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Abstract: Background: AI-driven mental health solutions offer transformative potential
for improving mental healthcare outcomes, but identifying the most effective approaches
remains a challenge. This study addresses this gap by evaluating and prioritizing AI-driven
mental health alternatives based on key criteria, including feasibility of implementation,
cost-effectiveness, scalability, ethical compliance, user satisfaction, and impact on clinical
outcomes. Methods: A fuzzy multi-criteria decision-making (MCDM) model, consisting of
fuzzy TOPSIS and fuzzy ARAS, was employed to rank the alternatives, while a hybridiza-
tion of the two methods was used to address discrepancies between the methods, each
emphasizing distinct evaluative aspect. Results: Fuzzy TOPSIS, focusing on closeness to
the ideal solution, ranked personalization of care (A5) as the top alternative with a closeness
coefficient of 0.50, followed by user engagement (A2) at 0.45. Fuzzy ARAS, which evaluates
cumulative performance, also ranked A5 the highest, with an overall performance rating
of Si = 0.90 and utility degree Qi = 0.92. Combining both methods provided a balanced
assessment, with A5 retaining its top position due to high scores in user satisfaction and
clinical outcomes. Conclusions: This result underscores the importance of personalization
and engagement in optimizing AI-driven mental health solutions, suggesting that tailored,
user-focused approaches are pivotal for maximizing treatment success and user adherence.

Keywords: AI-driven mental health solutions; hybrid fuzzy multi-criteria decision-making
(MCDM); fuzzy TOPSIS and fuzzy ARAS methods; personalization of care; user engagement

1. Introduction
The current trend in global industrialization is tilting towards the use of Artificial

Intelligence (AI) in most human activities. The application of AI in healthcare services
has existed since the beginning of the 1950s when doctors of that era tried to increase
their level of productivity by identifying the nature and causes of an illness through the
employment of computer programs [1,2]. Since then, there has been increased adoption
of AI in healthcare services up until recent years. This is due to the advancement and
sophistication of modern computing devices and the increased availability of data [3]. The
application of AI in healthcare services is slowly bringing modifications into the practice of
medicine [4]. The objective of AI is to imitate human intellectual routines and procedures [5].
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There is rapid progress in the model of adopting AI in the area of healthcare activities which
is triggered by the increasing access to healthcare data and the significant growth in the
methods of performing analysis for healthcare activities [6]. In spite of all these, there has
been very little or intermediate levels of applications of AI in mental healthcare situations,
while it has gained significant use in the areas of dermatology, oncology, and radiology [7].
Other areas of applications of AI in healthcare include diagnosis and decision-making [4].
Due to the large amount of morbidity and mortality tendencies in patients with mental
illness, in addition to the huge gap created by the unavailability of mental healthcare
workers, it is therefore urgently necessary to adopt AI to assist in the identification of
individuals that have very high risk tendencies of mental illness. This will prompt early
professional action against partial or total mental health diseases. Recent studies have
shown that the application of AI in medicine to improve mental healthcare services to
patients is encouraging [8].

The influence of mental illness on several millions of people globally is significant [9].
With the sophistication of AI technology, the multi-criteria decision-making (MCDM)
method is a major suitable tool for the analysis of mental health. The MCDM tool has been
widely applied in the field of mental health [10]. The MCDM tool is increasingly being used
in the healthcare sector to put into practice healthcare decisions which have more than one
criteria that are incompatible [11]. Decision-making in the healthcare sector is being per-
formed from the perspective of different aspects of complex problems that are being linked
to medical, economic, technological, ethical, social, and environmental factors [12]. The
MCDM places special attention on the application of hybrid interdependent decisions [10].
Most MCDM techniques use the adoption of weights or indices to represent the level of
relevance of a particular criterion [13]. The ranking and selection of the alternatives are
performed in accordance with their obtained composite values [14]. The MCDM techniques
operate in a regular, ordered procedure and are sophisticated enough to solve problems of
mental health [15]. Though several authors have performed different research in MCDM
for healthcare activities while adopting different techniques, there is gross insufficiency
in the area of the adoption of MCDM techniques for the implementation of mental health
interventions using AI. The aim of this study was to identify critical success factors for the
implementation of AI-driven mental health interventions using MCDM. The implemen-
tation was performed using the Fuzzy Additive Ratio Assessment (fuzzy ARAS) method
of MCDM.

2. Literature Review
Healthcare analysis can be achieved using a variety of tools. These tools are very

important in good decision-making in the healthcare sector. Adopting the required decision-
making tools is very germane in making critical mental healthcare decisions in healthcare.
As a result of the state-of-the-art cutting-edge AI technology, there are several decision-
making choices that can be used for implementation in mental health. There are examples
of AI technologies that can be used in mental healthcare; these includes chatbots and
some diagnostic tools. Obtaining the most appropriate decisions and their success rate
requires an assessment of several criteria. This segment evaluates previous studies that
have been performed which are pertinent to the objective of this study. There are various
researchers that have worked on the advancement of different AI technologies and the
different methods of ranking and selecting the best decision-making processes regarding
mental health interventions using different MCDM approach.

Guptal et al. [16] proposed a theory to obtain a technology which will assist organiza-
tions in the selection of the best technology to increase its utilization by people of interest in
their respective healthcare fields. The study investigated the challenges of the use of AI in
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the healthcare sector. The DELPHI and the focus group discussions (FGDs) were used for
the analysis of about 250 technology-related challenges, then reducing this number to the
16 most pertinent challenges. Further analysis was performed using the cross-impact matrix
multiplication applied to classification (MICMAC) and the interpretive structural modeling
(ISM) approach to categorize the challenges into several levels of intensity and pertinence.
The results of the MICMAC and ISM approaches were used to portray that AI has an
unrealized ability to analyze cybersecurity susceptibility and the lack of infrastructure with
the relevant enabling laws, which are the major challenges obstructing the use of AI in
healthcare. Suha et al. [17] investigated the potential of 15 major sustainability indexes in
integrating AI applications in the decision-making processes of the healthcare sector. The
study performed an ordered procedure of examination to rank and select the indexes that
are most important to the healthcare sector. Deductions were obtained from knowledgeable
professionals, and quantitative outcomes were converted to quantitative data, which were
then processed in terms of relevance and non-relevance. In addition, the indexes were
grouped into three, via two methods of clustering. The study proposed that practitioners
in the healthcare sector will find its results a good source of information during the use of
AI decision-making processes in the healthcare sectors of developing countries.

Joshi et al. [18] simulated the adoption of AI for more than one level of analysis using
the MCDM method. The study highlighted the challenges associated with making future
decisions. The study provided an important understanding of the use of AI in general
healthcare facilities. Hsu et al. [10] presented the building of structures for these critical
factors by the addition of chatbots into the military’s services for mental health. The
methodologies adapted were into four stages: the first stage or initial stage; the second
stage, which was the confirmation stage using the fuzzy Delphi approach; the third stage,
which was the creation stage; and the fourth stage, which was the establishment stage.
The study revealed three major discoveries as follows: Firstly, a major achievement was
identifying twenty-one indexes and four dimensions; secondly, the twenty-one indexes
and four dimensions exhibited self-standing associations, which manipulate one another;
and thirdly, from the study, the four dimensions include boundaries, activities, goals, and
technology. Chakraborty et al. [19] addressed the challenge of mental health issues via the
development of a web portal for the timely prediction and prevention of mental health
issues in persons. The study adopted the random forest classifier methodology to determine
the amount of stress needed from an examination that is question and answer-based for a
person’s internal physiological response to reflect on the person’s face. These results are
brought together to estimate the likely mental health status of the individual.

Rane et al. [20] used blockchain technology to improve awareness in medicine through
open data allotment. The study examined the barriers to the realization of a healthcare
metaverse while considering factors such as the interaction of technology, privacy of
data, and ethics. The study approached these barriers and proffered a solution for its
reduction, putting into consideration the importance of the working together of multiple
fields and their regulation structure. The study provided a platform for integrating AI into
the evolving nature of the healthcare metaverse. The outcome of this research will serve
as a reference with which to plan for the changing overlap of healthcare and metaverse
technologies. Akhtar et al. [21] researched the integration of digital technologies into
healthcare. In this study, there were ten major facilitators to assist in achieving the desired
outcome. The relevance of these facilitators was examined using the fuzzy MARCOS
and fuzzy TOPSIS multicriteria analysis methods. A quantitative structure for healthcare
decision-making was proposed through the results of this study. The confirmation of the
outcome of the study was achieved through the use of sensitivity analysis.
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El-Douh et al. [22] performed a review to examine the different areas that are critical
for a sustainable healthcare system using the COVID-19 pandemic as a case study. The
study revealed the need for adequate access to a good healthcare system, mental healthcare,
international collaboration, adequate communication, and preparation. The MCDM was
used to perform an analysis of the extent of sustainability of healthcare systems using the
weights and their various criteria. A comparison was performed amongst the criteria while
the neutrosophic process was performed to make a comparison of the indistinct data. Ah-
mad et al. [23] examined the effect of social distancing on human psychology to obtain the
ranking and selection of these psychological factors to ascertain their level of importance.
Two fuzzy MCDM approaches were used to perform the multicriteria analysis, namely the
fuzzy best–worst method (f-BWM) and fuzzy technique for order of preference by similarity
to ideal solution (fuzzy TOPSIS). The result revealed that five important psychological
factors were highly ranked to have the potential to affect people as a result of the pan-
demic. These psychological factors are namely panic, anxiety, frustration, stress, and insom-
nia. Further multicriteria analysis was performed using the fuzzy weighted sum method
(f-WSM) and fuzzy multi attributive border approximation area comparison (f-MABAC)
to rank and select the psychological factors for validation. A comparison was performed
between the earlier and later multicriteria methods for validation. Sensitivity analysis was
also performed by the study. The outcome of the research showed that the psychological
factors were ranked in line with the highest, average, and lowest psychological factors.

The literature has reviewed the performance of studies in the area of AI implemen-
tation for healthcare activities. All the literature examined considered AI and/or MCDM
approaches for decision-making. All these approaches in the considered studies had the
basic intention to improve the efficiency of healthcare decision-making and its processes.
Most of the considered literature worked on the healthcare system as a broad entity, with
insignificant contributions to the area of mental health interventions. The knowledge gap
in mental health and related interventions was not explored in all the available literature
when a critical search was performed for the existing literature. This study will contribute
to the body of knowledge using the MCDM for the identification of critical success factors
for the implementation of AI-enabled mental health interventions.

3. Materials and Methods
This section presents the methodology used in this study. It presents the basic prin-

ciples of fuzzy sets, the technique for order of preference by similarity to ideal solution
(TOPSIS), and the fuzzy additive ratio assessment (fuzzy ARAS) method. The methodology
used for implementing this research is presented in Figure 1.

This section discusses the basics of fuzzy quantities, triangular fuzzy numbers, the
fuzzy analytic hierarchy process (Fuzzy AHP), the technique for order of preference by
similarity to ideal solution (TOPSIS), and the fuzzy additive ratio assessment (fuzzy ARAS)
method. Also, the data collection methods and case study descriptions are presented in
this section.

3.1. Fuzzy Quantities

A fuzzy set is a mathematical technique that allows for partial membership in a set and
is used to describe imprecision and vagueness. The concept of a fuzzy set was presented by
Zadeh in 1965 to extend the theory of classical set theory, where membership was limited
to binary function [24,25].
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3.2. Triangular Fuzzy Quantity

A triangular fuzzy quantity (TFQ) L is determined on a real number set Y and is
presented by a membership function µL(κ): Y → [0, 1] . This membership function is
expressed as Equation (1):

µL(κ) =


x−α
β−α α ≤ x ≤ β
γ−x
γ−β β ≤ x ≤ γ

0, otherwise

(1)

α, β, and γ represent the bottom-, middle-, and higher-level bounds of the fuzzy
quantity, respectively (Figure 2). They make up the triangular representation. The TFQ is
represented as L and expressed as L = (α, β, γ)
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In this study, a triangular 10-point linguistic scale is used to collect the opinions of the
experts that participated in this study (Figure 3).
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From Figure 3, NI/EL represents Not Important (NI)/Extremely Low (EL), ELI/VL
is Extremely Less Important (ELI)/Very Low (VL), VLLI/L is Very Very Less Important
(VLLI)/Low (L), VLI/BA is Very Less Important (VLI)/Below Average (BA), LI/A is
Less Important (LI)/Average (A), I/AA is Important (I)/Above Average (AA), MI/H is
More Important (MI)/High (H), VMI/VH is Very More Important (VMI)/Very High (VH),
VVMI/VVH is Very Very More Important (VVMI)/Very Very High (VVH), and EMI/EH is
Extremely More Important (EMI)/Extremely High (EH).

The classification of fuzzy importance values in this study was based on a ten-point
fuzzy linguistic scale widely referenced in previous fuzzy multi-criteria decision-making
(MCDM) studies [26]. The linguistic variables used, such as “Not Important”, “Very
Important”, and “Extremely Important”, were mapped to corresponding triangular fuzzy
numbers (TFNs). These mappings followed a standardized approach, ensuring consistency
and comparability with the existing literature. Thresholds for importance values were
determined using established benchmarks from previous studies [27], where each linguistic
term corresponded to a specific range within a triangular fuzzy number set. For instance,
“Not Important” (NI) was mapped to (1, 1, 2), while “Extremely Important” (EMI) was
represented as (9, 10, 10). This standardized approach allowed for the systematic conversion
of qualitative expert opinions into quantitative fuzzy numbers.

3.3. Arithmetic Operations with TFQs

TFQs permit the combination or comparison of fuzzy numbers in a number of ways
during operations on them. If two TFQs are represented as [27] L1 = (α1, β1, γ1) and
L2 = (α2, β2, γ2), then addition, multiplication, subtraction, division, and reciprocals can
be performed. The basic arithmetic operations with TFQs are given as follows:
Addition

L1
⊕

L2 = (α1 + α2, β1 + β2, γ1 + γ2) (2)

Multiplication (with an assumption that all bounds are positive)

L1
⊗

L2 = (α1 × α2, β1 × β2, γ1 × γ2) (3)

Subtraction
L1 ⊖ L2 = (α1 − γ2, β1 − β2, γ1 − α2) (4)
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Division (with an assumption that all bounds are positive)

L1 ⊘ L2 =

(
α1

γ2
,

β1

β2
,

γ1

α2

)
(5)

In the case of reciprocal

L−1
1 =

(
1

γ1
,

1
β1

,
1
α1

)
(6)

3.4. Fuzzy Analytic Hierarchy Process (Fuzzy AHP)

The analytic hierarchy process is a popular decision analysis technique for prioritizing
a collection of choices based on several criteria. However, in practical situations, experts
are prone to uncertainty when attempting to precisely quantify the relative importance of
attributes via pairwise comparisons. To address this challenge, the fuzzy analytic hierarchy
process (Fuzzy AHP) integrates fuzzy logic into traditional AHPs, enabling decision makers
to express judgments using fuzzy numbers rather than precise values. The following steps
are taken when adopting the process:

Step 1: Construct a Pairwise Comparison Matrix

The first step is the construction of a pairwise construction matrix C where criteria are
compared in pairwise form to determine their relative importance. The comparative values
are represented as fuzzy quantities using Equation (7):

C =


1 c12 · · · c1n

1/c12 1 · · · c2n
...

...
. . .

...
1/c1n 1/c2n · · · 1

 (7)

where cij represents the comparison between fuzzy criterion i and fuzzy criterion j. For
instance, c12 is used to represent how relevant criterion 1 is when compared to criterion 2.

Step 2: Calculation of the Geometric Means and Weights

The next step is to compute the geometric means of the individual criterion. The
geometric mean gi for i criterion is calculated using Equation (8):

gi =
(

ci1
⊗

×ci2
⊗

· · ·
⊗

cin

) 1
n (8)

The summation of the pairwise comparison is carried out to form a fuzzy number for
the individual criterion.

wi =
gi

g1 ⊕ g2
⊕ · · ·⊕ gn

(9)

This represents the comparative weight of the individual criterion. The weights are
represented using triangular fuzzy numbers as follows:

wi = {αwi, βwi, γwi}

where αwi is the bottom-level bound of the weight, βwi is the middle bound of the weight,
and γwi is the higher-level bound of the weight.

3.5. Multi-Criteria Decision-Making (MCDM) Problem Formulation

The MCDM method involves the assessment of a set of alternatives using a number of
criteria, whereby an individual criterion may have different levels of significance. The per-
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formance of the individual alternative in comparison to the individual criterion is expressed
as a fuzzy number. The following steps are taken in implementing the approach [27,28]:

Step 1: Construction of the Fuzzy Decision Matrix

In this step, the construction of the fuzzy decision matrix X is implemented. The
individual element Xij =

(
αij, βij, γij

)
represents the fuzzy performance of alternative Ai

in comparison to criterion Bj. This is performed using Equation (10):

X =


X11 X12 · · · X1n

X21 X22 · · · X2n
...

...
. . .

...
Xm1 Xm2 · · · Xmn

 (10)

Xij is a triangular fuzzy number that reflects the performance of alternative Ai under
criterion Bj.

Step 2: Normalization of the Decision Matrix

For the beneficial criteria where high values are desirable, the normalization process
entails dividing the individual element by the maximum of the corresponding criterion
using Equation (11):

Nij =

(
αij

γ∗
j

,
βij

γ∗
j

,
γij

γ∗
j

)
(11)

For the cost criteria, it is better to have a low value, and the normalization procedure
is represented as Equation (12):

Nij =

(
α−j
γij

,
α−j
βij

,
α−j
αij

)
(12)

where
γ∗

j is the maximum value of the j criterion;
α−j is the minimum value of the j criterion.

3.6. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

The TOPSIS method uses the ranking approach to rank alternatives by their distance
from an ideal solution, which minimizes costs and maximizes benefits. The following steps
are taken in adopting the process [27]:

Step 1: Calculation of the Weighted Normalized Matrix

The weighted normalized decision matrix Wij is calculated by performing the multi-
plication of the individual element of the normalized matrix with the corresponding weight
for the individual criterion using Equation (13):

Wij = Nij
⊗

vj (13)

where vj is the fuzzy weight of Bj criterion.

Step 2: Identification of the Ideal Solutions

The positive ideal solution (PIS) and negative ideal solution are obtained using
Equations (14) and (15):

PIS = P+
=
(

W+
1 , W+

2 , · · ·W+
n

)
where W+

j = maxiWij (14)
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NIS = P−
=
(

W−
1 , W−

2 , · · ·W−
n

)
where W−

j = miniWij (15)

Step 3: Calculation of the Distances to the Ideal Solution

The distance between the individual alternative and positive ideal solution or negative
ideal solution is calculated using a Euclidean distance measurement of Equations (16) and (17):

d+i = ∑n
j=1

(
Wij − W+

j

)2
(16)

d−i = ∑n
j=1

(
Wij − W−

j

)2
(17)

Step 4: Calculation of the Closeness Coefficient

The alternative closeness coefficient CCi for each criterion is calculated using Equation (18):

CCi =
d−i

d−i − d+i
(18)

The closeness coefficient is used to measure the closeness of the individual alternative
to the ideal solution. A higher value of a closeness coefficient will give a better alternative.

Step 5: Ranking of the Alternatives

The ranking and selection of the alternatives are dependent on their closeness coefficient.
The optimal system is the alternative that has the highest closeness coefficient CCi.

3.7. Fuzzy Additive Ratio Assessment (Fuzzy ARAS) Method

The fuzzy ARAS method is implemented using the following steps [29]:

Step 1: Determine the linguistic terms for criteria weights and performance ratings.

The linguistic variable is designated based on the literature to constitute the relevance
of criteria and the performance ratings of the alternatives. The linguistic expressions are
allocated fuzzy numbers.

Step 2: Transform the opinion of the experts to interval-valued triangular fuzzy numbers.

The views of individual experts are transformed to an interval-valued triangular
fuzzy number:

Qk = (αk, βk, γk)

where αk is the bottom-level bound, βk is the value at the middle, and γk is the higher-level
bound of the k-th expert’s view. The sum of all the fuzzy numbers from all the experts are
calculated using Equations (19)–(23):

α = min
k

(α k) (19)

α′ =
(
∏k

k=1 αk

) 1
K (20)

β =
(
∏k

k=1 βk

) 1
K (21)

γ′ =
(
∏k

k=1 γk

) 1
K (22)

γ = min
k

(γk) (23)

From the sum of the interval-valued triangular fuzzy number, Qk = {(α.α′), β, (γ′, γ)}
is obtained from the expert assessment.
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Step 3: Decision matrix formulation

The construction of the decision matrix Z is carried out. Zij represents the performance
rating of the i-th alternative in comparison to the j-th criterion, as in Equation (24):

Z =
{

Zij
}

m×n (24)

where m is the quantity of alternatives and n is the quantity of criteria. The criteria vector
weight is given as Equation (25):

W =
{

wj
}

(25)

where wj is the j-th criterion’s weight. The decision matrix for each decision maker k is
given as Equation (26):

Zk =
{

Zkij

}
m×n

(26)

In the same way, the weight of the vector provided by each maker is given as
Equation (27):

Wk =
{

wkj

}
n×k′

(27)

where k is the quantity of decision makers participating.

Step 4: Obtain the Optimal Performance Rating for the Individual Criterion

The optimal performance rating Zoj for each criterion j is computed based on whether
the criterion is a beneficial or cost criterion using Equation (28):

Zoj =

{
maxi Zij, i f j ∈ Ωmax (ben f icial criterion)

mini Zij, i f j ∈ Ωmin (cost criterion)
(28)

The equation for fuzzy quantities is as given in Equation (29):

Zoj =
{(

αoj, α′oj

)
, βoj,

(
γ′

oj, γoj

)}
(29)

where Ωmax is the beneficial criteria and Ωmin is the cost criteria.

Step 5: Normalization of the Decision Matrix

The normalization of the decision matrix is performed by dividing the element by the
aggregate of all the values for that criterion, which is achieved using Equation (30):

Zij =
Zij

∑m
i=0 Zij

(30)

Considering the cost criteria, normalization is carried out, where lower-level values
are comparatively better; this is performed using Equation (31):

Zij =
1

Z∗
ij

(31)

where
Z∗

ij is the most favorable value of the criterion.
Normalization for the fuzzy performance rating is given as Equation (32):

rij =


(

aij
c+j

,
a′ij
c+j

,
bij
c+j

,
c′ij
c+j

,
cij
c+j

)
, j ∈ Ωmax(

1
aij/a−j

, 1
a′ij/a−j

, 1
bij/a−j

, 1
c′ij/a−j

, 1
cij/a−j

)
, j ∈ Ωmin

(32)
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where
c+j is equal to ∑m

i=0 cij for the beneficial criteria and a−j is equal to ∑m
i=0

1
aij

for the cost
criteria.

Step 6: Application of Weights to the Normalized Decision Matrix

The individual element of the normalized decision matrix is multiplied by the corre-
sponding weight of the individual criterion. This is performed using Equation (33):

Vij = wj × rij (33)

where
Vij is the weighted normalized performance rating of the i-th alternative in comparison

with the j-th criterion.

Step 7: Calculation of the Overall Fuzzy Performance Rating

The total performance rating Si for the individual i is computed by the addition of all
the weighted normalized values over all the criteria. This is performed using Equation (34):

Si = ∑n
j=1 Vij (34)

Step 8: Defuzzification of the Performance Rating

Defuzzification is performed to make a comparison of the fuzzy performance ratings
through the use of the geometric mean of the triangular fuzzy numbers. This is performed
using Equation (35):

gm(Q) =
α + α′ + β + γ′ + γ

5
(35)

where
Q = {(α, α′), β, (γ′, γ)} is the fuzzy performance rating for an alternative.

Step 9: Calculation of the Degree of Utility.

The degree of utility Ui for the individual alternative is computed in comparison to
the most favorable alternative S0. This is performed using Equation (36):

Ui =
Si
S0

(36)

This value represents the level of closeness of the individual alternative to the
optimal solution.

Step 10: Ranking of the Alternatives

The ranking of the alternatives is performed based on the values of their degree of
utility Ui. The alternatives are ranked from the highest to the lowest. The alternative with
the highest utility values is ranked as the most favorable alternative with other alternatives
in that sequence.

3.8. Data Collection

A questionnaire (Appendix A) was designed and adopted to obtain the views of
the experts on the weights of the chosen criteria in identifying the critical success factors
for the implementation of AI-driven mental health interventions using the MCDM. The
questionnaire design was informed by an extensive literature review focusing on fuzzy
multi-criteria decision-making (MCDM) approaches within healthcare and AI-driven men-
tal health solutions. Key evaluation criteria and alternatives were identified and refined
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through iterative discussions with pilot participants to ensure relevance and comprehen-
siveness. To ensure the selection of competent and highly knowledgeable experts, specific
criteria were applied. Experts selected for this study demonstrated substantial academic
and professional qualifications, including advanced degrees and extensive experience in the
relevant fields. The selection process prioritized diversity in professional backgrounds to
ensure a balanced perspective from academia, healthcare practice, and research institutions.

The panel consisted of five experts with varied expertise. Expert 1 holds an MSc
in healthcare and has over a decade of experience, with a focus on clinical outcomes.
Expert 2 possesses a Ph.D. in academics with significant contributions to clinical research.
Expert 3 has a Ph.D. and works in a research institution, focusing on feasibility studies
for AI implementation. Expert 4, with an MSc in private healthcare practice, prioritized
user satisfaction in their evaluation. Expert 5 holds a Ph.D. in healthcare, with extensive
experience focusing on clinical outcomes. The questionnaire included both quantitative
and qualitative components, with linguistic terms mapped to triangular fuzzy numbers
to systematically capture subjective expert opinions. This approach ensured consistency
and reliability across all evaluations, contributing to the robustness of the aggregated fuzzy
decision matrix.

The experts were notified that the response was voluntary before they provided the
required information. Also, the experts were informed that the information that they
provided would be used solely for the purpose of research and that they would be kept
anonymous. The questionnaire was filled in and returned by the experts with their consent
for the information in it to be utilized for this study.

3.9. Case Study Description

A case study focused on evaluating and ranking the most effective AI-powered mental
health solutions that can enhance mental health therapy is presented. Based on com-
munication with experts and a literature review, five AI-based intervention strategies,
including personalization of care, user engagement, integration with healthcare systems,
data security and privacy, and clinical outcomes, were identified (Table 1). Furthermore,
the case study identified six important criteria, which include feasibility of implementa-
tion, cost-effectiveness, scalability, ethical compliance, user satisfaction, and impact on
clinical outcomes.

Table 1. Description of the criteria and alternatives considered in this study.

Criteria

Criteria Definition

Feasibility of Implementation [30] The practicality and ease with which an AI-driven mental health solution can
be developed, integrated, and maintained within existing healthcare systems.

Cost-Effectiveness [31]
The economic efficiency of the solution, considering both initial development
and ongoing operational costs relative to the benefits achieved in mental
health outcomes.

Scalability [32] The ability of the solution to be expanded and adapted to serve a larger
population without compromising performance or effectiveness.

Ethical Compliance [33] Adherence to ethical standards, including patient confidentiality, informed
consent, and the responsible use of AI in mental healthcare.

User Satisfaction [34] The degree to which users find the AI-driven solution acceptable, engaging,
and helpful in addressing their mental health needs.

Impact on Clinical Outcomes [35] The effectiveness of the solution in improving mental health conditions, as
evidenced by measurable changes in clinical assessments.
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Table 1. Cont.

Alternatives

Alternatives Definition

Clinical Outcomes [36] The measurable changes in patients’ mental health status resulting from the
use of the AI-driven solution.

User Engagement [37] The level of interaction and participation by users with the AI-driven
solution, indicating its usability and appeal.

Integration with Healthcare Systems [38] The ability of the solution to seamlessly connect with existing healthcare
infrastructure and processes.

Data Security and Privacy [39] The measures taken to ensure the confidentiality and security of patient data
in compliance with legal and ethical standards.

Personalization of Care [40] The extent to which the solution can adapt to the unique needs and
preferences of individual patients.

Expert opinions were collected from five professionals with experience in men-
tal health intervention and expertise on the functionalities of AI using linguistic terms
(see Figure 3) mapped to triangular fuzzy numbers to capture uncertainties. Fuzzy TOPSIS
and fuzzy ARAS methods were used to evaluate the AI-driven mental health solutions.
To further enhance the results, the two methods were harmonized using the normalized
geometric mean. Fuzzy TOPSIS emphasized the proximity to the ideal solution, while fuzzy
ARAS assessed the overall performance across all criteria. Missing data were addressed
using the Ignore Missing Values approach, ensuring that only available ratings contributed
to the aggregated results. The hierarchical structure of the problems considered in this
study is presented in Figure 4.
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3.10. Ethical Considerations in the Decision-Making Framework

Ethical principles played a fundamental role in guiding this study’s design, expert
selection, data handling, and decision-making processes (Figure 5). Ensuring transparency,
fairness, and adherence to established ethical standards was prioritized throughout the
study. Experts were chosen based on their academic qualifications, professional expertise,
and the relevance of their research to AI-driven healthcare solutions. Care was taken to
ensure representation from diverse sectors, including academia, healthcare, and research
institutions, to reduce bias and improve inclusivity. Participants were informed of their
voluntary participation, and it was explicitly stated that their responses would be used
solely for research purposes while ensuring their anonymity. By returning completed
questionnaires, respondents provided implicit consent to participate. As the study did
not involve any physical or psychological intervention, formal ethical approval from
an institutional review board was not required. However, the research adhered to the
ethical principles outlined in the Declaration of Helsinki and complied with relevant data
protection regulations to ensure confidentiality and proper data management.
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To minimize cognitive biases, expert responses were aggregated using fuzzy linguistic
scales, ensuring the equitable representation of all expert opinions in the final analysis
without being disproportionately influenced by any single perspective. Data privacy
and security were prioritized, with robust protocols implemented to protect the integrity
and confidentiality of the collected responses. All electronic data were encrypted and
securely stored, aligning with regulations such as the General Data Protection Regulation
(GDPR). Ethical principles were explicitly considered in the weighting and prioritization
of evaluation criteria. Factors such as data security, privacy, fairness, and accountability
were emphasized during the prioritization and evaluation phases, ensuring that ethical
considerations were adequately reflected in the final decision matrix.

By embedding these ethical principles into each stage of the research process, the
study ensured transparency, accountability, and respect for participants’ contributions.
Future research can build upon these principles to further enhance the integration of ethical
considerations in AI-driven healthcare decision-making frameworks.

4. Results
This section presents the results of the study. The expert responses on AI-driven

clinical solutions in mental health reflect diverse educational, experiential, and organiza-
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tional backgrounds. Respondents, ranging from MSc to PhD holders, represent healthcare,
academia, private practice, and research institutions, with experience spanning 6 to 20 years.
Healthcare professionals prioritize clinical outcomes, academics focus on innovation, re-
searchers emphasize feasibility, and private practitioners highlight user satisfaction. Key
prioritization criteria include clinical impact, feasibility of implementation, and user satis-
faction, demonstrating a balanced focus on both operational efficiency and user experience.
All experts unanimously stress the importance of human–AI collaboration, recognizing AI
as a complementary tool that enhances efficiency and decision-making without replacing
the essential human touch in mental healthcare. These insights collectively emphasize the
need for tailored AI strategies that address educational, experiential, and sector-specific
factors while prioritizing measurable outcomes and ethical implementation.

4.1. Weights Determination and Decision Matrix Aggregation

Table 2 provides the linguistic responses from the experts on the weights attached to
the criteria and the aggregated weights obtained using the fuzzy AHP for weights. Table 3
presents a summary of all criteria and their importance with respect to AI-based mental
health solutions; these responses depict the different opinions of experts, using a range
of triangular fuzzy membership functions, and provide an insight into which features are
given greater importance.

Table 2. Fuzzy weight assigned by the experts.

Criteria Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

Feasibility of
Implementation (C1) I VMI VVMI VVMI EMI

Cost-Effectiveness (C2) MI MI VVMI EMI VVMI

Scalability (C3) VMI VVMI VVMI VVMI VVMI

Ethical Compliance (C4) VMI VVMI VMI VMI VMI

User Satisfaction (C5) EMI VVMI VMI VVMI EMI

Impact on Clinical
Outcomes (C6) MI VVMI VMI VVMI VVMI

Table 3. Fuzzy AHP for weights determination.

Criteria Low Medium High

Feasibility of Implementation (C1) 7.43 8.41 9.35

Cost-Effectiveness (C2) 7.43 8.41 9.26

Scalability (C3) 7.87 8.78 9.35

Ethical Compliance (C4) 7 8 9

User Satisfaction (C5) 8 9 9.43

Impact on Clinical Outcomes (C6) 7.43 8.41 9.26

The results (Table 3) show that user satisfaction (C5) is the most important criterion,
with a high fuzzy importance of (8.0, 9.0, 9.43). This strongly suggests that user satisfaction
is right at the top when evaluating AI-driven mental health solutions. Its consistent top
values in all three dimensions (low, medium, and high) also point out its importance. This
is particularly relevant given that mental health interventions tend to be more effective
when they cater to user needs and preferences, which in turn makes the user more involved
in adherence to better treatment outcomes. Scalability (C3) is second, with major fuzzy
importance (7.87, 8.78, 9.35). In AI-driven mental health solutions, large-scale scalability



AI 2025, 6, 14 16 of 24

is an inevitable requirement. Under such circumstances, a solution is expected to address
the need of a variety of clients without a compromise in performance. The high score for
scalability shows that there are pressing needs for solutions that can be expanded efficiently
to benefit a wider audience, ensuring that access to interventions is not limited by resource
constraints. While user satisfaction and scalability are critical to the success of AI-powered
mental health interventions, the feasibility of implementation (C1) is also relevant, with
a fuzzy weight of (7.43, 8.41, 9.35). A well-designed solution that encounters obstacles
arising from technology or logistics would not deliver the expected impact to patients. In
terms of cost-effectiveness (C2), its weight of (7.43, 8.41, 9.26) shows the importance of
establishing a compromise among factors related to performance and impact with cost,
especially in a resource-constrained environment. For this study, experts indicated that the
widespread adoption of AI-powered mental health solutions can only be attained if they
are cost-effective. Cost-effectiveness does not only precipitate clinical efficacy, but it also
contributes to the economic viability and effective diffusion of solutions.

The experts attributed a moderate weight (7.00, 8.00, 9.00) for ethical compliance (C4)
compared to other criteria. While ethical considerations must remain a priority, the experts’
scores propose that ethical adherence is seen more as a baseline necessity rather than a
distinguishing aspect. This could indicate that moral issues, though fundamental, are not
viewed as the main determining factor unless a specific solution presents notable ethical
difficulties. Finally, impact on clinical outcomes (C6), with a geometric mean of (7.43, 8.41,
9.26), is closely aligned with both user satisfaction and feasibility. The experts’ assessments
emphasize that the proposed solution must accomplish its intended health benefits, a core
objective for any mental health intervention. The high scores suggest that the experts
recognize the necessity for AI-driven approaches to have a tangible and quantifiable impact
on users’ mental well-being, whether through decreased symptoms, enhanced quality of
life, or other clinical metrics.

The fuzzy numbers in Table 3 suggest that experts prioritize user-focused outcomes,
particularly satisfaction, alongside the ability to scale solutions for broader impact. At
the same time, they acknowledge the need for feasible, cost-effective, and ethically sound
solutions that drive meaningful clinical outcomes. The consistently high ratings across
most criteria indicate that any AI-driven mental health solution must holistically address
these aspects to be considered viable by experts. The inclusion of ethical compliance and
cost-effectiveness as critical, yet somewhat secondary, considerations reflect a pragmatic
approach, emphasizing that solutions must first be effective and scalable before fine-tuning
aspects like cost and ethical considerations.

4.2. Aggregated Fuzzy Decision Matrix

The aggregated fuzzy decision matrix (Equation (37)) provides a comprehensive view
of expert evaluations on various AI-driven mental health solutions across multiple criteria.
Each entry in the matrix represents a triangular fuzzy number (l, m, u) which reflects
the aggregated opinions of five experts regarding the importance and performance of
each alternative under specific criteria. The use of triangular fuzzy numbers captures
uncertainty and variability in expert opinions, offering a more nuanced view than single-
point estimates. The presence of X values for certain entries, such as in cost-effectiveness
(C2) for A4, indicates instances where expert feedback was not provided. These were
handled using the Ignore Missing Values approach, ensuring that the aggregated results
for each criterion remain representative of available expert input.

From the matrix, A5 (personalization of care) consistently shows high values across
all criteria, particularly in user satisfaction (C5) and impact on clinical outcomes (C6),
suggesting that experts view personalization as critical for successful outcomes in AI-driven
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mental health solutions. This alternative’s high ratings highlight its potential effectiveness
in delivering tailored mental health interventions. A2 (user engagement) also receives
favorable scores, especially in scalability (C3) and ethical compliance (C4), underscoring the
importance of user engagement in building adaptable and ethically responsible solutions.
Meanwhile, A3 (integration with healthcare systems) and A4 (data security and privacy)
have moderate ratings, reflecting their roles as supportive yet less prioritized factors.

Ďaggregated =


(7.6, 8.2, 9.0) (8.4, 9.1, 9.8) (7.1, 8.0, 9.0) (8.5, 9.2, 9.9) (9.0, 9.5, 10.0)
(4.4, 5.6, 6.2) (6.3, 7.2, 8.0) (X) (8.1, 9.0, 9.7) (8.6, 9.1, 9.7)
(7.2, 8.0, 8.9) (8.3, 9.1, 9.7) (8.4, 9.0, 9.8) (8.6, 9.2, 9.9) (8.5, 9.0, 9.8)
(7.1, 8.0, 9.0) (X) (8.3, 9.0, 9.6) (8.9, 9.3, 9.8) (7.9, 8.5, 9.1)
(8.5, 9.2, 9.9) (8.1, 9.0, 9.7) (8.6, 9.3, 9.8) (9.3, 9.7, 10.0) (8.1, 8.9, 9.6)

 (37)

4.3. Fuzzy TOPSIS

The values of the closeness coefficient given in Figure 6 indicate the closeness of
each alternative to the fuzzy positive ideal solution (FPIS) and distance from the fuzzy
negative ideal solution (FNIS). Usually, the most preferred solution is the alterative with
the highest closeness coefficient. The result shows that A5 (personalization of care) is
the most preferred among the five alternatives, with a closeness coefficient equal to 0.50
(Figure 6). This reinforces that AI-powered solutions require a high level of customization to
be effective and should be tailored to the needs of individuals receiving mental healthcare.
This is a very desirable attribute of AI-driven mental health technologies as it can lead to
an increase in user engagement and better clinical outcomes, while it also helps ensure that
the solutions are personalized and customizable so that individual needs are met.
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Figure 6. Closeness coefficient, utility degree, and hybrid score for the alternatives.

A2 (user engagement), with a closeness coefficient of 0.45, is the second most preferred
(Figure 7) alternative, indicating that user engagement in AI-powered mental health so-
lutions is a major area that should receive attention (Table 3). The more these AI-driven
tools can meaningfully engage with patients, the higher their potential of supporting users
in adhering to treatments and increasing overall satisfaction. This also corresponds with
the high weighting of user satisfaction in fuzzy AHP analysis, which reiterates that user-
focused mental health interventions are highly significant. A1 (clinical outcomes), with
a closeness coefficient of 0.35, ranks third. While clinical outcomes are essential for the
evaluation of AI-driven mental health solutions, achieving positive results appears to be
less impactful than personalized care and sustained user involvement. Interestingly, this
implies that even though progressing clinical outcomes are necessary, specialists may see
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meeting individual needs and maintaining engagement as more crucial determinants of
a program’s success. A one-size-fits-all approach may be sub-optimal; instead, tailoring
support for diverse circumstances and maintaining an open dialog over the long term may
hold the greatest promise for progress.
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A3 (integration with healthcare systems) and A4 (data security and privacy) have the
lowest closeness coefficients of 0.30 and 0.32, respectively. This indicates that experts see
these factors as less critical determinants for AI effectiveness in mental healthcare solutions.
Thes factors are seen as supporting indicators rather than as primary factors. This result
implies the direct interplay between “person” and “platform” through customization and
involvement. It should also be noted that integration and privacy remain highly important
and should not be understated, as without the proper handling of such relationships,
personal information can be compromised.

4.4. Fuzzy ARAS

Fuzzy ARAS results showed A5 (personalization of care) as the best optimal alternative
with highest utility degree (Qi = 0.92) and overall fuzzy performance score (Si = 0.90)
(Figure 6). The findings align with the outcome of the fuzzy TOPSIS method where
Alternative 5 attained the closest proximity to the ideal solution with the highest closeness
coefficient. The consistent top ranking of A5 across both methods highlights the importance
of tailoring mental health solutions to individual user needs to enhance engagement
and treatment outcomes. In both fuzzy ARAS and fuzzy TOPSIS, A2 (user engagement)
stands out as the second rank, underscoring the importance of engaging users in mental
healthcare solutions. When an AI-assisted mental healthcare system promotes interaction
and connection, it improves therapeutic outcomes for users. In the fuzzy ARAS analysis,
A1 (clinical outcomes) ranks third with a utility degree of Qi = 0.82, while in fuzzy TOPSIS,
it ranks slightly lower. This discrepancy suggests that while clinical outcomes are essential,
they are prioritized just below user-centric features like personalization and engagement in
optimizing AI-driven mental health solutions. As shown by the fuzzy ARAS assessment
A3 (integration with healthcare systems) and A4 (data security and privacy) ranked on
the lower side with utility degrees of Qi3 = 0.75 and Qi4 = 0.73, respectively. These results
suggest that, although integration and data security are important foundational elements,
they are not seen as differentiators for the success of AI-driven mental health solutions.
Experts may consider these factors as essential, but not as critical as personalization, user
engagement, and clinical outcomes in the decision-making process.
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4.5. Hybrid Fuzzy TOPSIS-ARAS Model

The results obtained from applying fuzzy TOPSIS and fuzzy ARAS revealed substan-
tial differences in the ranking of some alternatives, highlighting the distinct viewpoints of
these two methodologies. Fuzzy TOPSIS prioritizes how close each alternative is to the
ideal solution across all criteria, prioritizing proximity to optimality. In contrast, fuzzy
ARAS evaluates alternatives based on their aggregate performance relative to the defined
criteria, focusing on the cumulative contribution rather than proximity to an ideal point.
For example, A1 (clinical outcomes) placed fourth using fuzzy TOPSIS, but achieved third
with fuzzy ARAS. Similarly, A4 (data security and privacy) ranked higher, with TOPSIS
in third but lower and with ARAS in fifth. These divergences stem from the inherent
variances in the computational logic and priorities of the two approaches. A Combined
Score approach was applied to address these inconsistencies using the geometric mean of
the normalized results from both methods. This strategy successfully balanced the unique
perspectives of fuzzy TOPSIS and fuzzy ARAS, merging the emphasis on ideal proximity
and aggregate performance.

In the proposed hybrid model, the closeness coefficients obtained from the fuzzy
TOPSIS and the utility degrees from the fuzzy ARAS are normalized using min-max
normalization (Equations (38) and (39)), while the Geometric mean is used to combine the
results (Equation (40)). The alternative with the highest hybrid score is indicated as the
most preferred.

Normalized TOPSIS =
CC − min(CC)

max(CC)− min(CC)
(38)

Normalized ARAS =
Qi − min(Qi)

max(Qi)− min(Qi)
(39)

Hybrid Score =
√

Normalized TOPSIS × Normalized ARAS (40)

The Combined Score approach merges these insights, offering a balanced view that
integrates both proximity-to-ideal (TOPSIS) and overall performance (ARAS) assessments.
A5 (personalization of care) ranks first across all methods, with a Combined Score of 0.68
(Figures 6 and 7), underscoring the importance of personalized care as a primary factor in
AI-driven mental health solutions. This consistency reflects that personalization resonates
strongly with both ideal proximity and overall performance perspectives.

The observation that A5 (personalization of care) consistently achieved the highest
rank across both fuzzy TOPSIS and fuzzy ARAS is supported by the existing literature,
which emphasizes the importance of personalization in digital mental health interventions.
Research by Hornstein et al. (2023) [41] highlights that personalization strategies, including
user choice, provider choice, and rule-based adaptations, significantly improve adherence,
satisfaction, and clinical outcomes. These findings suggest that tailored interventions not
only align closely with an ideal solution (proximity-to-ideal), but also deliver cumulative
benefits across multiple performance criteria, aligning with aggregate performance per-
spectives. Similarly, Malik et al. (2022) [42] found that users of AI-driven mental health
applications reported higher satisfaction and engagement when interventions were per-
sonalized to their specific needs. The study demonstrated that tailored responses and
adaptive coping mechanisms resulted in increased trust and long-term adherence to mental
health solutions. This evidence reinforces the dual role of personalization in optimizing
both the immediate fit (as emphasized in TOPSIS) and cumulative contributions to overall
performance (as emphasized in ARAS).

The ranking of A1 (clinical outcomes) in third place suggests that while achieving
positive clinical outcomes remains a central goal of AI-driven mental health solutions, it
is often viewed as an outcome that emerges indirectly from other critical factors, such
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as user engagement and personalization. Experts acknowledged that successful clinical
outcomes are closely linked to high levels of user engagement and tailored care experi-
ences, highlighting the interconnected nature of these criteria. This explains why clinical
outcomes, despite their significance, were slightly deprioritized compared to the more
immediate impact of user-centered factors. A4 (data security and privacy) ranked fourth,
indicating that while data protection measures are foundational to successfully deploying
AI-driven health solutions, they are often perceived as baseline requirements rather than
differentiating factors. Experts viewed compliance with security standards and privacy
protocols as essential but insufficient on their own to drive user adoption or improve
therapeutic outcomes. Similarly, A3 (integration with healthcare systems) ranked fifth,
reflecting its role as a critical but secondary enabler in the overall success of AI-driven
mental health interventions. Integration with existing healthcare infrastructure, including
interoperability with electronic health records (EHRs), was seen as technically vital but
less impactful in influencing immediate user-centered outcomes. The combined model
thus reconciles differences between TOPSIS and ARAS, affirming personalization, engage-
ment, and clinical outcomes as priorities while acknowledging the supporting roles of data
security and integration.

4.6. Challenges and Limitations

One limitation of this study is the reliance on five experts to evaluate AI-driven mental
health solutions. While these experts were carefully selected based on their extensive expe-
rience, diverse professional backgrounds—including healthcare, academia, private practice,
and research institutions—and their familiarity with AI and mental health solutions, the
small sample size may restrict the breadth of perspectives and potentially introduce bias.
The use of fuzzy MCDM methods, however, helps mitigate some of these limitations by
allowing linguistic variables mapped to triangular fuzzy numbers to represent expert opin-
ions. This approach reduces the impact of subjective variations and enhances the robustness
of the aggregated results. Future studies could include a larger and more geographically
diverse group of experts to improve the representativeness and generalizability of findings.
Additionally, further research could explore potential biases in expert selection and their
implications on decision-making outcomes.

Additionally, the criteria selected, though comprehensive, may not encompass all
factors relevant to AI-driven mental health solutions in different contexts. For instance,
operational efficiency, cultural adaptability, and financial considerations may influence the
feasibility and effectiveness of these interventions, particularly in healthcare settings with
unique resource constraints.

Another limitation is the study’s use of a hybrid fuzzy MCDM model, which com-
bines fuzzy TOPSIS and fuzzy ARAS. While this approach is effective for balancing ideal-
proximity and aggregate performance, the results may vary if different decision-making
methods are applied, potentially affecting the robustness of findings. Furthermore, the
aggregation of fuzzy inputs to account for missing data may reduce the precision of the
results. Finally, the generalizability of these findings is limited, as regulatory and opera-
tional factors specific to particular regions or healthcare systems may impact the broader
application of the results. Future research should address these limitations by expand-
ing the expert sample, exploring additional criteria, and testing the model across varied
healthcare environments.

While this study evaluates the criteria independently using fuzzy TOPSIS and fuzzy
ARAS, it is important to acknowledge the inherent interdependencies between some of
these factors in real-world applications. For example, weak data security and privacy (A4)
can undermine user trust, reducing user engagement (A2) and subsequently impacting
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clinical outcomes (A1). Similarly, poor integration with healthcare systems (A3) can affect
the feasibility of implementation (C1) and scalability (C3) of the solution. Although the
methods applied in this study do not explicitly account for such interdependencies, recog-
nizing these relationships is crucial for understanding the broader dynamics of AI-driven
mental health interventions. Future research could address this limitation by employing
methods like Analytic Network Process (ANP) or Fuzzy Cognitive Mapping, which are
well suited for analyzing and quantifying interdependencies among multiple criteria.

While this study employed fuzzy TOPSIS and fuzzy ARAS for evaluating AI-driven
mental health solutions, it is acknowledged that Large Language Models (LLMs) and
Generative AI (GenAI) hold potential for enhancing decision-making frameworks [43,44].
LLMs can play a role in multi-criteria decision-making (MCDM), but primarily as comple-
mentary tools rather than direct replacements for traditional MCDM frameworks like fuzzy
TOPSIS or fuzzy ARAS. LLMs excel at processing unstructured data, such as textual expert
opinions or qualitative insights, and are particularly valuable for criteria extraction, the
aggregation of qualitative inputs, and the post hoc interpretation of results [43]. It can also
be used in automating the process of decision-making [45]. However, the computational
transparency, numerical rigor, and reproducibility offered by traditional fuzzy MCDM
methods remain essential for structured decision analysis. Based on the advantages offered
by LLMs, future research could explore hybrid approaches where LLMs handle qualitative
pre-processing and post-analysis tasks, while fuzzy TOPSIS and fuzzy ARAS focus on the
quantitative evaluation and ranking of alternatives. This synergy could combine the con-
textual reasoning and adaptive capabilities of LLMs with the mathematical robustness and
transparency of fuzzy MCDM methods, resulting in a more dynamic and comprehensive
decision-making framework.

5. Conclusions
This study reveals key factors for AI-driven mental health interventions through a

hybrid MCDM approach that integrates fuzzy TOPSIS and fuzzy ARAS. Personalization
of care consistently emerged as the top-ranked factor, underscoring the importance of
tailored interventions that meet unique user needs. User engagement was also identified
as critical, emphasizing that actively involving users enhances adherence and treatment
outcomes. Together, these findings suggest that personalization and engagement are vital
for AI-driven mental health solutions, supporting a user-centered approach as central to
successful interventions.

Broader implications highlight that stakeholders should prioritize user satisfaction
and engagement when developing AI mental health solutions. Practical recommendations
include investing in secure, adaptive AI technologies that balance personalization with
ethical standards. Future research should focus on expanding the criteria to include factors
such as operational efficiency, adaptability to cultural nuances, and cost-effectiveness.
Additionally, applying the MCDM framework in varied healthcare settings and increasing
the diversity of the expert sample could strengthen the generalizability of the findings and
ensure that AI interventions are optimized.

In practical terms, stakeholders—including healthcare providers, policymakers, and
technology developers—can use these insights to design AI-driven mental health inter-
ventions with a stronger focus on personalization and engagement. Personalization, as
identified in our study, stands out as the top-ranked factor because it tailors interventions
to individual patient needs, enhancing trust, adherence, and therapeutic outcomes. Im-
plementing personalization requires robust data analytics capabilities, continuous user
feedback mechanisms, and adaptive AI algorithms that are capable of real-time adjust-
ment based on user behavior and preferences. Similarly, fostering user engagement relies
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on designing intuitive user interfaces, incorporating interactive elements, and providing
meaningful feedback loops within AI platforms. Engagement strategies must also consider
cultural and demographic variations, ensuring inclusivity and relevance across diverse
user groups.
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Appendix A. Sample Questionnaire

Table A1. Kindly rate the AI-driven mental health solutions (on their adoption in clinical practice)
against the following criteria.

Criteria

AI-Driven
Mental Health

Solutions

Feasibility of
Implementation

(C1)

Cost-
Effectiveness

(C2)

Scalability
(C3)

Ethical
Compliance (C4)

User Satisfaction
(C5)

Impact on
Clinical

Outcomes (C6)

Clinical
Outcomes (A1) Choose an item. Choose an item. Choose an

item. Choose an item. Choose an item. Choose an item.

User
Engagement (A2) Choose an item. Choose an item. Choose an

item. Choose an item. Choose an item. Choose an item.

Integration with
Healthcare

Systems (A3)
Choose an item. Choose an item. Choose an

item. Choose an item. Choose an item. Choose an item.

Data Security
and Privacy (A4) Choose an item. Choose an item. Choose an

item. Choose an item. Choose an item. Choose an item.

A
lt

er
na

ti
ve

s

Personalization
of Care (A5) Choose an item. Choose an item. Choose an

item. Choose an item. Choose an item. Choose an item.

Table A2. Kindly click on the drop-down box to rate the importance of the following criteria on the
selection of power system analysis software for teaching and learning.

Criteria Importance Rating

Feasibility of Implementation (C1) Choose an item.

Cost-Effectiveness (C2) Choose an item.

Scalability (C3) Choose an item.

Ethical Compliance (C4) Choose an item.

User Satisfaction (C5) Choose an item.

Impact on Clinical Outcomes (C6) Choose an item.
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