converge, a fixed penalty is assigned as a reward.

rt = −C1. (1)

Pattern 2: Dominated solutions
If the CFD computation converges but is a dominated solution, then the agent obtains

a penalty, according to the distance between the solution and the Pareto front.

rt =

{
log(C2 − d)− C3, if d < C2
C4 if d ≥ C2,

(2)

where d is the distance between the solution and the Pareto front.
Pattern 3: Pareto solutions

If the obtained solution is a Pareto solution, the agent obtains a reward, according to
the improvement in the hypervolume. The improvement is defined as follows:

rt = C1
2(V(Pt)− V(Pt−1))

2. (3)

Figure 1. Rewards and penalties.

2.4. Optimization Algorithm

The optimization algorithm consists of two phases: training and optimization. The
agent is trained in the training phase and used in the optimization phase. An overview
of the training phase is provided in Figure 2. Each case corresponds to a single-flow
condition and consists of 10 episodes, each of which corresponds to one initial solution.
A CFD analysis was conducted on the initial shape. Subsequently, the state is input to
the agent, and the agent modifies its shape. However, CFD computations sometimes fail
because of unsuitable shape modifications. For example, a shape sometimes contains
a self-intersection. The termination condition of each episode is the number of shape
modifications reaching 50 or the CFD computation failing to converge. The trained agent
was used in the optimization phase.

AI 2024, 5 1734

Figure 2. Overview of the DRL-based optimization method.

3. Benchmark Problem
3.1. Problem Definition

To demonstrate the proposed method, we solve the benchmark optimization problem
defined in [35]. The benchmark problem is expressed as

min. f1 = x1, (4)

min. f2 = gh, (5)

subject to g = 1 + 10
∑N

i=2 xi

N − 1
, (6)

h =

{
1 −

(
f1
g

)α
, if f1 ≤ g,

0, otherwise,
(7)

xi ∈ [−1, 1], i = 1, . . . , N. (8)

The Pareto front of the problem is analytically solved and written as

f1 = x1,

f2 = 1 − (f1)
α.

The Pareto front is upward concave if α > 1, and we use α = 2. If we use the reference
point p0 = (1, 1), then the hypervolume is V(P) = 1/3.

3.2. Model Architecture

The state st of the model is defined as follows:

st = (f1(xt), f2(xt), v(xt,Pt)),

where v(xt,Pt) ∈ ℜ2 denotes the vector from the current solution xt to the point nearest to
the Pareto front. Therefore, the state vector is a four-dimensional vector. The action at ∈ ℜ2

is a vector consisting of a continuous variable within the range of [−0.1, 0.1] for each design
variable x1 and x2.

The architectures of the actor and critic networks are presented in Figure 3. The
dropout rate was 0.2. The weights were initialized using HeNormal [36] for the hidden

AI 2024, 5 1735

layers and GlorotNormal [37] for the last layer. Table 1 lists the hyperparameters. Default
settings were used for hyperparameters except that the learning rate was selected to achieve
convergence.

The reward function is the same as that defined in Section 2.3, except for that of
“Pattern 1”. Since CFD computation is not included in the benchmark problem, “Pattern 1:
Failed CFD” (Equation (1)) is not considered.

FC Layer (64)

Leaky ReLU

Input Layer (4)

FC Layer (32)

Leaky ReLU

FC Layer (16)

Leaky ReLU

Output Layer (4)

Dropout

Dropout

Dropout

FC Layer (64)

Leaky ReLU

Input Layer (4)

FC Layer (32)

Leaky ReLU

FC Layer (16)

Leaky ReLU

Output Layer (1)

Dropout

Dropout

Dropout

Actor network Critic network

Figure 3. Actor and critic networks for the benchmark problem.

Table 1. Hyperparameters of the benchmark problem.

Hyperparameter Value Hyperparameter Value

Episodes 1000 Batch size 512

Learning rate 10−3 to 10−5 Epochs 10

Discount rate γ 0.99 GAE discount rate λ 0.95

Dropout ratio 0.2 Optimization algorithm Adam

3.3. Results

We trained the agent for 1000 episodes, as shown in Table 1. In each episode, the
total hypervolume obtained by the agent was calculated, as shown in Figure 4. The
moving average of the 10 episodes is also shown in red in Figure 4. The hypervolume
after 1000 episodes of training was 0.324, which corresponded to 97.2% of the analytical
solution (1/3). Moreover, Figure 4 shows that the score and hypervolume converged within
100 episodes.

The obtained solutions are presented in Figure 5. Without training (episode 0), the
agent moved randomly, and Pareto solutions could not be obtained. In episode 1000, the
agent succeeded in obtaining Pareto solutions. Although the analytical solution of the
Pareto front was upwardly concave, the agent succeeded in obtaining a Pareto front.

AI 2024, 5 1736

Figure 4. Score and hypervolume of the benchmark problem. (The red line represents the moving
average).

(a) Episode 0. (b) Episode 1000.

Figure 5. Solutions obtained after different episodes.

4. Turbine Optimization Problem
4.1. Problem Definition

We optimized the turbine shape for cascaded turbine blades. We assumed repeated
optimization tasks for the problem [12], which is a series of optimization problems whose
flow conditions were slightly different from each other. Such optimization tasks are often
present in industrial fields. In this study, we assume the flow conditions listed in Table 2.
We randomly choose one flow condition from Table 2 and use it in one case. The objective
function is to minimize the pressure loss and maximize the torque. The pressure loss is
defined as

Ploss =
PTin − PTex

PTex − PSex

,

where PTin and PTex are the total pressures at the inlet and outlet boundaries, respectively,
and PSex is the static pressure at the outlet boundary. The torque generated by the turbine
blade is denoted as F. The optimization problem is formulated as follows:

min. Ploss, (9)

min. − F, (10)

subject to |ϕout − ϕtarget| ≤ 0.5[deg]. (11)

AI 2024, 5 1737

The turbine blade shape is defined by adding thickness to the camber line. That is, the
upper and lower sides of the blade are defined as y = yc + yt and y = yc − yt, respectively.
The camber line is defined as follows

yc =

{ m
p2

(
2px − x2), [0 ≤ x ≤ p],

m
(1−p)2

[
(1 − 2p) + 2px − x2], [p < x ≤ 1],

where m and p denote the maximum camber and its position, respectively. Subsequently,
the shape was rotated according to the origin and scaled such that the chord length became
1 to set a positive stagger angle. The thickness yt is defined as

yt =
t

20

(
0.29690x

1
2 − 0.12600x − 0.351602 + 0.28430x3 − 0.10150x4

)
,

where t is the maximum thickness ratio.
The camber line and thickness distribution are then approximated using B-spline

curves. The B-spline curves and control points are presented in Figure 6. Eventually, the
blade shape is represented by y = yc

B + yt
B and y = yc

B − yt
B, where yc

B and yt
B are the

B-spline curves of the camber line and thickness distribution, respectively. The control
points of the B-spline curves are used as the design variables.

Table 2. Flow conditions of repeated optimization tasks of turbine blades.

Hyperparameter Value

Inlet flow angle 0.3–0.5 [rad]

Inlet Mach number 0.2–0.35 [Mach]

Pitch 1.2–1.5 [rad]

Figure 6. Example of an airfoil shape.

4.2. CFD Computation

The CFD computation is carried out using the MISES software suite, which is a
collection of programs for cascade analysis and design [38]. An example computational
grid is presented in Figure 7. The pressure distribution is obtained by using MISES. The
pressure values are sampled from the pressure distributions on the pressure and suction
sides, which are represented by pp and ps, respectively. In total, 120 samples are collected
from each side. The coordinates of the sampled points are represented by s, which are the
coordinates of the streamline. The pressure values pp and ps are normalized using the peak

AI 2024, 5 1738

pressure at the leading edge p0. Hence, pp/p0 and ps/p0 are used as state variables, as
explained in Section 4.3. Figure 8 shows the pressure distributions on the pressure and
suction side surfaces.

Figure 7. Computation grids for CFD computation.

Figure 8. Example of a pressure distribution on the pressure and suction side surfaces.

4.3. Model Architecture

The state variable st is constructed using the results of the CFD analysis. The elements
of st are as follows. In total, the number of dimensions of st was 1093.

AI 2024, 5 1739

1. Information of each case:

• Inlet Mach number,
• Inlet flow angle,
• Pitch,
• Target outlet flow angle.

2. Geometric information:

• Coordinates of the camber line (xc, yc),
• Coordinates of the thickness distribution (xt, yt),
• Metal angle of the leading edge.

3. Information of the flow field:

• Pressure distribution on the pressure side pp/p0 ,
• Pressure distribution on the suction side ps/p0,
• Outlet flow angle.

4. Information of the Pareto front:

• Vector from the current point to the nearest Pareto front.

If the CFD computation failed to converge, information on the flow field could not be
obtained. In this case, the following values were used: s = 0, pp/p0 = sp/p0 = 0, and an
outlet flow angle of 20 [deg].

The action at is a vector in ℜ17 that corresponds to the

1. Difference between the x and y coordinates of the four control points of a camber line,
2. Difference between the x and y coordinates of the four control points of a thickness

distribution,
3. Difference of the stagger angle.

The range of at was [−1, 1], and at was scaled for each design variable. The scale
factors for the camber line were 0.003, 0.001 for the thickness distribution, and 0.2 for the
stagger angle. As explained in Section 4.1, the turbine shape was generated using the
control points and then rotated according to the stagger angle. The shape was then scaled
such that the chord line became 1.

Figure 9 illustrates the DNN architectures of the actor and critic networks.

FC Layer (1500)

Leaky ReLU

Input Layer (1093)

FC Layer (1000)

Leaky ReLU

FC Layer (500)

Leaky ReLU

Output Layer (17)

Dropout

Dropout

Dropout

FC Layer (1500)

Leaky ReLU

Input Layer (1093)

FC Layer (1000)

Leaky ReLU

FC Layer (500)

Leaky ReLU

Output Layer (1)

Dropout

Dropout

Dropout

Actor network Critic network

Figure 9. Actor and critic networks for the turbine problem.

4.4. Results

The agent was optimized after training for 1000 episodes. One case was randomly
chosen, and 10 initial solutions were used. The results of the objective values are shown in

AI 2024, 5 1740

Figure 10, which indicates that the agent successfully finds Pareto solutions. The hyper-
volume history is also shown in Figure 11. When a new initial solution is set, the agent
succeeds in finding new Pareto solutions. Hence, the hypervolume improves drastically.

The Pareto solutions obtained depend on the initial solution. Therefore, it is necessary
to use multiple initial solutions.

Figure 10. Objective value of the turbine problem.

Figure 11. History of the hypervolume (HV) of a turbine problem.

AI 2024, 5 1741

5. Conclusions

A novel multi-objective optimization method using the hypervolume of the Pareto
front is proposed for a turbine optimization problem. This method uses the improvement
in hypervolumes as a reward. The proposed method was validated using a benchmark
problem and then applied to a turbine optimization problem.

In the hypervolume-based method, the objective function and constraint conditions
are not changed. Hence, only one DRL agent is required to obtain Pareto solutions. If
we use the WSM or ε-constrained method, then different DRL agents must be trained
when the weights or constraints are changed. This generalization capability reduces the
computational cost. Moreover, because DRL has a rich generalization capability, it can be
used for multiple tasks.

Author Contributions: Conceptualization, K.Y.; methodology, K.Y. and R.Y.; software, K.Y. and
R.Y.; validation, K.Y. and R.Y.; formal analysis, K.Y. and R.Y.; investigation, K.Y. and R.Y.; resources,
K.Y.; data curation, R.Y.; writing—original draft preparation, K.Y.; writing—review and editing, K.Y.;
visualization, R.Y.; supervision, K.Y., S.O. and K.S.; project administration, K.Y.; funding acquisition,
K.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number JP23K13239.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon request.

Conflicts of Interest: The first author is a board member of MJOLNIR SPACEWORKS.

References
1. Morales, E.F.; Murrieta-Cid, R.; Becerra, I.; Esquivel-Basaldua, M.A. A survey on deep learning and deep reinforcement learning

in robotics with a tutorial on deep reinforcement learning. Intell. Serv. Robot. 2021, 14, 773–805. [CrossRef]
2. Zhu, K.; Zhang, T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Sci. Technol. 2021, 26, 674–691.

[CrossRef]
3. Zhao, W.; Queralta, J.P.; Westerlund, T. Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: A Survey. In

Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, 1–4 December
2020; pp. 737–744. [CrossRef]

4. Liu, R.; Qu, Z.; Huang, G.; Dong, M.; Wang, T.; Zhang, S.; Liu, A. DRL-UTPS: DRL-Based Trajectory Planning for Unmanned
Aerial Vehicles for Data Collection in Dynamic IoT Network. IEEE Trans. Intell. Veh. 2023, 8, 1204–1218. [CrossRef]

5. Li, K.; Zhang, T.; Wang, R. Deep Reinforcement Learning for Multiobjective Optimization. IEEE Trans. Cybern. 2021, 51, 3103–3114.
[CrossRef] [PubMed]

6. Liao, J.; Liu, T.; Tang, X.; Mu, X.; Huang, B.; Cao, D. Decision-Making Strategy on Highway for Autonomous Vehicles Using Deep
Reinforcement Learning. IEEE Access 2020, 8, 177804–177814. [CrossRef]

7. Wang, H.; Yuan, S.; Guo, M.; Li, X.; Lan, W. A deep reinforcement learning-based approach for autonomous driving in highway
on-ramp merge. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 2726–2739. [CrossRef]

8. Ramu, P.; Thananjayan, P.; Acar, E.; Bayrak, G.; Park, J.W.; Lee, I. A survey of machine learning techniques in structural and
multidisciplinary optimization. Struct. Multidiscip. Optim. 2022, 65, 266. [CrossRef]

9. Yonekura, K.; Hattori, H. Framework for design optimization using deep reinforcement learning. Struct. Multidiscip. Optim. 2019,
60, 1709–1713. [CrossRef]

10. Lou, J.; Chen, R.; Liu, J.; Bao, Y.; You, Y.; Chen, Z. Aerodynamic optimization of airfoil based on deep reinforcement learning.
Phys. Fluids 2023, 35, 037128. [CrossRef]

11. Du, Q.; Liu, T.; Yang, L.; Li, L.; Zhang, D.; Xie, Y. Airfoil design and surrogate modeling for performance prediction based on
deep learning method. Phys. Fluids 2022, 34, 015111. [CrossRef]

12. Yonekura, K.; Hattori, H.; Shikada, S.; Maruyama, K. Turbine blade optimization considering smoothness of the Mach number
using deep reinforcement learning. Inf. Sci. 2023, 642, 119066. [CrossRef]

13. Vignon, C.; Rabault, J.; Vinuesa, R. Recent advances in applying deep reinforcement learning for flow control: Perspectives and
future directions. Phys. Fluids 2023, 35, 031301. [CrossRef]

14. Tang, H.; Rabault, J.; Kuhnle, A.; Wang, Y.; Wang, T. Robust active flow control over a range of Reynolds numbers using an
artificial neural network trained through deep reinforcement learning. Phys. Fluids 2020, 32, 053605. [CrossRef]

15. Jang, S.; Yoo, S.; Kang, N. Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization
Designs. Comput.-Aided Des. 2022, 146, 103225. [CrossRef]

16. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; Wiley: Hoboken, NJ, USA, 2001.

http://doi.org/10.1007/s11370-021-00398-z
http://dx.doi.org/10.26599/TST.2021.9010012
http://dx.doi.org/10.1109/SSCI47803.2020.9308468
http://dx.doi.org/10.1109/TIV.2022.3213703
http://dx.doi.org/10.1109/TCYB.2020.2977661
http://www.ncbi.nlm.nih.gov/pubmed/32191907
http://dx.doi.org/10.1109/ACCESS.2020.3022755
http://dx.doi.org/10.1177/0954407021999480
http://dx.doi.org/10.1007/s00158-022-03369-9
http://dx.doi.org/10.1007/s00158-019-02276-w
http://dx.doi.org/10.1063/5.0137002
http://dx.doi.org/10.1063/5.0075784
http://dx.doi.org/10.1016/j.ins.2023.119066
http://dx.doi.org/10.1063/5.0143913
http://dx.doi.org/10.1063/5.0006492
http://dx.doi.org/10.1016/j.cad.2022.103225

AI 2024, 5 1742

17. Murata, T.; Ishibuchi, H. MOGA: Multi-objective genetic algorithms. In Proceedings of the 1995 IEEE International Conference
on Evolutionary Computation, Perth, WA, Australia, 29 November–1 December 1995; Volume 1, p. 289. [CrossRef]

18. Srinivas, N.; Deb, K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 1994,
2, 221–248. [CrossRef]

19. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

20. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Hoboken, NJ, USA, 1989.
[CrossRef]

21. Dussauge, T.P.; Sung, W.J.; Fischer, O.J.P.; Mavris, D.N. A reinforcement learning approach to airfoil shape optimization. Sci. Rep.
2023, 13, 9753. [CrossRef]

22. Keat, E.Y.; Sharef, N.M.; Yaakob, R.; Kasmiran, K.A.; Marlisah, E.; Mustapha, N.; Zolkepli, M. Multiobjective Deep Reinforcement
Learning for Recommendation Systems. IEEE Access 2022, 10, 65011–65027. [CrossRef]

23. Al-Jumaily, A.; Mukaidaisi, M.; Vu, A.; Tchagang, A.; Li, Y. Examining multi-objective deep reinforcement learning frameworks
for molecular design. Biosystems 2023, 232, 104989. [CrossRef]

24. Yang, X.S. Chapter 14—Multi-Objective Optimization. In Nature-Inspired Optimization Algorithms; Yang, X.S., Ed.; Elsevier: Oxford,
UK, 2014; pp. 197–211. [CrossRef]

25. Kaim, A.; Cord, A.F.; Volk, M. A review of multi-criteria optimization techniques for agricultural land use allocation. Environ.
Model. Softw. 2018, 105, 79–93. [CrossRef]

26. Kalayci, C.B.; Ertenlice, O.; Akbay, M.A. A comprehensive review of deterministic models and applications for mean-variance
portfolio optimization. Expert Syst. Appl. 2019, 125, 345–368. [CrossRef]

27. Mesquita-Cunha, M.; Figueira, J.R.; Barbosa-Póvoa, A.P. New ϵ-constraint methods for multi-objective integer linear program-
ming: A Pareto front representation approach. Eur. J. Oper. Res. 2023, 306, 286–307. [CrossRef]

28. Yang, Z.; Cai, X.; Fan, Z. Epsilon constrained method for constrained multiobjective optimization problems: Some preliminary
results. In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation,
New Vancouver, BC, Canada, 12–16 July 2014; GECCO Comp’14, pp. 1181–1186. [CrossRef]

29. Becerra, R.L.; Coello, C.A.C. Solving Hard Multiobjective Optimization Problems Using ϵ-Constraint with Cultured Differential
Evolution. In Proceedings of the Parallel Problem Solving from Nature—PPSN IX, 9th International Conference, Reykjavik,
Iceland, 9–13 September 2006; Runarsson, T.P., Beyer, H.G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 543–552.

30. Shang, K.; Ishibuchi, H.; He, L.; Pang, L.M. A Survey on the Hypervolume Indicator in Evolutionary Multiobjective Optimization.
IEEE Trans. Evol. Comput. 2021, 25, 1–20. [CrossRef]

31. Auger, A.; Bader, J.; Brockhoff, D.; Zitzler, E. Hypervolume-based multiobjective optimization: Theoretical foundations and
practical implications. Theor. Comput. Sci. 2012, 425, 75–103. [CrossRef]

32. Shang, K.; Ishibuchi, H. A New Hypervolume-Based Evolutionary Algorithm for Many-Objective Optimization. IEEE Trans.
Evol. Comput. 2020, 24, 839–852. [CrossRef]

33. Guerreiro, A.P.; Fonseca, C.M.; Paquete, L. The Hypervolume Indicator: Computational Problems and Algorithms. ACM Comput.
Surv. 2021, 54, 119. [CrossRef]

34. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

35. Deb, K.; Pratap, A.; Meyarivan, T. Constrained Test Problems for Multi-objective Evolutionary Optimization. In Proceedings of
the Evolutionary Multi-Criterion Optimization, First International Conference, EMO 2001, Zurich, Switzerland, 7–9 March 2001;
Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 284–298.

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 1026–1034. [CrossRef]

37. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; Teh, Y.W., Titterington, M., Eds.;
Proceedings of Machine Learning Research; Volume 9, pp. 249–256.

38. Drela, M.; Youngren, H. A User’s Guide to MISES 2.63; MIT Aerospace Computational Design Laboratory: Cambrige, MA,
USA, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICEC.1995.489161
http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.5860/choice.27-0936
http://dx.doi.org/10.1038/s41598-023-36560-z
http://dx.doi.org/10.1109/ACCESS.2022.3181164
http://dx.doi.org/10.1016/j.biosystems.2023.104989
http://dx.doi.org/10.1016/B978-0-12-416743-8.00014-2
http://dx.doi.org/10.1016/j.envsoft.2018.03.031
http://dx.doi.org/10.1016/j.eswa.2019.02.011
http://dx.doi.org/10.1016/j.ejor.2022.07.044
http://dx.doi.org/10.1145/2598394.2610012
http://dx.doi.org/10.1109/TEVC.2020.3013290
http://dx.doi.org/10.1016/j.tcs.2011.03.012
http://dx.doi.org/10.1109/TEVC.2020.2964705
http://dx.doi.org/10.1145/3453474
http://dx.doi.org/10.1109/ICCV.2015.123

	Introduction
	Hypervolume-Based Multi-Objective Deep Reinforcement Learning
	Deep Reinforcement Learning for Turbine Blades
	Hypervolumes of Pareto Solutions
	Reward Function
	Optimization Algorithm

	Benchmark Problem
	Problem Definition
	Model Architecture
	Results

	Turbine Optimization Problem
	Problem Definition
	CFD Computation
	Model Architecture
	Results

	Conclusions
	References

