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Abstract: Inspection and material evaluation are some of the critical factors to ensure the structural
integrity and safety of an aircraft in the aviation industry. These inspections are carried out by trained
personnel, and while effective, they are prone to human error, where even a minute error could result
in a large-scale negative impact. Automated detection devices designed to improve the reliability of
inspections could help the industry reduce the potential effects caused by human error. This study
aims to develop a system that can automatically detect and identify defects on aircraft skin using
relatively lightweight devices, including mobile phones and unmanned aerial vehicles (UAVs). The
study combines an internet of things (IoT) network, allowing the results to be reviewed in real time,
regardless of distance. The experimental results confirmed the effective recognition of defects with
the mean average precision (mAP@0.5) at 0.853 for YOLOv9c for all classes. However, despite the
effective detection, the test device (mobile phone) was prone to overheating, significantly reducing
its performance. While there is still room for further enhancements, this study demonstrates the
potential of introducing automated image detection technology to assist the inspection process in the
aviation industry.

Keywords: automated inspection; YOLOvV9; IoT; UAV application; object detection algorithm; real-
time detection; aircraft structural damage detection

1. Introduction

Inspection and material evaluation are vital for maintaining an aircraft’s structural
integrity and safety within the aviation industry. One of the essential aspects of aircraft
maintenance is the regular inspection of the aircraft’s surface for any signs of wear, damage
or corrosion that could compromise its safety. Traditionally, these inspections have been
conducted by trained personnel. Although practical, this method is time-consuming
and subject to human error, where even a minor mistake could result in a large-scale
negative impact.

Recent advancements in deep-learning and object detection algorithms have revo-
lutionized various fields, including aviation, healthcare and autonomous driving. Deep
learning, a subset of machine learning, utilizes neural networks with many layers, allowing
the trained algorithm to analyze complex data patterns and make accurate predictions [1].
Moreover, the development of convolutional neural networks (CNNs) has significantly
improved the performance of object detection tasks, enabling systems to identify and
classify objects with remarkable accuracy and speed [1]. Algorithms such as You Only
Look Once (YOLO) [2], Single Shot MultiBox Detector (SSD) [3] and Faster R-CNN [4]
have defined a new era in real-time object detection by efficiently processing images and
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videos. These advancements allow computationally intensive tasks to be performed even
on devices with limited computational power, such as mobile devices.

These advancements have paved the way for developing sophisticated applications,
such as automated visual inspection systems, which can detect minute surface abnormal-
ities on aircraft, ensuring higher safety and reliability standards. With advancements in
technology, there is a growing opportunity to enhance the accuracy of these inspections,
efficiency and reliability through automated visual checking systems. To lower the potential
risk of human error and introduce a method to ensure inspection quality, the research aims
to develop a tool to detect and grade surface damage on an aircraft.

The work related to this method includes using UAV-based images to assess crop
health and detect diseases in early stages [5] and modifying the YOLOv8 module for road
surface defect detection [6]. The proposed system combines UAV, imaging technologies,
machine-learning algorithms and private server technology, allowing it to visually inspect
aircraft surfaces with high-resolution cameras while sending the results to internet of things
(IoT) devices for further inspection in real time. The research aims to detect and classify
surface anomalies, such as dents, scratches, cracks and paint-offs. The system can learn from
each inspection by integrating artificial intelligence, improving its accuracy and reducing
the likelihood of missed defects. This automated approach speeds up the inspection process
and ensures a higher level of consistency and reliability than manual inspections.

2. Materials and Methods

The primary approach of the system was the use of an image detection algorithm,
namely You Only Look Once (YOLO), to detect defects on the surfaces of an aircraft as
trained using the test devices and combining it with the ability to transfer imagery data in
real time to the designed IoT devices. With this combination, the detected test results will
be uploaded to the server and accessed via IoT devices for monitoring.

The equipment used in this study for algorithm training included a computer running
Windows 11 OS with an AMD Ryzen 9 7950X 16-Core Processor, an NVIDIA GeForce
RTX 4070Ti GPU with 6 GB VRAM, a CUDA version 12.1 + CUDNN 8.8.0.1 acceleration
environment and 128 GB RAM capacity for model training. The above equipment comes
from ASUS and MSI in Taiwan. Other devices included a Raspberry Pi 4 with 8 GB RAM,
Nginx [7] installed and a Wi-Fi router for the Real-Time Messaging Protocol (RTMP) server
for transferring imagery detection results to the IoT monitoring process. The test devices
used in the detection process included an iPhone 13 as a mobile detection device and a
DJI Mavic 2 Enterprise, which allows detection in areas that are difficult to reach, such as
upper wings and rudders. The aircraft sample used in this experiment was a Cessna 172.
The following Table 1 shows a comparison of the specifications of the test devices used.

Table 1. Comparison of camera specifications: iPhone 13 [8] and DJI Mavic 2 Enterprise [9].

Specification iPhone 13 DJI Mavic 2 Enterprise
Aperture /1.6 (26 mm equivalent) £/2.8
Sensor Type CMOS (size not stated) 1/2.3” CMOS
Megapixels 12 MP 12 MP
ISO Range 32-6400 100-3200
Sensor Size 1/2.55" 1/2.3"
Pixel Size 1.7 pm -
Resolution 4032 x 3024 4056 x 3040 pixels
Autofocus System Dual-Pixel AF -
Operating Temperature 0°C-35°C 0°C-40°C

The most vital component of the system was the YOLO model, which was trained
with images prepared according to the target defect types. During the image acquisition
session, 1535 images were captured using an iPhone 12 Pro Max and a DJI UAV. The defect
samples were captured repeatedly from different angles to lower the impact caused by
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the perspective of the cameras. Figure 1 shows examples of the images acquired, in which
the colors frames indicate the different classification of the defects in the annotation tool,
where red, blue, green, and grey stand for “cracks”, “missing screws”, “dent” and “scratch”,
respectively. Please note that the color can be changed freely according to the user and only
use for easy identification for frames in different classes.

(a) Example of a crack sample. (b) Example of a missing screws sample.

(c) Example of a dent sample. (d) Example of a scratch sample.
Figure 1. Example images of various samples captured on the ground.

After collecting the images, they were subjected to an annotation process, which
applied labels to the defects found. Data annotation involves labeling the target objects in
the captured images, which helps the algorithm learn and detect specific objects. In this
project, the annotation process was performed using Roboflow, an open-source tool that
provides various helpful features for object detection model machine learning [10]. Figure 2
shows the interface of the tool used for labeling the sample images.

& Annotation Editor HES <

Figure 2. The annotated dent sample.

Defects in the images were categorized into classes, resulting in 783 crack samples,
423 dent samples, 918 paint-off samples, 1054 missing rivet samples, 999 scratch samples
and 421 null samples. With the tool provided by Roboflow, the images underwent an
augmentation process, with features such as shear, which allows the model to observe more
potential defect angles; exposure, which decreases the effect of light on the cameras; tile,
which allows the model to perform better on smaller objects; and blur, which decreases the
effects of camera focus on the model. The exported dataset consisted of 10,029 samples,
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with a null ratio of 85%. The ratios of the training, validation and testing sets were 70%, 20%
and 10%, respectively. The following figure shows an example of the annotated images.

2.1. Algorithm Training

Programming was primarily performed via algorithm training using Visual Studio
Code software version 1.93 [11]. Python was installed as a plugin and used as the interpreter
to utilize the “YAML” training files provided by the official Ultralytics site [12,13]. A YAML
file is a human-readable data serialization format primarily used for configuration files
and data interchange in languages with varying data structures. It uses indentation to
represent nested data structures, making it appear similar to JSON but more concise and
user-friendly [14].

During the training process, YAML files were crucial, as they determined how the algo-
rithm would learn and utilize information from the dataset. The Ultralytics library provides
training materials, including the configuration files for YOLOv5 Nano (yolov5n.yaml),
YOLOv8 Nano (yolov8n.yaml), YOLOv8 Small (yolov8s.yaml) and YOLOv9 (Compact and
Enhanced). These configuration files represent different versions of YOLO, which were
used as learning materials for custom-trained models during the study [13]. The Ultralytics
GitHub repository [13] initially provided the code used during the training. Modifications
were made to suit the specific requirements of this study better. The code is divided into
two parts, where “function.py” contains most of the functions that control the parameters
of the training process, while the other one, namely “main.py”, allows the user to adjust
the value of the perimeters and return it to “function.py”. Figure 3 demonstrates the code
in “main.py”.

from functions import train_model

model_path =
data_path =
n_epochs = 100 #
gpu_id = 0 #
batch_size = 12
patience = 10 #

resume = False

optimizer = 'Adam’ #
1ro = 0.001 #
momentum = 0.9 #
weight decay = 0.0005 #

scheduler type = 'StepLR’ #

step size =5 #
gamma = 0.1 #
factor = 0.5 #

Figure 3. Cont.
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def main ():

global batch_size, patience, optimizer_name, 1r@, momentum, weight_decay, scheduler_type,

step_size, gamma, factor, best_model_path, resume, model_path

train_model(data_path, n_epochs, gpu_id, batch_size, patience, optimizer_name, 1r@, momentum,

weight_decay, scheduler_type, step_size, gamma, factor, best_model_path, resume, model_path)

Figure 3. Code example in “main.py”.

There were several settings that were found in the “main.py”. These are further

explained as follows:

data_path: Specifies the path to the dataset configuration file. This file, typically in
YAML format, contains information about the training, validation and testing datasets,
as well as the class names and other parameters [14].

n_epochs: Sets the number of epochs for training. An epoch is one complete pass
through the entire training dataset. The number of epochs determines how many
times the model will iterate over the dataset during training [1].

batch_size: Defines the batch size, which is the number of training samples used
in one iteration. Batch size impacts the model’s training speed, memory usage and
convergence behavior [15].

patience: Sets the patience parameter for early stopping. This parameter controls how
many epochs with no improvement in validation performance will be tolerated before
stopping the training early [1].

optimizer: Specifies the optimizer to be used for training. The optimizer adjusts the
model’s parameters based on the computed gradients to minimize the loss function.
Common optimizers include “SGD”, “Adam” and “NAdam” [16].

1r0: Sets the initial learning rate for the optimizer. The learning rate controls the size of
the steps the optimizer takes when adjusting the model’s parameters [17].
momentum: Sets the momentum parameter, which is used to accelerate the optimizer
in the relevant direction and dampen oscillations. This parameter is particularly useful
for optimizers like SGD and NAdam [18].

weight_decay: Specifies the weight decay (also known as L2 regularization) parameter,
which helps prevent overfitting by adding a penalty to large weights [19].

device = 0: Specifies the device to be used for training. device = 0 refers to the primary
GPU of the computer. This allows users to specify which GPUs to use when there
are multiple GPUs available. Setting device = —1 would use the CPU instead of a
GPU [20].

Scheduler: A component used to control the learning rate during model training. A
scheduler reduces the learning rate as the training progresses, helping the model make
finer updates.

“Main.py” defines the training parameters as global variables—whereby they are

named according to the functions in “function.py”—and performs the training process.
Figure 4 describes code found in “function.py”.

import os

import torch

from ultralytics import YOLO

from torch.utils.tensorboard import SummaryWriter

import torch.optim.lr_scheduler as lr_scheduler

Figure 4. Cont.
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def train_model(data_path, n_epochs, gpu_id, batch_size, patience, optimizer_name, 1r@, momen-
tum, weight_decay, scheduler_type, step_size, gamma, factor, best_model_path, resume,
model_path):

os.environ['KMP_DUPLICATE_LIB OK'] = 'True'

model = YOLO(model_path)

writer = SummaryWriter()

model.overrides|['optimizer'] = optimizer_name
model.overrides['lr0'] = 1ro
model.overrides [ 'momentum'] = momentum
model.overrides['weight_decay'] = weight_decay
for epoch in range(n_epochs):

results = model.train(
data=data_path,
epochs=n_epochs,
batch=batch_size,
patience=patience,
device=gpu_id,
optimizer=optimizer_name,
1re=1ro,
momentum=momentum,
weight_decay=weight_decay,

resume=resume

'train_loss' in results:
writer.add_scalar('Loss/train', results['train_loss']l, epoch)
'val_loss' in results:
writer.add_scalar('Loss/val', results['val_loss'], epoch)
'metrics' in results:
if 'precision' in results['metrics']:
writer.add_scalar('Metrics/precision', results['metrics']['precision'], epoch)
if 'recall' in results['metrics']:
writer.add_scalar('Metrics/recall', results['metrics']['recall'], epoch)
if 'mAP' in results['metrics']:

writer.add_scalar('Metrics/mAP', results['metrics']['mAP'], epoch)

if scheduler_type == 'SteplLR':

Figure 4. Cont.
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tience)

scheduler = 1lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)

scheduler.step()

else:

scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, factor=factor, patience=pa-

scheduler.step(results['val_loss'] if 'val_loss' in results else float('inf'))

Figure 4. Code examples in “function.py”.

Tensorboard was included to better observe the training process, where the loss scores,
the mAP scores and the change in learning rates generated by the “scheduler” were plotted
as graphs, allowing users to determine the quality of the training. In this part of the code, the
model.train() function uses the parameters adjusted in “main.py” and undergoes training.

In deep learning and machine learning, especially with frameworks like YOLO, a “data.
yaml” file is a configuration file formatted in YAML. This file specifies the dataset paths,
class names and other essential parameters needed for model training [14,21]. Several
parameters can be defined and may potentially result in different outcomes. The “epoch”
parameter specifies the number of times the training process will be repeated. Generally,
more epochs allow the model to learn better, given adequate training resources. The
“batch size” parameter refers to the number of training samples processed in one iteration.
An iteration refers to a single update of the model’s parameters. During one iteration, a
batch of data is passed through the neural network; the loss is calculated; and the model’s
parameters are adjusted based on the gradients computed from the loss [1]. The calculation

for iterations is shown in Equation (1).

it = N e
~ bs
where
e it represents the number of iterations;
e  Dbsis the batch size;
e eis the number of epochs;
e  Nis the total number of training samples.

1)

The choice of batch size significantly impacts the model’s convergence, training time
and generalization performance. A smaller batch size can lead to noisy gradient esti-
mates but may result in faster convergence and better generalization. Conversely, a larger
batch size provides more accurate gradient estimates, potentially improving the hardware
efficiency, but it may lead to poorer generalization and require more memory [1,15,22].

Additional training parameters include box loss, class loss and distribution focal
loss (DFL). In neural network training, the loss values gauge how accurately the model’s
predictions align with actual outcomes. Box loss assesses the variance between predicted
bounding boxes and ground truth boxes, employing intersection over union (IoU) as a

standard accuracy metric. The formula for IoU is presented as Equation (2) [23,24].

IoU = (Area of Overlap)/(Area of Union)

)

Class loss measures the error in classifying objects within bounding boxes, commonly
utilizing cross-entropy loss to quantify the disparity between the predicted probability
distribution and actual distribution. The formula for cross-entropy loss is provided in

Equation (3) [1].
Cross — Entropy Loss = —) . yi log(pi)

)
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DFL focuses on difficult-to-classify samples by assigning them higher weights, thereby
aiding the model in learning from challenging cases. The formula for DFL is presented in
Equation (4) [25].

DFL Loss = —at(1 — p,)'log(P) (4)

where

P; is the predicted probability for the true class;
« is a scaling factor;
r is the focusing parameter.

During training, the objective is to minimize the loss function. A lower loss value
indicates that the model’s predictions are closer to the actual values, which signifies better
performance. Upon completing the training, two output files with the “.pt” extension
will be generated: “best.pt” and “last.pt”. A “.pt” file is a PyTorch file that stores tensor
information, typically containing the model’s architecture, parameters and any additional
information required to recreate the model’s state [20]. Figure 5 shows the terminal output
in Visual Studio Code during the training process.

Figure 5. Terminal readings in Visual Studio Code showing metrics’ values.

Several metrics are stated in the terminal in Figure 5, namely precision, recall
and mAP. The calculations for evaluating the model’s performance are shown in
Equations (5)—(8) [26].

1.  Precision (P): The ratio of correctly predicted positive observations to the total pre-
dicted positives. It measures the accuracy of the positive predictions made by the
model. High precision indicates a low false positive rate.

Precision = True Positives/True Positives + False Positives (5)

2. Recall (R): The ratio of correctly predicted positive observations to all observations in
the actual class. It measures the model’s ability to detect all relevant instances. High
recall indicates a low false negative rate.

Recall = True Positives/True Positives + False Negatives (6)

3. Average Precision (AP): The area under the precision—recall curve for a single class.
1
AP = / Precision(r)dr (7)
0

where Rn and Pn are the recall and precision at the nth threshold.
4. mAP: The mean of the average precision values for all classes.

1N
mAP = N 2mim1 AP; 8)
where N represents the number of classes, and APi denotes the average precision
for the ith class. The objective of model training is to achieve the highest possible
values for these three metrics with the given dataset. Hyperparameters such as the
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learning rate, weight decay and momentum can be further fine-tuned to enhance the
model’s performance.

In this project, several models were tested to identify the best-fit models for the
prepared dataset and equipment specifications. Various models from YOLO version 8
were evaluated, including “nano (n)”, “small (s)”, “medium (m)” and “large (1)”. Table 2
provides basic information on the performances and computational requirements (FLOPs)

of the version 8 models.

Table 2. YOLOv8 model performance metrics [27].

Model mAPval 50-95 Params (M) FLOPs (B)
YOLOv8n 37.3 3.2 8.7
YOLOvS8s 449 11.2 28.6
YOLOv8m 50.2 25.9 78.9
YOLOvS8I 52.9 43.7 165.2
YOLOv8x 53.9 68.2 257.8

The models underwent a training session using a custom database from Roboflow [7],
which included five classes: crack, dent, missing head, paint-off and scratch. The fol-
lowing graphs demonstrate the performance of various YOLO models tested under this
environment for 100 epochs, with a batch size of 16 and early stopping patience set to 5 to
halt training when no further improvement is achieved. The optimizer was set to “auto”,
applying default hyperparameters, such as learning rate = 0.01, momentum = 0.9, weight
decay = 0.0001 and optimizer = “SGD”.

2.2. Mobile Devices” Application Development (iOS)

The application developed in this study focused mainly on utilizing the trained model
from the training session to detect defects in real-world aircraft. By default, the trained
weights are saved in PyTorch format. To make them compatible with an iPhone application,
they need to be converted to a format that the iOS can read. Figure 6 shows the code for
converting the trained weights to CoreML format [13].

import os

from ultralytics import YOLO

model = YOLO("Desktop/v8m.pt")
model.export(format="'coreml',nms=True)

Figure 6. Python code for converting PyTorch formatted weight to CoreML.

This resulted in a “.mlpackage” file. The detection source code was provided by
Majima D. [28]. It was designed to read the data stored in the weight files and perform
predictions using imagery input from the device’s built-in cameras. The mentioned source
code was further developed and aimed for the users to easily perform detection, also
allowing them to freely change the weight for any specific jobs. The following Figure 7a—e
show examples of detections utilizing the application.
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Model Selection Library

Uplsed Photo

(a) Application interface. (b) Library interface. (c) Detection interface.

@)

(d) Detection results of paint-off and miss-  (e) Detection results of crack and scratch
ing head samples. samples.

Figure 7. Example images of detection results.

2.3. RTMP Server Construction

In the server construction section, a Real-Time Messaging Protocol (RTMP) server was
chosen as the primary solution due to its low latency and convenience [7]. The server was
set up on a Raspberry Pi running Ubuntu operating system (OS) version 22.04 [29]. Ubuntu
was selected due to its compatibility with the NGINX software, NGINX_RTMP_Version
"1.1.4", which was demonstrated during several test runs, while the Raspberry Pi OS
occasionally reported unknown errors. After successfully installing Ubuntu OS, NGINX
was installed with the RTMP module. To enable RTMP service on NGINX, the following
settings were added to the “nginx.conf” configuration file of the software [7].

rtmp {
server {
listen 1935;
chunk_size 4096;
allow publish 127.0.0.1; # IP address of the device(s)
deny publish all;
application live {
live on; }}}
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ngunx

CGroup: /s

Upon the setting, the server would be ready to launch and use for imagery transfer.
Figure 8 shows the status window appearing after a successful boot up of the server.

- A high performance web
Loaded: loaded (/usr/li emd /syster ; preset:

CST; 1h 19min ago

Figure 8. The terminal of Ubuntu OS reporting status of the server.

After configuring the nginx.conf file, the server was ready for internal network
access. User can access the server within the same internal network by using URL:
http:/ /1P:1935/live/streamkey, where the device’s IP address can be identified using
the ifconfig command. The stream key can be configured according to the user’s needs.
The next step involves configuring the firewall to allow access from outside to port 1935 by
setting up port forwarding on the router [7]. The port forwarding settings are as follows:

Access your router’s web interface;
Navigate to the port forwarding section;
Create a new port forwarding rule:

—  Service Name: RTMP Server

—  Protocol: TCP

—  External Port: 1935

— Internal IP Address: (IP address of your Raspberry Pi)
—  Internal Port: 1935;

e  Save the settings.

With the port forwarding settings configured, external access to the server is enabled
for publishing or streaming content. For additional security, the “allow publish” setting
in the nginx.conf file can be configured to prevent unwanted connections from unknown
sources. Ensuring that only trusted IP addresses can publish to the server is essential,
reducing the risk of unauthorized access. SSL/TTLS encryption for the RTMP stream can
further enhance security by encrypting the data transmitted between the server and the
clients. This can be achieved by configuring NGINX to use secure certificates, ensuring all
communications are encrypted and safe [30].

For the imagery transmission between mobile phones and IoT devices, a third-party
application called Streamlabs was used to transfer the imagery output to the RTMP server.
This application enables users to use the device’s screen-capturing ability and stream it
to other online platforms, including any custom RTMP server. Integrating the Streamlabs
application into the project allows the output to be streamed and monitored on any other
IoT device. The following Figure 9 shows an example of the streaming process with the
output results streamed to the server.
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Figure 9. Streaming session on an IoT device from test devices.

2.4. UAV Detection Process

The detections performed by imagery captured from the UAV are relatively indirect,
as the identification cannot be performed on the UAYV itself. In this study, an application
called “D]JI Pilot” was used to control the UAV. As a built-in function of the application,
it allows the user to stream the imagery captured by UAV cameras in real time. Making
use of that, we can utilize a function from the Ultralytics library, which allows the user to
run object detection directly on the RTMP live stream. Figure 10 shows the code for the
detection process for UAV detection, where the code obtains the imagery input from an
RTMP server.

With the code in Figure 10, the result can only be observed on the screen of the
ground station computer; therefore, further adjustment is needed to allow reviewing on
IoT devices. In this study, ffmpeg was introduced to the code, which captures the results
with the “rawvideo” command and upstreams them. Figure 11 shows the other part of the
code for upstreaming the results, while Figure 12 features the flowchart of the connection
network in this setting.

To ensure the accuracy of the results and to make sure the data obtained during the
experiment allow us to compare the performance of the test models, flying route routines
of the UAV were planned. Figure 13 briefly describes the route used during the model’s
test run.

As shown in Figure 13, the route was planned, so that the UAV captured covered
mostly the perimeter of the aircraft at above eye level at 190 cm from the ground which
is about the height of the wings from the ground. and about 30-50 cm away from the
aircraft, this is the restriction applied by the DJI program, with the additional area where
inspections were difficult to perform, such as the rudders and upper surface of the fuselage.
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import cv2
import subprocess
import numpy as np

from ultralytics import YOLO
model = YOLO("yolov8x.pt")
video_path = "rtmp://YourStream/live/test2"

cap = cv2.VideoCapture(video_path)

if not cap.isOpened():

print("Error: Could not open video stream.")

exit()

frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

while True:

ret, frame = cap.read()

if not ret:

print("Error: Failed to read frame from stream.")

break

try:

results = model(frame, device="0", conf=0.2)
except Exception as e:

print(f"Error during model inference: {e}")

break
annotated_frame = results[0].plot()

cv2.imshow("YOLOV9 Inference", annotated_frame)

if cv2.waitKey(1) & 0xFF == ord("q"):

break

cap.release()

if stream_process.stdin:
stream_process.stdin.close()

stream_process.wait()

cv2.destroyAllWindows ()

Figure 10. Code for detection on UAV captured imagery.
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rtmp_url = "rtmp://163.17.23.31:1935/live/view"

parts =rtmp_url.split("/")
rtmp_server = "/".join(parts[:-1]) + "/"

stream_key = parts[-1]

ffmpeg_command = [”ff'ﬁ[}eg"' ”_\,J”l + II_.FIIJ “r(-n\.r'u"].{jﬂﬂlll
, 'rawvideo",

“—pix_fmt", "bgr24“,

“—preset"”, "ultrafast",
“—tune", "zerolatency”, #
"—pix_fmt", "yuv42@p",
e B

rtmp_server + stream_key]

try:

stream_process = subprocess.Popen(ffmpeg_command, stdin=subprocess.PIPE)
except FileNotFoundError:
print("Error: FFmpeg not found. Ensure FFmpeg is installed and in your PATH.")
exit()
except Exception as e:
print(f"Error starting FFmpeg: {e}")

exit()

try:
stream_process.stdin.write(annotated_frame.tobytes())
except BrokenPipeError:
print("Error: Broken pipe while writing to FFmpeg.")
break

except Exception as e:

print(f"Error writing frame to FFmpeg: {e}")

break

Figure 11. The code for upstreaming the results to the RTMP server.
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Figure 12. Connection network of the system for UAV.

Figure 13. The route used during the performance test for YOLO models.

3. Results
3.1. Training Results

The training was performed on different models, including YOLOv8 Nano, YOLOvV8
Small, YOLOv8 Medium and YOLOv9 Compact, under an auto-optimizer environment,
as mentioned in the algorithm training section. Figures 14-16 describe the training results
regarding recall, precision and mAP values for the models, which were trained with a
patience rate of 5. These figures provide an easy performance evaluation for each model,
allowing users to find the best-suited model for their corresponding project.
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Figure 14. Comparison of the mAP scores for the trained YOLO models.

Precision

Figure 15. Comparison of the precision scores for the trained YOLO models.
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Figure 16. Comparison of the recall scores for the trained YOLO models.

As shown in Figures 14-16, these models scored better per epoch, indicating a well-
performed training of the models. After 10 epochs, the rate of increase in the metrics
started to drop and overfitted approximately at epoch = 30. The models were forced to stop
early after epoch = 40, as no further improvement was observed upon training. As can be
observed in Table 3, the bolded numbers represent the best performance in each set of data,
where YOLOv9c performed the best in terms of the set criteria, with the highest precision,
recall and mAP.
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Table 3. Comparison of performance metrics for different YOLO models.
Model Box Loss Cls Loss DFL Loss Precision Recall mAP@0.5 FLOPs
YOLOvV8n 0.84133 0.91269 0.91250 0.81544 0.69233 0.75237 8.7
YOLOv8s 0.86231 0.88650 0.94302 0.84054 0.71552 0.78704 28.6
YOLOvV8m 0.84635 0.85201 0.91688 0.86422 0.68707 0.78972 78.9
YOLOV9c 0.85100 0.79952 0.92565 0.86394 0.71658 0.79225 102.8

Since all models were trained using the “auto” optimizer, there was not much differ-
ence in terms of metric scores. According to Table 3, among the models, YOLOv8n achieved
the highest scores in three types of loss—0.84133, 0.91269 and 0.91250—while YOLOv9c
exhibited better performance in precision, recall and mAP.

It is important to note that the overfitting which occurred in model training does not
necessarily indicate issues with the dataset; the models could possibly undergo another
training process to “fine-tune” the performance. The hyperparameters of YOLOv9c were
subsequently further fine-tuned, achieving a more stable and more reliable overall perfor-
mance. Table 4 demonstrates the results of the fine-tuning of the previous YOLOv9c model.
Table 4. Performance metrics results upon fine-tuning of YOLOv9c.

Model Box Loss Cls Loss DFL Loss Precision Recall mAP@0.5 FLOPs
YOLOvV9c 0.32843 0.39135 1.0018 0.888 0.787 0.853 102.8

3.2. Real-Time Detection

In the practical session, the developed application was installed on the mobile phone
mentioned in Table 1. The imagery captured by the device’s built-in camera was used as
input to the model to perform image detection. The results were transferred to an RTMP
server, and the processed results were then transmitted to other IoT devices. Figure 17a-d
show the detection results obtained during the session.

(a) Detection results of a dent sample. (b) Detection results of crack samples.

(c) Detection results of paint-off and missing head

(d) Detection results of crack and scratch samples.
samples.

Figure 17. Examples of detection results.
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TIME.IS

Time in Tokyo, Japan now

3.3. RTMP Server Latency

Figure 18 shows the overall latency of the constructed RTMP server in this project.
To test the system’s overall latency, a clock was set on the screen (Figure 18a), and the
opened window was then streamed to the RTMP server. On an IoT device, the same timer
was streamed to test the latency (Figure 18b). As shown in Figure 18, the original clock
(Figure 18b) was streamed to the server with an additional latency of 3 seconds under a
download speed of 26.62 Mbps and an upload speed of 13.51 Mbps.
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(a) Real time. (b) IoT device time.

Figure 18. Latency test results.

4. Discussion
4.1. Application Performance

The model selected in the later stage of the experiment was YOLOv9c. Although
the YOLOvV9 model had the highest FLOPs among the models discussed in Table 3, it
outperformed the others, indicating its powerful ability to detect defects as trained and its
good adaptation to the prepared dataset. As the main concern of the study was to design
a relatively lightweight device for the operator to use during inspection, we compared
the performance of two mobile devices, including an iPhone 13 and a Raspberry Pi 4 with
camera module 3. Figure 19a-d show a comparison of the devices mentioned. The compar-
ison was intended solely to identify whether and to what extent the camera specifications
affected the detection capability of the application on each device. In Figure 19a,c, the
detection is performed on the right wing of a Cessna, where two crack samples can be
found adjacent to each other on the same surface. As shown in Figure 19a, the iPhone
camera could detect the crack on the surface, while in Figure 19¢, only the larger crack was
recognized by the Pi camera. The same situation also occurred with the other set of data, in
Figure 19b, where a small scratch could be found above the crack, but the Pi camera failed
to recognize it in Figure 19d.

Despite the fact that the Pi camera is lighter in weight, it was much more difficult to
use due to its insufficient computational capability. It often failed to launch, had a high
occurrence rate of false negatives and performed poorly on the same sample compared to
the iPhone.
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(a) Detection results of crack samples using (b) Detection results of crack samples using iPh-

iPhone 13. one 13.

crack 0.65

(c) Detection results of crack samples using Pi (d) Detection results of crack samples using Pi
camera with drone. camera with drone.

Figure 19. Comparison of results from different devices.

4.2. Reliability during Continuous Operation

For the lightweight devices, as the computational unit came directly from the mobile
phone, the high usage of the chip generated a lot of heat during operation. The figure below
shows the increase in the temperature of the iPhone 13 observed during a 10 min detection
session, with the room temperature at 32 °C.

As shown in Figure 20, the temperature rose beyond the operational limit of the camera
within the first few minutes of the detection session. This resulted in high latency for the
camera and significantly reduced the endurance of the detection system. Since YOLOv9c
was the model with the highest FLOPs in this project, the same test was run using the other
models to investigate the issue. The figure below shows the results of the test, illustrating
the increase in temperature during the first 10 min of operation with YOLOv8 Nano, Small,
Medium and YOLOv9 Compact at a room temperature of 32 °C.

As shown in Figure 21, YOLOv9c exhibited the highest rate of temperature increase,
while YOLOvS8 Nano, the model with the smallest FLOPs, had the lowest rate of temper-
ature increase. Although YOLOv8 Nano showed the lowest rate of temperature rise, all
models reached a high temperature after approximately 10 min of operation. This is con-
cerning, as the device’s endurance only lasts about 10 min, regardless of the computational
resources used.



Al 2024, 5 1812

YOLOvY Temperature Trend Over Time
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Figure 20. Temperature change over time using YOLOv9¢ model on iPhone 13.

YOLO Model Temperature Trends Over Time
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Figure 21. Temperature change over time using YOLO models on iPhone 13.

4.3. Possible Alternative Approach

Due to the heat produced by the high usage of the computational unit, an alternative
approach was designed to transfer the computational workload to other equipment. Instead
of using the iPhone to process the input image, the system transfers the input image via an
RTMP server, allowing a computer to access and process the imagery input.

The results can then be exported and streamed to another channel of the RTMP server,
allowing the user to review the results. By doing so, the system’s endurance can be greatly
increased, allowing for a longer operational duration. However, this approach reduces the
system’s robustness, as it requires a strong and stable connection on both ends to maintain
the flow of the detection process, which may be difficult to achieve. Figure 22 shows the
flowchart of the alternative system.
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Figure 22. Flowchart explaining an alternative approach for overheating detection device.

4.4. False Results

One of the challenges in this project is the false negative, which is due to the low recall
rate, and false positive, which may mistakenly identify objects such as cables and shadows
as defects or, in most cases, cracks. This may due to the crack being a black line, which can
hardly be distinguished from cables. Some issues can also affect the detection. Low light or
harsh glare can decrease recognition accuracy. With the tests performed, it is suggested that
the condition was due to the low aperture of the UAV camera, as the error did not occur as
much when using a mobile phone as the image source under harsh glare. Insufficient or
saturated algorithm training could increase error detection. The future approach is aiming
to obtain more data on the defects under various light conditions. Figure 23 shows the
example of false results recorded during the test.

missing—head 0.36

missing—head 0.52

missing—head 0.47

(a) False result of a scratch as a crack. A (b) False positive of a missing screw.

Figure 23. Examples of false results.

To lower the occurrence rate of false results that may occur due to change in imagery
input, including the displacement, scaling and spatial rotation, which are difficult to avoid
in the real world, aside from the augmentation process that enhances the dataset, defect
samples aim to collect as many features as possible from different perspectives. However,
with the limited samples, the challenge still remains, as the defects featured are mostly
random in shape and location on the aircraft. Further improvement is needed for the
system to be sufficiently reliable for use in the industry.

5. Conclusions

In this study, a system was developed to achieve a real-time detection system using the
YOLOVY algorithm. The system successfully detects various surface defects on the aircraft,
such as cracks, dents, missing heads, scratches and paint-offs. Moreover, the development
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of an RTMP server allows for real-time monitoring and evaluation of the detection results
via IoT devices.

Our experimental results demonstrated a high mean average precision (mAP@0.5)
of 0.853 across all classes, indicating the system’s robustness and potential for enhancing
aircraft safety inspections. However, challenges related to device overheating and latency
during continuous operation significantly impact the system’s reliability. To address this,
an alternative approach was implemented to transfer the computational workload to
other equipment, thereby extending the system’s operational endurance. This alternative
approach requires a stable and robust network connection but significantly reduces the risk
of overheating.

Overall, the developed detection system presents a promising solution for automating
aircraft surface inspections, offering enhanced accuracy, efficiency and reliability. Future
work will focus on optimizing the system’s performance in terms of reliability, reducing
the demand on the processing unit and improving its scalability and robustness.
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Abbreviations

The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle

CNN Convolutional Neural Network
YOLO You Only Look Once

RTMP Real-Time Messaging Protocol

IoT Internet of Things

mAP Mean Average Precision

CUDA Compute Unified Device Architecture
CUDNN  CUDA Deep Neural Network

(O] Operating System

SGD Stochastic Gradient Descent

NAdam  Nesterov-Accelerated Adaptive Moment Estimation
DFL Distribution Focal Loss

ToU Intersection Over Union

YAML YAML Ain’t Markup Language
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