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Abstract: This study aimed to evaluate the potential of Large Language Models (LLMs)
in healthcare diagnostics, specifically their ability to analyze symptom-based prompts
and provide accurate diagnoses. The study focused on models including GPT-4, GPT-4o,
Gemini, o1 Preview, and GPT-3.5, assessing their performance in identifying illnesses based
solely on provided symptoms. Symptom-based prompts were curated from reputable
medical sources to ensure validity and relevance. Each model was tested under controlled
conditions to evaluate their diagnostic accuracy, precision, recall, and decision-making
capabilities. Specific scenarios were designed to explore their performance in both general
and high-stakes diagnostic tasks. Among the models, GPT-4 achieved the highest diagnostic
accuracy, demonstrating strong alignment with medical reasoning. Gemini excelled in
high-stakes scenarios requiring precise decision-making. GPT-4o and o1 Preview showed
balanced performance, effectively handling real-time diagnostic tasks with a focus on
both precision and recall. GPT-3.5, though less advanced, proved dependable for general
diagnostic tasks. This study highlights the strengths and limitations of LLMs in healthcare
diagnostics. While models such as GPT-4 and Gemini exhibit promise, challenges such as
privacy compliance, ethical considerations, and the mitigation of inherent biases must be
addressed. The findings suggest pathways for responsibly integrating LLMs into diagnostic
processes to enhance healthcare outcomes.

Keywords: large language models; healthcare; AI; digital health; medical diagnostics;
natural language processing (NLP)

1. Introduction
The advancement of Large Language Models (LLMs) has transformed natural lan-

guage processing, unlocking new possibilities for healthcare and clinical applications [1–7].
In the healthcare sector, LLMs are emerging as potential tools for enhancing diagnostic
accuracy and streamlining patient interactions by interpreting and generating human-like
text [8,9]. Given the high demand for healthcare services and the need for efficient patient
management, these models could automate parts of the diagnostic process, making health-
care services more accessible while reducing provider workloads [10]. LLMs have already
demonstrated utility in data-intensive fields like radiology and pathology, where rapid
interpretation of diagnostic data aids in early disease detection and treatment planning [11].

Beyond diagnostics, LLMs contribute to patient engagement by offering personalized
health consultations and symptom assessments, potentially improving trust and satisfaction.
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By analyzing diverse data sources, including patient histories, imaging, and sensor data
from wearable devices, these models enable more informed decision-making for healthcare
providers [12]. Applications extend to mental health care, where trends in speech and
behavior can be analyzed, chronic disease management supported through continuous data
monitoring, and vision care improved through early detection of conditions like diabetic
retinopathy [13].

However, the deployment of LLMs in healthcare raises significant challenges, in-
cluding concerns about patient privacy, model transparency, and ethical implications of
automated decision-making. Meeting data privacy standards, such as those outlined by
HIPAA, is critical [14]. Additionally, the inherent biases in LLMs must be addressed to
mitigate potential negative consequences for patient care and diagnostic accuracy [15].
Addressing these technical, ethical, and regulatory concerns is vital for ensuring the safe
implementation of LLMs in clinical environments.

This study systematically evaluates the diagnostic capabilities of five advanced Large
Language Models (LLMs)—GPT-4, GPT-4o, Gemini, o1 Preview, and GPT-3.5—using a
structured framework designed to ensure consistency and fairness in comparing their
performance. The results demonstrate GPT-4’s exceptional diagnostic accuracy, driven
by its extensive training on diverse datasets, making it effective in handling complex
medical scenarios. Gemini stands out in high-stakes situations, prioritizing precision and
minimizing false positives, while GPT-4o and o1 Preview exhibit a balanced performance,
combining real-time applicability with reliable accuracy. GPT-3.5, while less advanced,
proves useful for general diagnostic tasks and resource-limited settings. The study also
highlights critical challenges faced by these models, including difficulties in interpreting
ambiguous or nuanced symptoms, the need for robust privacy safeguards, and the risk
of perpetuating biases inherent in their training data. These findings advance the under-
standing of LLMs’ diagnostic potential and establish a foundation for their responsible
integration into clinical workflows.

2. Related Work
2.1. Advancements in LLM Capabilities for Healthcare Applications

The integration of Large Language Models (LLMs) into healthcare is transforming
medical diagnostics and patient care [16]. These models enhance the precision and speed
of diagnostic processes, especially in fields like radiology and pathology, which benefit
from the detailed analysis and early detection these models enable [11]. LLMs also play a
role in improving patient interactions by offering personalized consultations and symptom
assessments, which foster trust and patient satisfaction. Beyond diagnostics, these models
analyze diverse data sources—patient histories, imaging, and sensor data from wearable
devices—to assist healthcare providers in informed decision-making [12]. For example,
Meskó et al. [17] highlight how models like GPT-4 can process large datasets and deliver
human-like responses, creating a multidimensional approach to healthcare by integrating
textual, visual, and sensor-based data streams. This integration enables more comprehen-
sive health assessments and ultimately improves patient outcomes. Other studies [13,18]
have demonstrated how LLMs extend into mental health care by analyzing behavioral data
to predict outcomes, a valuable application that supports mental health professionals in
creating personalized treatment plans.

2.2. Challenges in Integrating LLMs into Healthcare

The integration of generative AI and LLMs in healthcare brings diverse and complex
challenges [19–26]. Yu et al. [27] underscore the necessity for robust data privacy measures,
precise model fine-tuning, and thorough implementation strategies to ensure AI deploy-
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ment aligns with healthcare needs without compromising security or efficiency. They
emphasize the role of collaborative co-design—engaging both clinicians and patients in
AI development—to ensure tools are tailored to medical requirements while safeguarding
data security and patient privacy [14]. Singh et al. [28] address psychological challenges,
such as the cognitive biases in LLMs, which may lead to overconfidence or underestimation
in diagnostic outputs. These biases could lead to errors in clinical decisions, underscoring
the need for mechanisms that assess and adjust AI confidence levels. Ullah et al. [29]
further discuss technical challenges in diagnostic medicine, particularly issues of contextual
understanding and interpretability in fields like digital pathology. The inherent “black-
box” nature of LLMs, combined with biases in training datasets, complicates their clinical
acceptance and reliability [30]. However, the practical deployment of such systems faces
significant challenges, including the reliability of AI applications in medical settings, the
imperative for extensive clinical trials, and ongoing concerns about the confidentiality and
security of patient data [31].

2.3. LLMs in Clinical Trials and Patient Monitoring

LLMs have shown potential in optimizing clinical trials and patient monitoring by en-
hancing data processing and predictive capabilities. Yuan et al. [32] demonstrate how LLMs
can improve clinical trial efficiency through patient-trial matching by utilizing Electronic
Health Records (EHRs). Their privacy-aware data augmentation strategy resulted in a 7.32%
improvement in matching accuracy, enhancing both the speed and precision of patient selec-
tion for trials, thereby expediting research and treatment discovery. Jin et al. [33] and Kim
et al. [34] discuss the Health-LLM system, which uses complex algorithms to analyze data
from wearable sensors in real time. This system provides personalized health predictions
that adapt to changes in patient conditions, especially for chronic disease management.
These studies illustrate the capacity of LLMs to support continuous health monitoring and
contribute to preventive care by encouraging adherence to prescribed health regimens.
Xu et al. [35] explore Mental-LLM applications, which assess language patterns in real
time to predict mental health trends, adding valuable insights into patient monitoring
for mental health conditions. These challenges necessitate continuous advancements in
AI technologies to improve their accuracy, reliability, and applicability in diverse clinical
environments [36,37].

2.4. Applications and Limitations of LLMs in Diagnostics

The use of LLMs in diagnostics highlights both their potential and limitations.
Meskó et al. [17] and Kusa et al. [12] provide foundational insights into LLMs’ capabilities
for synthesizing multimodal data, which can enhance diagnostic accuracy and improve
patient outcomes. However, Kusa et al. also point out challenges with LLM sensitivity to
user input variations, which can lead to discrepancies in diagnostic results. These vari-
ations often stem from differing symptom descriptions and entrenched patient beliefs,
underscoring the need for systems that can adjust to such differences to avoid diagnostic
errors. Additionally, research by Abbasian et al. [23] examined how conversational health
agents powered by LLMs enhanced patient experience in diagnostics. The reliance of LLMs
on the quality of input data remains a significant barrier, as inconsistent input can affect
model performance and reliability [27]. The insights from these studies are critical for
understanding LLMs’ role in diagnostics and the steps needed to manage sensitivity and
variability in user inputs.

2.5. Ethical and Technical Considerations for LLM Deployment

Deploying LLMs in healthcare requires rigorous attention to ethical and technical
standards. Montagna et al. [11] emphasize the challenges of implementing LLM-based
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chatbots for chronic disease management, particularly within decentralized systems where
data privacy and security are critical. Their proposed architecture for chronic disease
management supports diverse medical conditions while adhering to strict privacy regula-
tions, but its deployment faces challenges in reliability and the need for extensive clinical
trials to validate performance. Similarly, Kim et al. [34] illustrate the technical difficulties
of processing multimodal data in real time, especially in specialized healthcare contexts.
Addressing these issues requires advancements in both AI technology and regulatory
frameworks. Humphrey et al. [14] and Yuan et al. [38] argue for ethical AI practices and
rigorous regulatory compliance to protect patient privacy and data integrity. Meeting
these standards will be essential to maximize LLM utility in healthcare while ensuring
responsible, safe, and secure integration.

3. Method
3.1. Research Strategy

This study utilized a structured framework to evaluate the diagnostic capabilities of
Large Language Models (LLMs) using symptom-based prompts derived from a carefully
curated dataset (Figure 1). Each LLM was presented with the same sequence of prompts to
ensure that observed differences in responses were attributable solely to the models’ unique
interpretive capabilities. This standardized procedure facilitated consistent comparisons
across models, maintaining uniformity in prompt presentation and response recording,
while mitigating variability introduced by differing input formats or evaluation protocols.
The curated dataset was constructed from reputable medical sources, including publicly
available clinical guidelines and verified mappings of diseases to symptoms. Each prompt
was designed to replicate real-world diagnostic scenarios by incorporating commonly
reported symptom combinations, such as “cough, mild headache, sneezing”. The inclusion
of diverse symptom profiles ensured that the models were evaluated on a wide spectrum
of diagnostic complexities.

Figure 1. Research Strategy.

Following the generation of predictions by the models, each response was systemati-
cally compared to the actual diagnoses associated with the provided symptom descriptions.
This evaluation was conducted using a zero-shot diagnostic approach, wherein the models
produced predictions without prior fine-tuning or domain-specific customization. Perfor-
mance was assessed using key metrics, including precision, recall, and F1 scores, enabling
a comprehensive evaluation of diagnostic accuracy. The systematic approach not only
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allowed for the identification of individual model strengths and limitations but also estab-
lished a robust framework for evaluating the overall reliability and applicability of LLMs in
healthcare. The consistency of this methodology minimized biases and external confound-
ing factors, ensuring a fair and transparent evaluation of each model’s capabilities. These
findings contribute to advancing the understanding of LLMs’ potential applications in
medical diagnostics and provide a foundation for future research to address more complex
clinical scenarios and integrate multimodal data.

3.2. Description of the LLMs Evaluated

This section introduces each of the Large Language Models (LLMs) used in the study—
Gemini, GPT-3.5, GPT-4, o1 Preview, and GPT-4o. Each model demonstrates strengths in
generating clinically relevant information and performing tasks such as clinical prediction,
diagnosis, and providing data-driven insights to support health maintenance and recovery.
These LLMs are widely accessible, commonly used by the general public, and are essential
for rapid evaluation to determine their suitability and effectiveness in clinical applications
and healthcare research. Each model possesses unique computational strengths for work-
ing with clinical datasets, contributing to enhanced diagnostic reliability in healthcare
settings [12].

Gemini: Gemini marks a notable advancement in LLM technology, particularly with
its specialized design for domain-specific applications, including healthcare. The archi-
tecture of Gemini is crafted to enable nuanced understanding and response generation in
specialized fields, making it an invaluable tool for tasks such as medical diagnostics and
healthcare inquiries, where precision and accuracy are critical. Gemini’s ability to integrate
and reason across multimodal inputs underscores its potential to transform how medical
information is processed, establishing a new standard for AI in healthcare [7].

GPT-3.5: As a foundational model, GPT-3.5, the predecessor to GPT-4, offers robust
capabilities in language understanding and generation, though with slightly less proficiency
compared to its successor. GPT-3.5 serves as a comparative benchmark to measure progress
in LLMs and their applicability in medical diagnostics. Despite its earlier status, GPT-3.5
achieved a notable accuracy rate of 53 percent on the Medical Knowledge Self-Assessment
Program, demonstrating its capability to understand and respond to clinical and healthcare-
related inquiries, and illustrating its value in diagnostic tasks [5].

GPT-4: Developed by OpenAI, GPT-4 stands at the forefront of language understand-
ing and generation capabilities, designed to interpret complex queries. Its architecture
is aligned specifically for assessing diagnostic accuracy based on symptom descriptions.
GPT-4 achieved a 75 percent accuracy rate on the Medical Knowledge Self-Assessment
Program, highlighting its advanced understanding of complex medical questions and
emphasizing its role in refining diagnostic accuracy from symptom narratives [5].

o1 Preview: As an iteration within the GPT series, o1 Preview prioritizes high diag-
nostic accuracy alongside real-time performance for medical applications. Its architecture
is optimized for handling complex inquiries efficiently, making it particularly useful in
settings that require timely diagnostic support. Built on the strengths of the GPT-4 architec-
ture, o1 Preview is intended for seamless integration in fast-paced healthcare environments,
supporting clinicians in making quick and precise diagnostic decisions, which positions it
as a practical tool in modern medical practice [5].

GPT-4o: Designed as a specialized variant of GPT-4, GPT-4o emphasizes balanced,
real-time diagnostic performance, especially in clinical settings. This model builds upon
GPT-4’s capabilities, adapting them to workflows that demand a prompt, accurate analysis
of patient symptoms. OpenAI developed GPT-4o with a focus on diagnostic accuracy while
ensuring smooth integration into healthcare systems that require swift decision-making.
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By prioritizing real-time applicability, GPT-4o aids healthcare professionals in making
well-informed diagnoses both efficiently and effectively [5].

3.3. Data Collection Methods

The dataset for this study was constructed using 50 distinct diseases, each evaluated by
Large Language Models (LLMs): Gemini, GPT-3.5, GPT-4, GPT-4o, and o1 preview model.
This approach resulted in a total of 250 individual evaluations (50 diseases × 5 models) as
shown in Table 1.

Table 1. Distribution of dataset evaluations across models.

Model Diseases Evaluated per Model

Gemini 50

GPT-3.5 50

GPT-4 50

o1 Preview Model 50

GPT-4o 50

Total 250 total evaluations

Source and selection of diseases: The symptom data for the selected diseases were
gathered from reputable medical sources, including the Centers for Disease Control and
Prevention (CDC) [39], World Health Organization (WHO) [40], Mayo Clinic [41], Cleveland
Clinic [42], and Johns Hopkins Hospital [43]. For each disease, a detailed list of symptoms
was compiled, which formed the basis for creating diagnostic prompts.

Dataset and disease selection: The dataset encompassed 50 common diseases
(Figure 2), such as seasonal allergies, the common cold, and food-related illnesses,
which are frequently encountered in everyday medical practice. Each disease was
tested against all models (Gemini, GPT-3.5, GPT-4, o1 Preview and GPT-4o), ensur-
ing consistency in model comparison and yielding 250 total data points for the analy-
sis. This dataset focused on widely recognized symptoms to evaluate the models’ abil-
ity to provide accurate diagnostic insights. The dataset can be accessed on GitHub:
https://github.com/gkgupta11k/Health_LLM_Research_Dataset (accessed on 13 January
2025).

Figure 2. Word cloud visualization of the diseases included in the dataset.

While the dataset included some diversity in symptom presentation, it did not in-
corporate extensive demographic variation such as age, gender, or ethnicity, as the study
primarily focused on the conditions themselves rather than patient-specific variations. The

https://github.com/gkgupta11k/Health_LLM_Research_Dataset
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current dataset allowed for an initial exploration of LLMs in medical diagnostics, but future
studies will seek to expand this dataset to include a wider range of diseases and incorporate
more diverse patient demographics, which will help evaluate the models’ generalizability
across different populations.

Diagnostic procedure: For each selected disease, a comprehensive list of symptoms
was compiled, forming the basis for diagnostic prompts. These prompts asked the LLMs
to predict the disease based on the symptoms and to provide a confidence score for each
prediction. To ensure consistency and comparability, the same prompts were applied
uniformly across all models. After receiving the models’ predictions, the results were
manually verified to assess the accuracy and reliability of the diagnoses, providing the
foundation for the study’s findings.

This methodology underscores the study’s goal of exploring the potential of LLMs as
tools for recognizing common health conditions. By focusing on frequently encountered
diseases, this research aims to provide valuable insights into the capabilities and limitations
of AI technologies in everyday health applications, while also laying the groundwork for
future studies involving more complex and diverse cases.

In this study, each model was presented with 250 individual prompts (one for each
combination of the 50 diseases and 5 LLMs), amounting to a total of 250 prompt iterations.
Each prompt provided the model with a list of symptoms and requested a single-word
diagnosis with a confidence level, without requiring additional explanations. The prompt
design aligned with the zero-shot approach, where models are required to make diagnostic
predictions based solely on the provided symptoms without any prior examples or step-by-
step reasoning. This setup assessed each model’s inherent capability to interpret symptoms
and identify the most likely disease independently, simulating a straightforward diagnostic
task typical in clinical settings where minimal additional context is provided.

Prompt for models:
The following dialogue presents a prompt used to test the diagnostic capabilities of various
language models.

Based on these symptoms: [Symptoms], identify the only one dis-
ease based on the symptoms that match closely. Provide me confi-
dence level—Low, Medium, High—to each, based on how closely
the symptoms align with the diseases you have predicted based on
the Symptoms. No explanation needed, provide me exact one-word
disease name.

3.4. Evaluation Metrics for Diagnosing Diseases Through LLMs

The efficacy of Language Learning Models (LLMs) in diagnosing diseases from de-
scriptions of medical symptoms was evaluated using a detailed, multi-step process. This
approach incorporated the use of precision, recall, and the F1 score—metrics renowned
for their ability to provide a rounded perspective on the accuracy of predictive models in
identifying correct diagnoses and highlighting the omission of relevant diagnoses.

In our study, we evaluated the LLMs’ outputs for each dataset entry, systematically
classifying each response based on its diagnostic accuracy. The classifications were as
follows:

• True positive (TP): instances where the LLM correctly identified the disease, show-
casing the model’s ability to accurately match symptom descriptions with the correct
disease diagnosis.
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• False positive (FP): instances where the LLM incorrectly identified a disease, attribut-
ing a condition to the symptom descriptions that did not align with the actual disease
present, thereby overestimating the model’s diagnostic accuracy.

• False negative (FN):instances where the LLM either attributed a different disease than
the one actually present based on the symptom descriptions or failed to recognize
the presence of a disease altogether, thereby underestimating the model’s diagnostic
sensitivity.

We then proceeded to compute the following metrics based on the points assigned
to each prediction. If the model’s prediction matched the actual disease, it was assigned
1 point in the true positive TP category. If the model predicted a disease that did not match
the actual disease (an incorrect prediction), it was assigned 1 point in the false positive (FP)
category. Finally, if the model failed to predict the correct disease, either by predicting an
incorrect disease or by failing to predict any disease at all, it was assigned 1 point in the
false negative (FN) category. After the evaluation was completed for each model, we then
totaled the TP, FP, and FN points, and these totals were used in the following equations to
calculate the precision, recall, and F1 score.

• Precision: this metric evaluates the exactness of the model’s positive predictions
(i.e., the proportion of TP observations among all positive diagnoses made by the
model), offering insight into the accuracy of the model’s disease identification.

Precision =
TP

TP + FP
(1)

• Recall: this metric assesses the model’s ability to identify all pertinent instances
(i.e., the ratio of TP observations to all actual positives within the dataset), providing a
measure of the model’s comprehensiveness in disease detection.

Recall =
TP

TP + FN
(2)

• F1 Score: This metric serves as a balanced measure of both precision and recall, partic-
ularly valuable when the contributions of both metrics are of equal importance. It is
calculated as the harmonic mean of precision and recall, furnishing a singular measure
of the model’s overall diagnostic performance.

F1 Score = 2 · Precision · Recall
Precision + Recall

(3)

Employing these metrics enabled a comprehensive evaluation of the LLMs’ diagnostic
capabilities, providing nuanced insights into the precision of correct diagnoses and the
models’ overall efficacy in disease identification.

4. Results
4.1. Overview of Findings

Our comprehensive evaluation delved into the diagnostic abilities of five state-of-
the-art Language Learning Models (LLMs)—Gemini, GPT-3.5, GPT-4, o1 Preview, and
GPT-4o. The goal was to assess how effectively these models could analyze and diagnose
medical conditions based on detailed descriptions of symptoms. The findings, illustrated
in Figure 3, revealed significant differences in the diagnostic accuracy and capabilities of
each model, shedding light on their potential utility in clinical settings. GPT-4 emerged
as the standout performer in our study, demonstrating exceptional diagnostic accuracy.
This model’s success is attributable to its extensive training on a vast array of medical
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literature and patient data, which has equipped it with a profound understanding of medi-
cal symptomatology. GPT-4’s ability to consistently and accurately identify diseases from
symptom descriptions showcases its advanced algorithmic structure and sophisticated data
processing capabilities. It sets a benchmark in the realm of AI-driven medical diagnostics,
proving to be a robust tool that could revolutionize how healthcare providers approach
diagnosis and treatment planning. Close behind in terms of performance, o1 Preview also
demonstrated impressive diagnostic abilities, achieving a precision of 0.93 and a recall
of 0.91. This performance made it highly comparable to GPT-4, with slight variations in
its ability to recall certain diseases. GPT-4o, another high-performing model, displayed a
balanced diagnostic capability with a precision of 0.95 and a recall of 0.88, reinforcing its
reliability in medical diagnostic tasks. GPT-3.5 displayed robust diagnostic skills as well.
Although it did not surpass GPT-4, its effectiveness in converting complex symptom data
into accurate health assessments makes it a valuable asset in the medical field. GPT-3.5
supports clinical decision-making by providing reliable interpretations of medical contexts,
which can greatly aid physicians in diagnosing and understanding patient conditions more
effectively. Its solid performance underlines the reliability of well-trained LLMs in handling
medical diagnostic tasks, highlighting the potential for AI to assist significantly in everyday
healthcare operations. Gemini, although it did not achieve as many correct diagnoses as
its counterparts, was noted for its extraordinary diagnostic precision. This model adopts
a conservative approach, prioritizing accuracy over quantity in its outputs. Such high-
confidence predictions make Gemini especially suitable for use in clinical scenarios where
accuracy is critical, such as in the diagnosis of complex or rare conditions where the cost of
a misdiagnosis can be particularly high. Gemini’s approach to minimizing false positives is
vital in clinical practices where precision is paramount, and the margin for error is minimal.

Figure 3. Performance metrics and predictions of models: scatter plots showcasing confusion matrix
values, derived metrics, and the correctness of model predictions.

The collective performance of these LLMs paints an optimistic picture of the role
of AI in enhancing medical diagnostics. The integration of these advanced models into
healthcare could lead to faster, more accurate, and highly reliable diagnostic processes.
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GPT-4’s broad diagnostic capabilities, GPT-3.5’s dependable performance, and Gemini’s
meticulous precision collectively embody the advancement of artificial intelligence within
the healthcare sector. The addition of o1 Preview and GPT-4o further expands the versatility
of these models in medical diagnostics. These findings from our study not only underscore
the substantial progress that AI technology has made in unraveling and understanding
the complexities of human health but also pave the way for their future applications in
medical practice. By enhancing the efficiency and accuracy of diagnostics, these models
could serve as invaluable tools for medical practitioners, enabling better patient outcomes
and transforming the landscape of healthcare delivery. As we continue to explore and
refine these technologies, their integration into clinical workflows holds the promise of
making healthcare more effective, personalized, and accessible to all.

4.2. Comparative Analysis

The comparative evaluation of Gemini, GPT-3.5, GPT-4, o1 Preview, and GPT-4o
through our study provides an illuminating overview of their diagnostic abilities, each
underscored by unique strengths as revealed by the performance metrics summarized in
Table 2 and visually presented in Figure 3.

Table 2. Comparative performance of LLMs in digital diagnostics.

Model Precision Recall F1 Score

Gemini 0.97 0.69 0.81

GPT-3.5 0.91 0.85 0.88

GPT-4 0.96 0.92 0.94

o1 Preview 0.93 0.91 0.92

GPT-4o 0.95 0.88 0.91

GPT-4, with its outstanding number of correct answers, stood as a testament to its
comprehensive training regimen, encompassing a wide array of medical data. This exten-
sive preparation was reflected in its superior F1 score, indicative of the model’s proficiency
in deciphering complex medical language and accurately mapping symptoms to diagnoses.

Figure 3 graphically displays the comparative accuracy of the models, highlighting
GPT-4’s dominance in correctly answering questions, thereby showcasing its exceptional
capability to navigate the complexities inherent in the symptom–diagnosis correlation. o1
Preview closely followed, with high accuracy in predicting diseases, while GPT-4o also
displayed strong capabilities across multiple diagnostic tasks.

Further enhancing our analytical perspective, Figure 4 delves into the confidence
levels associated with each model’s predictions. Here, the confidence distributions of
GPT-4, GPT-4o, o1 Preview, and GPT-3.5 were primarily classified under the “High” cat-
egory, underscoring their robust assertiveness and reliability in diagnostic conclusions.
o1 Preview, similar to GPT-4, exhibited strong confidence in its predictions, maintaining
a perfect record in the “High” confidence category with no low or medium confidence
classifications, further highlighting its reliability for critical diagnostic tasks. On the other
hand, Gemini’s inclination towards high-confidence responses, despite a lower overall
number of predictions, spotlighted its unparalleled precision. This trait is particularly
crucial in healthcare contexts where the stakes of a misdiagnosis are high, emphasizing the
need for accuracy and high confidence in diagnostics.

However, Gemini’s impressive precision came at the cost of recall, as evidenced
by its performance metrics. This suggests a cautious approach to diagnosis, where the
model opts for certainty over breadth, potentially overlooking certain conditions in the
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process. Meanwhile, GPT-3.5, although not as advanced as GPT-4, demonstrated significant
diagnostic utility, balancing precision and recall effectively. Its solid performance affirmed
its value in scenarios where cutting-edge models like GPT-4 might not be available or
necessary.

Figure 4. Model confidence category.

Integrating these insights, the study underscored the multifaceted diagnostic capa-
bilities inherent in these LLMs. GPT-4 emerged as a versatile asset across various medical
domains, whereas Gemini’s precision earmarked it as an invaluable resource for confirming
diagnoses with high confidence. On the other hand, GPT-3.5’s reliable performance ensured
its continued relevance in the evolving landscape of AI in healthcare. The addition of o1
Preview and GPT-4o to this analysis emphasized the growing role of LLMs in providing
scalable and reliable diagnostic support in clinical environments.

The findings from our study advocate for a strategic incorporation of LLMs within
healthcare settings, leveraging each model’s distinct strengths. Such an approach not only
augments the diagnostic process but also enhances the overall quality of care, paving the
way for an AI-integrated healthcare ecosystem that prioritizes accuracy, efficiency, and
patient safety.

5. Discussion
5.1. Interpretation of Results

This study carefully examined the capabilities of five advanced Language Learning
Models (LLMs) diagnosing everyday illnesses based on symptom descriptions (Figure 5).
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The goal was to assess how these models could assist in medical diagnostics by analyzing
symptom descriptions and mapping them to possible conditions. The standout performer,
GPT-4, showcased the potential of AI in medical diagnostics through its ability to un-
derstand and process complex medical data. This model’s effectiveness highlighted its
extensive training across diverse medical scenarios, making it exceptionally good at match-
ing symptoms with the correct medical conditions. o1 Preview, closely following GPT-4,
demonstrated impressive diagnostic capabilities, with a strong balance of precision and
recall, making it a reliable alternative for clinical applications. GPT-4o, also highly accurate,
displayed balanced diagnostic abilities, emphasizing its potential in real-time medical set-
tings. Although not as advanced as GPT-4, GPT-3.5 still demonstrated significant capability
in making accurate medical diagnoses. Its ability to deliver reliable assessments makes it a
useful tool in healthcare, particularly where newer technologies might not yet be available.
Gemini, known for its high precision, focused on accuracy in its predictions, which is
especially important in medical settings where mistakes can have serious consequences.

Figure 5. Performance metrics.

5.2. Enhancing Diagnostic Processes with Large Language Models

The introduction of Large Language Models (LLMs) into the medical context is likely
to change the way healthcare is provided at the very first stages of contact between a patient
and a healthcare professional. In the future, LLMs will likely improve the speed and quality
of first medical consultations, allowing more rapid assessments of patient information,
thereby taking much pressure off medical experts or allowing other professionals to fill
the role. In settings where resources are scarce, especially when access to first human
consultations is unfeasible, LLMs could quickly analyze the data provided by symptoms
and tell the patient what they might be suffering from [30,44].

In triaging these cases, LLMs could help to prioritize patients based on urgency and
route them to the appropriate level of care. All of this could lead to improved patient
outcomes, such as faster interventions, fewer missed appointments, and reduced wait times
before treatment. Patient education is also one of the benefits of using these models. LLMs
can also be used to provide patients with additional information about their symptoms and



AI 2025, 6, 13 13 of 17

potential diagnoses—additional knowledge that empowers people to better understand
their health [12].

Yet, such incorporation of AI-enabled tools in healthcare systems is bound to be fraught
with hurdles, and we shall have to navigate several hefty issues. For example, adherence
to healthcare regulations, such as the Health Insurance Portability and Accountability
Act (HIPAA) in the United States, comprehensive federal legislation that sets metalegal
standards and outlines the protection and secure transfer of patients’ data in healthcare
systems [14]. All the information gathered by LLMs during healthcare interactions must
be strictly HIPAA-compliant; they should master the vital data and conversation with full
security and confidentiality.

In addition, LLMs might prove valuable, but if integrated, their use must complement,
rather than substitute, the human side of delivering care, augmenting physician sensibilities
of the human system over replacing the physician. Error rates of LLMs for complex
diagnoses need to be constantly validated against medical benchmarks [28]. Deviating
from the norm could result in a misdiagnosis. Moreover, the models also need to be kept
up-to-date through regular checking and flagging.

That commitment to multidisciplinary work among technologists, clinicians, and
regulators is also crucial to using LLMs in healthcare effectively. From conceiving AI
tools that are both architecture- and design-wise, solid, and clinically useful to providing
right-size validation and ensuring ethical use, stringent workflows across disciplines are
necessary. Testing each model goes beyond mere optimization of technical performance to
confirm that the tool is capable of effectively helping clinicians in actual practice [45].

In conclusion, incorporating LLMs into healthcare is a promising avenue for improving
diagnosis and patient care. However, to address these challenges, we must implement
careful planning and robust processes. Doing so will help to make the most of AI in
healthcare and improve outcomes for patients and the medical system.

5.3. Limitations of the Study

The LLMs in this study were primarily evaluated on common, less complex illnesses,
which do not fully represent the broader, more challenging aspects of diagnosing chronic
or severe conditions. Chronic diseases often involve complex symptoms that are difficult to
interpret without a comprehensive understanding of an individual’s medical history and
additional diagnostic tests. Moreover, the reliance on text analysis in our study ignores the
multimodal nature of traditional medical diagnostics, which often include visual elements
like scans, detailed patient histories, and physical examinations. Future improvements in
AI models for healthcare should aim to incorporate these various data types to provide
more accurate and holistic diagnoses.

5.4. Future Research Directions

Future research should focus on creating LLMs that can analyze various types of
medical information beyond just text. This includes integrating visual data from scans and
other medical images to create more comprehensive diagnostic tools. Also, developing
AI systems that can understand and process information across different languages and
cultural contexts will be crucial for their global applicability. This study used a proof-
of-concept dataset, and we plan to explore this further on a larger-scale dataset in the
future to better evaluate the models’ performance across more complex medical conditions.
Expanding the dataset will allow for deeper insights into the LLMs’ capabilities and
limitations in diagnosing a wider range of health issues.

Furthermore, it is crucial to ensure that these systems are developed with strict ad-
herence to ethical standards, particularly regarding patient privacy. Exploring ways to
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securely integrate AI into healthcare while respecting patient confidentiality will be essen-
tial. Additionally, putting these AI models into real-world clinical settings to assess their
performance and impact on healthcare efficiency and patient outcomes will provide critical
insights into their practical value and limitations.

This research demonstrates the significant potential and challenges of using advanced
AI models in healthcare diagnostics. With careful development and ethical considerations,
these tools could greatly enhance the ability to diagnose and treat patients more efficiently
and accurately. Continued exploration and improvement of these technologies could lead
to their successful integration into everyday medical practice, benefiting both healthcare
providers and patients.

6. Conclusions
The exploration into the capabilities of Large Language Models (LLMs) like Gemini,

GPT-3.5, GPT-4, o1 Preview, and GPT-4o, culminated in a comprehensive understanding
of their potential to enhance digital diagnostics in healthcare. This study rigorously eval-
uated the performance of these models, shedding light on their strengths in identifying
symptoms of common illnesses and their limitations. The core findings demonstrated that
LLMs like GPT-4 offered considerable promise in processing medical language with high
accuracy. They heralded a significant step forward in providing immediate, accessible
healthcare guidance. o1 Preview and GPT-4o also performed impressively, showcasing
strong diagnostic capabilities with balanced precision and recall, making them reliable tools
for real-time medical applications. The specialized Gemini model’s remarkable precision
pointed towards the feasibility of creating niche, domain-focused LLMs that could provide
precise diagnostic support. GPT-3.5, while slightly overshadowed by its successors, still
displayed commendable capabilities, indicative of the rapid advancements within the
field of AI in healthcare. These results reinforce the transformative potential of LLMs in
digital diagnostics, suggesting that they can complement conventional diagnostic methods,
enhancing the quality and accessibility of patient care. However, the journey from potential
to actualized utility in a clinical setting will require overcoming substantial hurdles, in-
cluding the integration of multimodal data, ethical considerations, and ensuring adherence
to stringent healthcare standards. The limitations of this study, predominantly its scope
restricted to textual analysis and the manual evaluation process, set a clear directive for
future research. The next phase should aim to expand the capabilities of LLMs beyond
text, incorporating visual and empirical data to align closely with comprehensive clinical
diagnostics. Moreover, the study emphasizes the necessity to build ethically aligned, cultur-
ally sensitive, and linguistically diverse LLMs to serve global healthcare needs effectively.
In the quest to harness AI for healthcare, LLMs emerge not as standalone solutions but
as part of a collaborative toolset augmenting the expertise of medical professionals. As
research progresses, it will be paramount to embed these models within real-world clinical
workflows to fully assess their practicality and reliability. With continued development and
responsible implementation, LLMs are poised to play a pivotal role in shaping the future of
healthcare, making diagnostics more accessible, accurate, and patient-centric.
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