
Citation: Gorshenin, A.K.;

Vilyaev, A.L. Machine Learning

Models Informed by Connected

Mixture Components for Short- and

Medium-Term Time Series

Forecasting. AI 2024, 5, 1955–1976.

https://doi.org/10.3390/ai5040097

Academic Editor: Mehdi Neshat

Received: 25 August 2024

Revised: 13 October 2024

Accepted: 17 October 2024

Published: 22 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Machine Learning Models Informed by Connected Mixture
Components for Short- and Medium-Term Time
Series Forecasting
Andrey K. Gorshenin 1,* and Anton L. Vilyaev 1,2

1 Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences,
119333 Moscow, Russia

2 Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University,
119991 Moscow, Russia

* Correspondence: agorshenin@frccsc.ru

Abstract: This paper presents a new approach in the field of probability-informed machine learn-
ing (ML). It implies improving the results of ML algorithms and neural networks (NNs) by using
probability models as a source of additional features in situations where it is impossible to increase
the training datasets for various reasons. We introduce connected mixture components as a source
of additional information that can be extracted from a mathematical model. These components
are formed using probability mixture models and a special algorithm for merging parameters in
the sliding window mode. This approach has been proven effective when applied to real-world
time series data for short- and medium-term forecasting. In all cases, the models informed by the
connected mixture components showed better results than those that did not use them, although
different informed models may be effective for various datasets. The fundamental novelty of the
research lies both in a new mathematical approach to informing ML models and in the demonstrated
increase in forecasting accuracy in various applications. For geophysical spatiotemporal data, the
decrease in Root Mean Square Error (RMSE) was up to 27.7%, and the reduction in Mean Absolute
Percentage Error (MAPE) was up to 45.7% compared with ML models without probability inform-
ing. The best metrics values were obtained by an informed ensemble architecture that fuses the
results of a Long Short-Term Memory (LSTM) network and a transformer. The Mean Squared Error
(MSE) for the electricity transformer oil temperature from the ETDataset had improved by up to
10.0% compared with vanilla methods. The best MSE value was obtained by informed random for-
est. The introduced probability-informed approach allows us to outperform the results of both
transformer NN architectures and classical statistical and machine learning methods.

Keywords: probability-informed machine learning; finite normal mixtures; connected mixture
components; forecasting; feature engineering

1. Introduction

In practice, we often deal with incomplete and noisy data that is influenced by various
random factors. To correctly describe patterns in such cases, the methods and approaches
of probability theory, mathematical statistics, and random processes are traditionally used
in mathematical modeling. Developing effective methods and algorithms for data analysis
necessitates the creation of mathematical models that depict the complex systems as well
as the statistical patterns of various processes within them. This task is relevant in the field
of artificial intelligence (AI) [1]. For example, a few traditional solutions, such as Bayesian
methods [2] and statistical learning [3,4], can be mentioned.

Training deep neural network (NN) architectures [5,6], including those for solving
forecasting problems [7–10], requires a large amount of data or additional information
about the structure of the data being investigated. Real-world datasets often have limited
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volume [11,12] and contain errors and noise due to random factors. This can make the
results of machine learning (ML) methods and neural networks worse. In particular, it is
not always possible to use efficient, but computationally complex and demanding data and
features, NN architectures like transformers [13] or Mamba [14]. To account for the influence
of random factors and describe the heterogeneity and variability of the data, it is natural
to use probabilistic and statistical models. This paper develops an approach to feature
construction based on probability mixture models to improve NN and ML forecasting
accuracy in time series. These models can improve the performance of algorithms of
this type.

In machine learning, the term “informing” refers to the joint use of mathematical
and ML models. It can imply feature construction based on various mathematical models.
We develop an approach to probability informing that uses probability models and their
characteristics as sources of additional information (features) for machine learning/neural
network algorithms. Moreover, even within the framework of these models, parameters
can be random. This allows us to flexibly account for the influence of external factors
and improve the generalization ability of NN/ML models. The so-called physically-
informed ML [15] should be mentioned in this context. Within its framework, ML models
receive additional information based on the physical model of a process or phenomenon.
However, in some cases, there is no physical model, but it is possible to create statistical
approximations for the data. In this regard, our paper expands on the aforementioned
approach by considering the influence of random factors on real data for various tasks.
This leads to the development of probability-informed machine learning.

The fundamental novelty of our approach lies in two aspects. First, we suggest a new
mathematical approach to informing ML models. Second, we demonstrate that models
informed by so-called connected mixture components are significantly more accurate for
short- and medium-term forecasting tasks on various real-time series. The basic mathemati-
cal model is mixtures of probability distributions. Their appearance can be attributed to the
ability to describe the processes discussed in the paper using a specific type of stochastic
differential equation. It is worth noting that the mixture parameters can also be random,
which allows for a more flexible consideration of the impact of external factors. Therefore,
it is necessary to provide both an analytical explanation for the type of distribution family
and to estimate random parameters, which leads to semiparametric [16] statistical models.

The main contributions are as follows:

• A new method of probability informing of ML models is introduced. It involves
creating additional features (connected mixture components) based on probability and
stochastic models. This approach is suitable for various machine learning algorithms
and deep neural networks.

• For the first time, we have shown that probability-informed ML models can also im-
prove their accuracy in forecasting, not just neural networks like in previous research.
When applying these models to geophysical time series, the Root Mean Square Error
(RMSE) was reduced by 1.2–16.4% and the Mean Absolute Percentage Error (MAPE)
was decreased by 3.2–24.3% compared with the results obtained with vanilla decision
trees [17], random forests [18], and gradient boosting [19].

• For real-world time series, a significant increase in the ML and NN forecasting accuracy
is demonstrated with various methods of probability informing by connected mixture
components as well as forecast periods. Thus, for geophysical data, the RMSE was
decreased by 0.8–27.7% and MAPE was by 0.1–45.7%, compared with models without
informing. For Electricity Transformer Dataset (https://github.com/zhouhaoyi/
ETDataset (accessed on 1 July 2024)) (ETDataset) [20], the Mean Squared Error (MSE)
improvement was 1.2–10.0%.

• For any test datasets and algorithms, probability-informed models are better than
vanilla ones. However, the best accuracy can be obtained by various algorithms.
An informed ensemble of LSTM (Long Short-Term Memory) architecture [21] and
vanilla transformer [22] provides the best results for geophysical data in short- and
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medium-term forecasting. Alternatively, for medium-term forecasts, an informed
random forest should be used for ETDataset.

• The introduced probability-informed approach allows us to outperform the results of
both transformer NN architectures and classical statistical and machine learning methods.

The rest of the paper is organized as follows: Section 2 discusses known approaches
to constructing features and informed machine learning. In Section 3, a methodology
for constructing connected mixture components as well as corresponding probability-
informing techniques are proposed. Section 4 shows the results of forecasting with different
periods for real geophysical and electricity transformer time series. Section 5 briefly
discusses the results obtained and further research directions in this area.

2. Related Works

Feature engineering is an essential tool in the field of machine learning. It allows us to
obtain additional information from existing data without increasing its size. It can be used
in classification [23], clustering, speech recognition, detection, and many others [24,25].

The modern solutions for time series forecasting are still often based on LSTM and
transformer NN architectures [26,27]. To improve forecasting accuracy under limited
dataset restrictions, additional information such as meta-data or multi-modal features
can be used [28,29]. However, in real-world situations, time series often lack additional
features, especially in experimental or historical datasets. In such cases, feature engineering
approaches can be used.

The process of feature construction can be based on various transformations of raw
data, such as algebraic operations. Additionally, it can involve extracting valuable informa-
tion based on physical laws as well as mathematical models and approaches. This approach
is promising in the field of physics-informed machine learning models [15]. It has already
been successfully used in neural networks and deep learning models that are used to
predict various physical processes [30–33] as well as time series analysis, such as predicting
the movements of semi-submersible vehicles [34] taking into account wave fluctuations.

The physics-informed machine learning can use probabilistic, statistical, and stochastic
models [35–39]. Moreover, the probabilistic characteristics of the data can be integrated
into a specific physical model. For example, it can be helpful to create a model for errors
that occur due to random noise in a dynamic system [40]. Another approach is to extend
information using a physical model for probabilistic neural networks, such as diffusion
one [41] or based on Bayesian inference [42].

Our research aims to develop an approach for informing based on the normal (Gaus-
sian) mixture models. Previously, we have proposed the idea of using the first four moments
of finite normal mixtures: expectation, variance, skewness, and kurtosis [43]. By adding
only a small number of elements (features) to the inputs, we were able to improve the
accuracy of short- and medium-term LSTM forecasts by an average of 11.4% for experimen-
tal data related to turbulent plasma and air-sea heat fluxes. A more complex method for
creating features for recurrent neural networks (RNNs) was also introduced.It was used to
select a trading strategy by an automatic trading system, which allowed us to get a yield
increase of up to 23.3% for currency pairs, but, in some cases, the classic ML metrics used
for forecasting (RMSE) were too large. For instance, it reached 0.3 on a few pairs.

In this paper, we propose a variety of methods for probability informing with addi-
tional features, based on connected mixture components both in a machine learning model
and in neural networks focused on improving the quality of classical forecasting metrics
RMSE, MAPE, and MSE.

3. Methodology of Probability Informing Based on Connected Mixture Components

This section describes approaches to feature construction based on probability models
for data, as well as merging initial inputs and additional features for ML algorithms and
deep neural network architectures frequently used in various data forecasting problems.
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3.1. Overall Framework

We consider the forecasting problem, that is, constructing a model f that best predicts
the target variable Y based on a set of features X such that f : X → Y. Methods for
expanding the feature space X by forming new nontrivial features X+ are focused on
constructing a modified model f+ : (X ∪ X+) → Y such that it is the optimal according
to a certain criterion (i.e., accuracy metrics), while the modified f+ model differs from
the original f model only by inputs extended with the new features while maintaining its
basic structure.

The general scheme (see Figure 1) begins with taking time series data as input for
further processing. In order to enhance the forecasting capacity of our model, we extract
and construct additional features from the input data using probability mixture models.
These features are then used to inform the forecast model, increasing its ability to recognize
complex relationships in the data. Finally, the model forecasts the target variable based
on the informed model. The feature construction and connected mixture components are
discussed in Section 3.2, whereas our probability-informed approach to ML models is
introduced in Section 3.3.

Figure 1. Scheme of probability feature construction and incorporation into machine learning models.

3.2. Feature Construction Based on Finite Normal Mixtures

Let us consider the procedure for constructing additional features, namely, connected
mixture components, based on probabilistic and stochastic models. Indeed, many phys-
ical, financial [44], and other processes can be described using Itô stochastic differential
equations [45] (SDEs) of the following form:

dX(t) = a(t)dt + b(t)dW(t), (1)

where X(t) is the stochastic process under consideration, W(t) is the standard Wiener
process, and the coefficients a(t) (drift) and b(t) (diffusion) are some random functions.

It is well-known [46] that, in the case of non-random drift and diffusion coefficients,
under additional assumptions about measurability with respect to filtering and normality
of the initial value distribution, the solution of SDE (1) is a certain Gaussian process
with a given mean and covariance function. In such a situation, the increments of the
process would also be Gaussian random variables. However, for random coefficients, the
distributions take on the form of arbitrary location-scale normal mixtures. An arbitrary
normal mixture can be approximated by finite ones. The estimation of unknown parameters
can be based on various modifications of the EM algorithm [47–49]. The parameters of the
approximating mixtures contain additional valuable information about the data structure
derived from the mathematical model used for them [50]. Therefore, it is natural to consider
them as additional features for ML methods and NN architectures. It is worth noting that
the parameters of the family of probability distributions used to approximate observations
can change significantly over time since real processes are usually not stationary. Therefore,
at the approximation stage, the model is constructed not for the entire initial time series
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but for some of its parts, windows, on which the process can be considered stationary in a
certain sense.

Let us describe in more detail the methodology for constructing new features for data
that can be described by SDE (1). Consider a subsample (window number t), which is a
vector X with the following distribution function:

F(x, k(t), at, σt, pt) =
k(t)

∑
i=1

piΦ
(

x− ai(t)
σi(t)

)
, (2)

where x ∈ R, Φ(x) =
+∞∫
−∞

e−x2/2 dx and for all j = 1, . . . , k(t) standard conditions for

parameters hold:

aj(t) ∈ R, σj(t) ∈ R, σj(t) > 0,
k(t)

∑
j=1

pi(t) = 1, pj(t) ⩾ 0.

Based on the estimation of the distribution parameters (2), there are the follow-
ing non-trivial features, which contain information about the statistical behavior of the
original series:

• pj(t) are weights of the corresponding components;
• aj(t) are expectations;
• σi(t) are standard deviations.

It follows from the expression (2) that 3k(t) − 1 new features are formed on each
window with the number t (one weight value pj(t) can always be expressed in terms of the
remaining ones). Then the window moves to the next time step, and the procedure repeats.

The process of evaluating mixture component parameters is based on the EM al-
gorithm. On the one hand, it is a traditional method for estimating the parameters of
mixture models [51–54]. On the other hand, this method is closely related to neural
networks both in the framework of a well-known relationship [55] with the backpropaga-
tion, a traditional method of NN training, and in the form of implementation in various
NNs [56].

Let us present a methodology for connecting parameters obtained on steps of the
sliding window. On the first pass, an adjacency matrix (aj(t), σj(t)) is constructed for
consecutive steps t and t + 1. Based on metrics of ℓp [57] spaces (for example, p = 1, 2),
one can evaluate whether the parametric pair (aj(t + 1), σj(t + 1)) at the t + 1 step is a
continuation of the pair (aj(t), σj(t)) at the t-th step.

The estimates of the parameters (aj(t + 1), σj(t + 1)) can vary significantly from those
on the previous step, even if the total number of components k(t + 1) remains the same. In
this case, a new component is formed that is not associated with any values in the previous
step. It is worth noting that the parameters of the weights pj(t) are not taken into account.
Indeed, the impact (i.e., weight) of the component on the overall finite normal mixture
can change significantly at each step, but the expectation and variance do not vary much.
In this case, it is considered to be the same component. One of the dimensions of the
adjacency matrix corresponds to the number of steps, and the second, with the exception
of completely zero vectors that occur during its initial initialization in the framework of
software solutions, corresponds to the connected mixture components. At the second step
in the two-dimensional space (a, σ), some clustering method is used with the number of
components obtained in the previous step. This procedure finally forms connected mixture
components. In general, their number does not coincide with the number of summands in
the formula (2) used for approximation at each step.

The procedure presented below (see also Algorithm 1) forms connected mixture
components:
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1. Let I(t) be a set of indices (numbers) of components for step number t, that is,
I(t) = {1, 2, ..., k(t)}, and J(t+1) = {1, 2, ..., k(t+1)} is an analogous set for step. t + 1.

2. Let I0 and J0 be sets of indexes from the first and second sets, respectively, for which
the nearest component was found. Initially, we assume I0 = ∅, J0 = ∅.

3. For each J ∈ J(t+1) \ J0, one should find the closest number I in the sense of solving
an optimization problem:

I = argmin
i∈I(t)\I0

(
|a(t)i − a(t)J |

p + |σ(t)
i − σ

(t+1)
J |p

)1/p
.

4. To correctly identify connected components, the following condition must be met:(
|a(t)I − a(t+1)

J |p + |σ(t)
I − σ

(t+1)
J |p

)1/p
< ϵ(a, σ). (3)

5. Steps 1–4 are repeated for each acceptable position of the sliding window, forming a
parameter adjacency matrix.

Algorithm 1. Forming connected mixture components

function COUPLED_COMPONENTS(Data, options)
// Estimation of mixture parameters
Params←EMs(Data, options.EM)
// Initialization by the number of components chosen for all window positions
Comps(1) ← Params.k(1);
for n=t:LENGTH(Params)-1 do

I0 ← ∅, J0 ← ∅; //Initialization of sets
repeat

// New or connected component
[I, J]←FIND_INDEX(Params,J(t+1) \ J0, I(t) \ I0);
if I ̸= ∅ then // The previous component for J is founded

I0 ← I0
⋃

I, J0 ← J0
⋃

J;
else

// Adding a new component
J0 ← J0

⋃
J;

Comps(n+1) ← ADD_NEW_COMP(Params, J);
until (J(t+1) \ J0 ̸= ∅)

// Labels for each set of parameters, clustering
Labels← CLUSTERING(Params, MAX_COMPS, options.ClustAlg);
// Adjacency matrix
AdjMatrix ← CONNECT(Params, Labels) :
return AdjMatrix;

3.3. Probability-Informed Machine Learning Models

In this section, we consider approaches to merging inputs (i.e., data) with connected
mixture components for ML models and NNs. Let the vector of estimated parameters of
the mixture model be denoted as

c⃗(t) = (a1(t), · · · , aN(t), σ1(t), · · · , σN(t), p1(t), · · · , pN−1(t)). (4)

The first possible approach involves directly combining the inputs with this vector.
For each set of basic features associated with the position of the sliding window having
an index of t, we add 3N − 1 new features (separate parameters) to the input, which
are based on probability models. It is important to note that the number N, i.e., the
dimensionality of the vector c⃗t, can vary across different windows. This depends on
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the optimal number of components needed for approximating with the finite normal
mixture (2). For easier data transfer to the model, we suggest using a fixed number N of
components for all windows. This means that the set number of components will remain
the same for each window.

The second approach is based on the assumption that the distribution in adjacent
windows does not change significantly. This is because the windows differ by only
one observation. Consequently, the time-varying parameters of the components c⃗(t) can be
combined into a single multidimensional time series. Figure 2 demonstrates the differences
between these approaches. The extension of the feature space is based on blocks marked
with green.

Figure 2. Separate parameters versus multidimensional time series.

Let us consider a few probability-informed machine learning methods. In the tasks
under consideration, the use of decision trees (hereinafter referred to as model (I)) and their
ensembles, random forests (model (II)), as well as gradient boosting on them (model (III)),
holds significant interest, particularly due to their interpretability and efficiency. In models
(I)–(III), the addition of connected mixture components can be implemented using the
first method described in this section, namely, by adding separate parameters for each
corresponding window. The additional variables are transferred to the forecasting model
in the standard way, as shown in Figure 3.

Figure 3. Informing ML algorithms (I)–(III) with parameters of probability models.

In our previous studies [44,58], we successfully tested the first approach (sepa-
rate parameters) to informing LSTM architectures. This architecture remains basic for
forecasting time series of various natures. In this paper, we improve the probability
informing of neural network models, including for the ensemble architecture based on
LSTM and transformer.

The neural network model (IV) (see Figure 4) consists of an LSTM layer, a dropout layer,
and fully connected (FC) layers. The parameters of the connected mixture components can
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be added as separate additional features for each corresponding window using the method
proposed by Andrej Karpathy [59]:

• The additional features c⃗ are transformed using an affine transformation to a form that
corresponds to the internal state of the recurrent neural network (RNN):

s⃗ = Wc⃗ + b⃗, (5)

where W and b⃗ are trainable parameters of the model.
• Then, the hidden state of the RNN is initialized using the vector s⃗.

This approach allows additional features to be transferred into the model without
affecting the input data of the LSTM layer, which represents a unified time series.

Figure 4. LSTM architecture (IV) informed by connected mixture components using hidden
state initialization.

Probability informing of this architecture can also be organized in a different way,
using the second method described at the beginning of this section. The model (V) consists
of an LSTM layer, a dropout layer, and FC layers. Now, the statistical parameters are
connected over time and transferred as a multivariate time series, merging with the original
time series; see Figure 5.

Figure 5. LSTM architecture (V) informed by multidimensional connected mixture components.

Finally, the model (VI) is an ensemble of LSTM and a vanilla transformer [22], see
Figure 6. In this model, similar to model (V), the connected mixture components are used
as a multivariate time series. It is fed in parallel to the input of the LSTM model with a
dropout layer at the output and to the transformer block, consisting of several layers (the
number of layers is a hyperparameter). Each transformer layer consists of attention heads,
dropout, and Layernorm layers, as well as FC layers. Then, a feature fusion [60–63] is used:
the predictions of both models are combined into a single vector, which after several FC
layers leads to the desired forecast value.

The idea of combining the LSTM and transformer in one model is based on the follow-
ing reasoning. It is well known that attention effectively models long-term dependencies,
focusing on different parts of the sequences. Meanwhile, the LSTM memory captures
short- and medium-term dependencies well but may forget important observations over
time. Thus, ensemble allows us to consider all these dependencies, which could potentially
enhance the overall generalization ability of the architecture.
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Figure 6. Ensemble of LSTM architecture and transformer (VI), informed by multidimensional
connected mixture components.

4. Experimental Section
4.1. Test Data and Connected Mixture Components

The first type of experimental data is air-sea heat fluxes, which are measured at
three geographic locations (the Gulf Stream, the Labrador Sea, and the Tropics). For each
of them, values of so-called latent and sensible fluxes are available. These are 6 time series,
each containing 14,612 observations from 2000 to 2010 (with a 6-h observation interval). For
convenience, the following names are used for them further: Gulfstream-1, Gulfstream-2,
Labrador-1, Labrador-2, Tropical-1, Tropical-2. The postfix 1 corresponds to latent fluxes
Qe = LρCe(qs − q)V, and 2 is sensible fluxes Qh = cpρCT(Tw − Ta)V. Here, Tw and Ta
are the water and air temperatures, respectively, V is the wind speed magnitude, q is the
specific humidity of the near-surface air, qs is the saturated specific humidity above the
water surface, L is the latent heat of evaporation, cp is the specific heat of air at constant
pressure, and its density ρ, CT , and Ce are the Stanton and Dalton numbers [64]. The
correctness of modeling such data using SDE (1) was demonstrated, for example, see [65].
For the purpose of testing our approaches, researchers can also use reanalysis data from
the ERA5 [66] or the RAS-NAAD [67] databases.

Figures 7 and 8 (both on the left) demonstrate fairly expected seasonal patterns in the
geophysical data. Therefore, for the correctness of statistical methods, the increments of the time
series should be used for modeling (see Figures 7 and 8, both on the right). A brief description
of the characteristics of all considered geophysical time series is presented in Table 1.

The target variable is a corresponding flux value. The training set consists of about
12,000 observations from the first 8 years, and the test set is about 2000 observations from
the last 16 months. Each original time series was divided into windows of 200 observa-
tions. For each window, the empirical distribution function was approximated by finite
normal mixtures in a sliding window mode as described above in Section 3.2. A basic
four-component finite normal mixture was used for the approximation, and the following
number of structural components was identified for each series: 5 for the Labrador-1 and
Tropical-2 series and 6 for the Gulfstream-1, Gulfstream-2, Labrador-2, and Tropical-1 series.
Figure 9 shows an example of the connected mixture components for the Gulfstream-2.

Figure 9 presents the expectations of the connected mixture components with in-time
evolution of the four of them marked in blue, orange, green, and red. A part of the time
series of 150 values was taken for clarity. Figure 10 demonstrates the formation of a new
component marked in purple with the disappearance of one of the previous components
marked in green from observation with number 190 and further.

One more test dataset (see Figure 11), which is significantly different in physical nature
from the geophysical time series, the Electricity transformer Dataset (ETDataset) [20] was
used. It contains measurements of transformer oil temperature and transformer load readings
in a region of China. A total of 17420 observations were collected from 2017 to 2018 (with a
one-hour observation interval). A negative load refers to a situation where power flows in
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the reverse direction through a transformer, i.e., from the secondary winding to the primary
one [68,69]. The possibility of modeling electricity transformers using SDEs [70], as well
as several more studies in this field [70–74], can be mentioned. Therefore, the approaches
proposed in Section 3 can also be used to form an extended feature space in this case. Moreover,
there are studies that use deep learning methods to forecast this type of data. In addition to
the article [20], which introduces and analyzes ETDataset, there are other relevant papers, for
example, see [75–78], in which various deep learning methods are used.

Figure 7. Gulfstream-1 (left) and its increments (right).

Figure 8. Gulfstream-2 (left) and its increments (right).

Table 1. Description of geophysical time series.

Characteristic Gulfstream-1 Gulfstream-2 Labrador-1 Labrador-2 Tropical-1 Tropical-2

Number of observations 14,612 14,612 14,612 14,612 14,612 14,612

Minimum value 3 −77 −52 −143 9 −28

Maximum value 995 677 330 645 403 69

Mean value 227 52 60 65 136 10
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Figure 9. Example of expectations of the connected mixture components.

Figure 10. Example of the formation of a new connected mixture component.

We choose the transformer oil temperature (see Figure 11) as the target variable. The
training set consists of about 10,000 observations from the first 12 months, and the test set
consists of about 3500 observations from the last 4 months. Six features are used to measure
the load: high useful load (HUFL), high useless load (HULL), middle useful load (MUFL),
middle useless load (MULL), low useful load (LUFL), and low useless load (LULL). Table 2
presents their brief description.

Figure 11. Example of the temperature of an electricity transformer.
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Table 2. ETDataset data description.

Characteristic HUFL HULL MUFL MULL LUFL LULL

Number of observations 17,420 17,420 17,420 17,420 17,420 17,420

Minimum value −22.7 −4.75 −25.0 −5.9 −1.4 −4.1

Maximum value 23.6 10.1 17.3 7.8 8.5 3.0

Mean value 7.4 2.2 4.3 0.9 3.1 0.9

Figures 12 and 13 demonstrate an example of the expectations and covariances of the
connected mixture components for the ETDataset. For clarity, a subsample of 200 values is
demonstrated, along with the temporal variation of the four components marked in blue,
orange, green, and red. Unlike the geophysical data, the electricity transformer data has a
more explicit separation of the components, especially on the expectations.

Figure 12. Example of expectations of components (ETDataset).

Figure 13. Example of covariances of components (ETDataset).

4.2. Accuracy Metrics, Hyperparameters, and Typical Training Times

This section describes the accuracy metrics and hyperparameters used for the models
described in Section 3.3.
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Geophysical data are standardized using min–max normalization:

Xnorm =
X− Xmin

Xmax − Xmin

Forecasting accuracy is measured by the RMSE and MAPE:

RMSE =

√
1
n ∑(yi − ŷi)2, MAPE =

1
n

∣∣∣∣yi − ŷi
yi

∣∣∣∣ · 100%,

where yi is the target variable, ŷi is the prediction.
For ease of comparison with known results [20], the ETDataset is standardized using

the following normalization:

Xnorm =
X− Xmean

σ2 ,

where Xmean is the mean value and σ is the standard deviation. For these data, the MSE is
used to determine prediction accuracy:

MSE =
1
n ∑(yi − ŷi)

2

Throughout the paper, the comparison of experimental results using MAPE, MSE, and
RMSE is based on the relative error formula.

Tables 3–5 show the ranges of hyperparameter values for models (I)–(III). Table 6 presents
the hyperparameters for architectures (IV) and (V), as well as Table 7 contains them for the
ensemble architecture (VI).

The Optuna framework [79] was used for hyperparameter optimization, automating
the process of finding the optimal values for ML models. It is a Sequential Model-Based
Optimization method that uses information from previous hyperparameter evaluations
to find the next optimal values. This framework significantly reduces the computational
complexity of the tuning stage. Instead of training with 4 million configurations (as in a
full grid search method), we used only 200 iterations to find the best configuration for each
model. It is worth noting that the information does not change the hyperparameter space.

Table 3. Hyperparameters for model (I)—decision tree.

Hyperparameter Value Range Description

max_depth 5–50 Maximum tree depth

min_samples_split 2–50 Minimum number of samples required to
split an internal node

min_samples_leaf 1–20 Minimum number of samples in a leaf

max_features Sqrt, log2
Function for the maximum number of

features considered when splitting

Table 4. Hyperparameters for model (II)—random forest.

Hyperparameter Value Range Description

n_estimators 30–300 Number of trees

max_depth 5–40 Maximum tree depth

min_samples_split 2–20 Minimum number of samples required to
split an internal node

min_samples_leaf 1–10 Minimum number of samples in a leaf

max_features Sqrt, log2
Function for the maximum number of

features considered when splitting
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Table 5. Hyperparameters for model (III)—gradient boosting.

Hyperparameter Value Range Description

n_estimators 30–300 Number of boosting steps

learning_rate 0.005–0.5 Model learning rate

max_depth 3–15 Maximum tree depth

Subsample 0.5–1.0 Part of the training data for each iteration

Table 6. Hyperparameters for architectures (IV) and (V)—LSTM.

Hyperparameter Value Range Description

Units_LSTM1 24–256 Number of neurons in the LSTM layer

Units_FC1 24–256 Number of neurons in the fully
connected layer

Learning_rate 5 · 10−5–10−3 Model learning rate

Dropout_rate 0–50% Dropout layer parameter

L1 Regularization 10−5–10−3 L1 regularization parameter

L2 Regularization 10−6–10−4 L2 regularization parameter

Epochs 50–900 50 epochs are for all, while the best
models are trained for another 850 epochs

Table 7. Hyperparameters for architecture (VI)—LSTM and transformer.

Hyperparameter Value Range Description

Units_LSTM1 24–256 Number of neurons in the LSTM layer

Units_FC1 24–256 Number of neurons in the fully
connected layer

Num_heads 2–32 Number of transformer attention heads

Num_layers 1–10 Number of transformer layers

Hidden_size 128–4096 transformer hidden layer size

Units_final 4–128 Number of neurons in the feature fusion
layer

Learning_rate 5 · 10−5–10−3 Model learning rate

Dropout_rate 0–50% Dropout layer parameter

L1 Regularization 10−5–10−3 L1 regularization parameter

L2 Regularization 10−6–10−4 L2 regularization parameter

Epochs 50–900 50 epochs are for all, while the best
models are trained for another 850 epochs

A high-performance computing cluster based on NVIDIA V100 GPU 32 GB was used
for training the models. The training time of a single NN model was as follows:

• Seven minutes for architecture (IV) on geophysical data;
• Fifteen minutes for architecture (V) on geophysical data;
• Forty minutes for architecture (V) on ETDataset (due to the larger input space);
• Three hours for an ensemble architecture (VI) on geophysical data;
• Five hours for architecture (VI) on ETDataset.
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4.3. Geophysical Data Forecasting

For each of the models (I)–(VI) from Section 3.3, the geophysical data (see Section 4.1)
was used to compare forecasting results with and without informing by connected
mixture components. We consider the short-term (18 h, i.e., 3 observations) and the
medium-term periods (60 h, i.e., 10 observations). Tables 8–11 present the corresponding
forecasting results:

• Short-term forecasts: Table 8 (RMSE) and Table 9 (MAPE);
• Medium-term forecasts: Table 10 (RMSE) and Table 11 (MAPE).

Minimum values in Tables 8–11 are marked in bold.
Based on the results of experiments with various configurations of hyperparameters,

it was established that for a forecast on 3 observations, informing with connected mixture
components leads to the following ranges of the RMSE decrease (see Table 8):

• From 1.4% to 3.7% for model (I);
• From 0.8% to 2.7% for model (II);
• From 1.0% to 2.7% for model (III);
• From 1.4% to 15.9% for architecture (IV);
• From 9.4% to 27.7% for architecture (V);
• From 4.8% to 26.7% for architecture (VI).

The best accuracy values were obtained using the informed ensemble architecture of
LSTM and transformer (VI).

The ranges of the MAPE decrease are as follows (see Table 9):

• From 1.4% to 5.0% for model (I);
• From 1.5% to 5.0% for model (II);
• From 0.8% to 3.9% for model (III);
• From 7.5% to 22.5% for architecture (IV);
• From 20.5% to 45.7% for architecture (V);
• From 5.5% to 26.2% for architecture (VI).

The best accuracy values in most cases were obtained using the informed ensemble
architecture of LSTM and transformer (VI), although for Labrador-1 and Tropical-2,
the informed LSTM (V) and random forest (II) performed slightly better. From the
comparison of results for architecture (IV) and architecture (V), it is evident that merging
with a multivariate set of components yields a greater accuracy increase than providing
individual values.

Table 8. Forecasts for 3 observations, RMSE.

Model Gulfstream-1 Gulfstream-2 Labrador-1 Labrador-2 Tropical-1 Tropical-2

Decision tree 0.178 0.103 0.141 0.111 0.151 0.083

Informed decision tree (I) 0.174 0.100 0.139 0.109 0.147 0.080

Random forest 0.125 0.074 0.095 0.076 0.108 0.059

Informed random forest (II) 0.122 0.072 0.094 0.074 0.107 0.058

Gradient boosting 0.134 0.080 0.103 0.081 0.115 0.062

Informed gradient boosting (III) 0.131 0.079 0.102 0.079 0.112 0.061

LSTM 0.078 0.076 0.080 0.073 0.083 0.070

Informed LSTM (IV) 0.069 0.071 0.069 0.072 0.075 0.061

Informed LSTM (V) 0.065 0.061 0.067 0.066 0.065 0.058

LSTM + transformer 0.074 0.076 0.078 0.065 0.069 0.063

Informed LSTM + transformer (VI) 0.060 0.060 0.066 0.062 0.061 0.058



AI 2024, 5 1970

Table 9. Forecasts for 3 observations, MAPE.

Model Gulfstream-1 Gulfstream-2 Labrador-1 Labrador-2 Tropical-1 Tropical-2

Decision tree 34.8% 21.1% 25.5% 19.9% 25.3% 13.7%

Informed decision tree (I) 33.7% 20.1% 24.7% 19.1% 24.8% 13.5%

Random forest 25.4% 18.3% 18.6% 13.5% 20.0% 10.8%

Informed random forest (II) 25.2% 17.7% 17.9% 13.3% 19.7% 10.4%

Gradient boosting 29.3% 18.5% 22.3% 18.4% 21.2% 14.5%

Informed gradient boosting (III) 27.9% 18.2% 22.0% 17.7% 20.9% 14.3%

LSTM 16.8% 17.2% 21.8% 15.3% 13.4% 16.9%

Informed LSTM (IV) 14.4% 16.0% 18.5% 13.6% 11.2% 13.8%

Informed LSTM (V) 13.3% 13.1% 15.7% 12.7% 10.3% 11.6%

LSTM + transformer 14.3% 15.8% 17.4% 13.0% 10.7% 12.4%

Informed LSTM + transformer (VI) 12.8% 12.9% 16.5% 10.3% 8.8% 10.7%

Table 10. Forecasts for 10 observations, RMSE.

Model Gulfstream-1 Gulfstream-2 Labrador-1 Labrador-2 Tropical-1 Tropical-2

Decision tree 0.201 0.126 0.158 0.130 0.192 0.103

Informed decision tree (I) 0.196 0.124 0.154 0.125 0.187 0.101

Random forest 0.145 0.093 0.115 0.100 0.138 0.075

Informed random forest (II) 0.139 0.092 0.109 0.095 0.133 0.073

Gradient boosting 0.155 0.099 0.124 0.106 0.149 0.080

Informed gradient boosting (III) 0.152 0.093 0.122 0.103 0.145 0.078

LSTM 0.092 0.090 0.096 0.089 0.101 0.085

Informed LSTM (IV) 0.083 0.086 0.088 0.084 0.092 0.075

Informed LSTM (V) 0.082 0.084 0.081 0.081 0.083 0.071

LSTM + transformer 0.085 0.089 0.092 0.079 0.084 0.076

Informed LSTM + transformer (VI) 0.074 0.076 0.077 0.075 0.071 0.070

Table 11. Forecasting errors in the MAPE metric—forecast for 10 observations.

Model Gulfstream-1 Gulfstream-2 Labrador-1 Labrador-2 Tropical-1 Tropical-2

Decision tree 38.3% 25.9% 26.7% 24.4% 32.2% 17.0%

Informed decision tree (I) 38.0% 24.9% 26.4% 21.9% 31.5% 17.0%

Random forest 29.5% 23.0% 22.5% 17.8% 25.6% 13.7%

Informed random forest (II) 28.8% 22.5% 20.6% 17.2% 24.4% 13.1%

Gradient boosting 33.2% 22.6% 26.4% 24.2% 27.4% 18.8%

Informed gradient boosting (III) 32.4% 21.9% 26.2% 23.1% 26.5% 18.4%

LSTM 18.7% 19.7% 23.5% 16.5% 16.0% 19.7%

Informed LSTM (IV) 17.3% 18.1% 22.0% 15.4% 14.7% 17.3%

Informed LSTM (V) 16.8% 18.0% 20.1% 15.0% 13.2% 15.2%

LSTM + transformer 16.6% 18.3% 20.0% 15.4% 13.0% 14.8%

Informed LSTM + transformer (VI) 15.7% 16.4% 19.2% 12.6% 11.3% 12.8%

In the experiments for forecasts on 10 observations, similar results were obtained. The
ranges of the RMSE decrease are as follows (see Table 10):

• From 1.6% to 4.0% for model (I);
• From 1.1% to 5.5% for model (II);
• From 1.6% to 6.4% for model (III);
• From 4.6% to 13.3% for architecture (IV);
• From 7.1% to 21.7% for architecture (V);
• From 5.3% to 19.5% for architecture (VI).
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The best accuracy values were obtained using the informed ensemble architecture of
LSTM and transformer (VI).

The ranges of the MAPE decrease are as follows (see Table 11):

• From 0.1% to 11.4% for model (I);
• From 2.2% to 9.2% for model (II);
• From 0.7% to 4.8% for model (III);
• From 6.8% to 13.8% for architecture (IV);
• From 9.4% to 29.6% for architecture (V);
• From 4.2% to 22.2% for architecture (VI).

The best accuracy values in most cases were obtained using the informed ensemble
architecture of LSTM and transformer (VI).

Figure 14 shows examples of short-term forecasts for the best model (VI). Each graph
represents a part of the test set and includes actual data and the forecast for the same geograph-
ical location at the corresponding time. The forecast for future steps was built using actual
observations, with no use of prior forecasts. In the upper left corner of Figure 14, the forecast
for a sample of 150 observations for the Gulfstream-1 (RMSE = 0.060) is presented. Similarly,
in the upper right corner, the forecast for the Gulfstream-2 (RMSE = 0.060) is shown; the
forecast for the Labrador-1 (RMSE = 0.066) is in the middle left; the forecast for the Labrador-2
series (RMSE = 0.062) is in the middle right; the forecast for the Tropical-1 (RMSE = 0.061) is in
the bottom left; the forecast for the Tropical-2 (RMSE =0.058) is in the bottom right.

From the presented results, it is evident that merging with a multinomial set of
connected mixture components is more preferable in terms of accuracy compared with
schemes that add individual values. In particular, greater accuracy was achieved for at least
half of the test series (Gulfstream-1, Tropical-1, Tropical-2) for geophysical data compared
with the values presented in the paper [58]. For the remaining series, the results are
comparable, and the differences can be explained by computational errors. This confirms
the conclusion that this type of probability informing can be effectively used in various
machine learning models to improve forecast quality.

Figure 14. Example of geophysical data short-term forecasts.
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4.4. ETDatset Forecasting

For each model (I)-(III) and (V), (VI) from Section 3.3 concerning electricity transform-
ers, forecasting results with and without informing by connected mixture components are
compared based on MSE. There is a medium-term forecast: 48 h, which corresponds to
48 observations in the time series. Architecture (IV) is not used because the input data
already represent a multivariate series, that is, architecture (V). Table 12 presents the
corresponding results. Minimum values are marked in bold.

Table 12. Forecasting errors for ETDataset.

Model MSE RMSE

Decision tree 0.255 0.505

Informed decision tree (I) 0.248 0.498

Random forest 0.178 0.422

Informed random forest (II) 0.166 0.407

Gradient boosting 0.175 0.418

Informed gradient boosting (III) 0.173 0.416

LSTM 0.232 0.482

Informed LSTM (V) 0.211 0.459

LSTM + transformer 0.224 0.473

Informed LSTM + transformer (VI) 0.207 0.455

The experimental results for various hyperparameter configurations show that the
informed models with connected mixture components have improvements in MSE accuracy.
They are higher by the following amounts:

• A total of 2.8% for model (I);
• A total of 7.2% for model (II);
• A total of 1.2% for model (III);
• A total of 10.0% for architecture (V);
• A total of 8.2% for architecture (VI).

The minimal MSE of 0.166 was demonstrated by the informed random forests. Figure 15
shows an example of forecasting the test dataset using the model (II).

Figure 15. Example of forecasts for electricity transformer data.

In the original paper [20], a slightly better result (MSE = 0.158) was obtained using a
significantly more complex modern transformer NN architecture, Informer, for forecasting
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long-term dependencies. This accuracy value is lower than the corresponding one for the
informed random forest by only 0.008. Moreover, our probability-informed approach allows
us to outperform the previously obtained values [20] by both the transfomer NN architecture
known as Reformer [80] (MSE = 0.284) and the statistical method Prophet [81] (MSE = 0.168).

5. Conclusions and Discussion

The paper suggests an approach to using connected mixture components as additional
features for improving the efficiency of machine learning models. We consider six schemes
that are suitable for both standard ML methods and deep neural network architectures.

Based on the results of experiments, we show an improvement in forecasting accuracy
measured by RMSE from 0.8% to 27.7% and by MAPE from 0.1% to 45.7% due to the
expansion of the feature space for geophysical data. An improvement measured by MSE is
from 1.2% to 10.0% for electricity transformers. It is demonstrated that informing based
on multidimensional time series gives a more significant improvement in model forecasts
than a separate set of values: RMSE is reduced by 1.2–16.4%, MAPE is by 0.5–22.2%. Based
on the results obtained, we can conclude that a probability-informed approach is effective
not only for neural networks, including ensemble ones, but also for classical ML models
(decision tree, random forest, gradient boosting).

Further research directions involve exploring more complex data representations, such
as those based on various types of autoencoders, including variational ones. This approach
aims to address issues related to the dynamically changing number of mixture components,
which are additional features for ML models. Additionally, it can lead to the development of
more specialized deep probability-informed NN architectures to enhance the ability of such
models to process real data in a more universal manner. For example, it is of great interest
to apply these approaches in a wide range of applications, including telecommunications
traffic [82]. In this area, significant progress has been made in solving problems related to
forecasting and detecting anomalous observations using probabilistic and statistical models
within machine learning [83], primarily deep Gaussian models [84]. The probability informing
based on connected mixture components in this research field is promising for the future.
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