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Abstract: Introduction: This study introduces a fully differentiable, end-to-end audio
transformation network designed to overcome these limitations by operating directly on
acoustic features. Methods: The proposed method employs an encoder–decoder architec-
ture with a global conditioning mechanism. It eliminates the need for parallel utterances,
intermediate phonetic representations, and speaker-independent ASR systems. The system
is evaluated on tasks of voice conversion and musical style transfer using subjective and
objective metrics. Results: Experimental results demonstrate the model’s efficacy, achieving
competitive performance in both seen and unseen target scenarios. The proposed frame-
work outperforms seven existing systems for audio transformation and aligns closely with
state-of-the-art methods. Conclusion: This approach simplifies feature engineering, ensures
vocabulary independence, and broadens the applicability of audio transformations across
diverse domains, such as personalized voice assistants and musical experimentation.

Keywords: voice conversion; musical style transfer; audio transformations; end-to-end
audio pipeline

1. Introduction
Audio transformation deals with the transformation of syntactic, acoustic, and se-

mantic variations of one audio to another. It includes multiple applications such as voice
conversion, timbre transfer, speaker morphing, emotion transformation, etc. [1]. One of the
most widely studied applications of audio transformation is voice conversion (VC). Voice
conversion deals with the transformation of paralinguistic features of the source audio with
that of the target while preserving the linguistic features. Many approaches for VC have
been developed over the years.

Most of the early VC approaches have focused upon statistical methods based on
Gaussian Mixture Models (GMMs) to convert voice from the source to target speaker [2,3].
It has also been approached with feed-forward Deep Neural Networks [4] and an exemplar-
based framework using non-negative matrix factorization [5,6]. Despite producing good
results, these approaches often used complex feature pipelines consisting of domain-specific
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features and require parallel time-aligned source and target speech data, which are difficult
and expensive to collect.

Recently, there have been some approaches, such as those outlined in [7–9], that
overcome the requirement for parallel time-aligned data by using an attribute label along
with the acoustic features to perform local conditioning to convert an attribute of source
speech (e.g., speaker identity) to target attributes. In general, though the quality of the
converted audio obtained with non-parallel methods is usually limited compared with that
of audio obtained through statistical methods using parallel data, these can eliminate the
need for parallel data, which are costly to obtain. However, these approaches still suffer
from the limitation of being training vocabulary dependent. Because of the use of local
conditioning mechanisms, these approaches can only convert the voice to a target speaker
that was present during the training phase.

There have been some attempts such as those outlined in [10,11] that overcome the
aforementioned limitation and perform voice conversion for any arbitrary speaker. These
approaches use automatic speech recognition (ASR) systems to convert the input source
speech to intermediate phonetic representations, which are further synthesized as output
target speech using text-to-speech systems. Although these systems can perform any-
to-any voice conversion, they have some downsides such as the performance of such
methods is heavily dependent upon the accuracy of the ASR system used. Secondly, these
approaches rely on intermediate phonetic transcriptions to train or finetune the ASR system
used, which are usually hard to obtain, thus decreasing the portability of such systems to
newer languages or datasets [12]. Lastly, these systems are primarily applicable only to the
application of voice conversion.

This paper seeks to address some of the limitations highlighted in the aforementioned
studies. Our approach is robust when using the training vocabulary, enabling one-shot
audio transformations without relying on intermediate phonetic representations or auto-
matic speech recognition (ASR) systems. By directly operating on acoustic features such as
spectrograms or Mel-Frequency Cepstral Coefficients (MFCCs), our method circumvents
the need for domain-specific, complex feature engineering pipelines. We evaluate the effec-
tiveness of our approach on two challenging tasks: (a) voice conversion and (b) musical
style transfer. Our results are benchmarked against three existing methodologies, demon-
strating the efficacy and versatility of our proposed solution. This paper introduces a
novel, fully differentiable, end-to-end audio transformation framework with the following
key contributions:

1. Vocabulary-Agnostic Framework: Unlike traditional methods, our approach is robust
when using the training vocabulary, enabling one-shot audio transformations for
unseen speakers or musical instruments.

2. Removal of Phonetic Representations and ASR Dependency: By bypassing the need
for intermediate phonetic representations or automatic speech recognition (ASR)
systems, our method improves generalizability and reduces reliance on resource-
intensive processes.

3. Simplified Feature Engineering: By directly utilizing acoustic features like spectro-
grams and MFCCs, our approach avoids complex, domain-specific feature pipelines,
making it adaptable across datasets and tasks.

This work can find applications where audio transformation is made accessible to
everyone. Like in voice conversion, the proposed method would allow easy voice changes
without needing special datasets or complex alignments, which are usually hard to obtain
and use. This would facilitate, for example, the creation of personalized voice assistants,
dubbing for movies, and tools for people with speech difficulties. In music, the proposed
method would help change the style of songs, allowing musicians and producers to ex-
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periment with new genres and creative ideas. Also, this could find applicability in the
entertainment industry, i.e., in the creation of video games and virtual environments to
appear more realistic with better voice and sound changes. By removing the need for
specialized tools, the proposed method can lead to improving user experience by making
audio technologies more accessible and personalized.

2. Related Works
A flexible framework for spectral conversion (SC) was proposed [8] to address the

limitations of requiring aligned corpora for training. Traditional SC frameworks often
rely on parallel corpora, phonetic alignments, or explicit frame-wise correspondence to
learn conversion functions or synthesize target spectra. However, these dependencies
significantly restrict the practicality of SC applications due to the limited availability of
parallel corpora. To overcome this, the proposed framework leverages a variational auto-
encoder (VAE) to enable training with non-parallel corpora. The framework incorporates
an encoder to extract speaker-independent phonetic representations and a decoder to
reconstruct the designated speaker’s voice, eliminating the need for parallel corpora or
phonetic alignments.

One of the research [10] focuses on achieving voice conversion (VC) across arbitrary
speakers, which was referred to as any-to-any VC, using just a single target-speaker ut-
terance. Two systems are explored: (1) the i-vector-based VC (IVC) system and (2) the
speaker-encoder-based VC (SEVC) system. Both approaches utilize Phonetic Posterior
Grams as speaker-independent linguistic features extracted from speech samples. A multi-
speaker deep bidirectional long short-term memory (DBLSTM) model is trained in both
systems to perform VC, with additional inputs encoding speaker identities. In the IVC
system, the speaker identity for a new target speaker is represented using i-vectors, whereas
in the SEVC system, it is represented by speaker embeddings predicted by a separately
trained model. Experimental results demonstrate the effectiveness of both systems in
enabling any-to-any VC with a single target-speaker utterance, with the IVC system outper-
forming the SEVC system in terms of speech quality and similarity to the target speaker’s
genuine voice.

Previous research [13] has also explored the use of pseudo-recurrent structures, such
as self-attention mechanisms and quasi-recurrent neural networks, to design efficient text-
to-speech (TTS) acoustic models. These models demonstrated remarkable advancements,
achieving a synthesis speedup of 11.2 times on CPU and 3.3 times on GPU when compared
to traditional recurrent baseline models. Despite these improvements in speed, the quality
of the synthetic speech was maintained at levels comparable to the original recurrent
models, making the approach competitive with state-of-the-art vocoder-based statistical
parametric speech synthesis systems. Additionally, another study [14] introduced a fully
end-to-end neural network capable of learning to translate speech spectrograms into
target spectrograms of another language, effectively mapping content across languages
in a consistent canonical voice. This advancement addresses the challenge of speech-to-
speech translation (S2ST), a field critical for breaking down linguistic barriers and fostering
communication among individuals who do not share a common language.

Recent advancements in voice conversion systems have predominantly focused on
modifying spectral parameters, such as the spectral envelope. An approach from [15]
extends this by incorporating prosodic features, specifically Wavelet modelling of the F0
contour, to enhance voice quality and naturalness. Accent conversion (AC) modifies a
non-native speaker’s accent to resemble a native accent while preserving their vocal timbre.
Another research [16] enhances AC applicability and quality by employing an end-to-end
text-to-speech system trained on native speech to generate native references, eliminating
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the need for reference speech during conversion. The system leverages reference encoders
to integrate multi-source information, combining acoustic features from native references
and linguistic data with conventional phonetic posterior grams (PPGs).

Researchers [17] introduces a Sparse Anchor-Based Representation (SABR) algorithm
for exemplary selection in native-to-nonnative voice conversion (VC). Utilizing phoneme
labels and clustering, the algorithm addresses poor time alignment commonly found in
such conversions. Foreign Accent Conversion (FAC) traditionally relies on native reference
utterances or speaker-specific systems, limiting scalability. To overcome these constraints,
a novel FAC system [18] adapts to unseen non-native (L2) speakers without requiring
native (L1) references. This many-to-many approach allows native-accented synthesis
while preserving the speaker’s identity.

In one study, a method combining time-frequency filtering and CycleGAN-based
conditional adversarial networks [19] is used to enhance the perceived quality of separated
sources. Predominant pitch tracks are extracted using a pitch estimation algorithm, with
binary masks generated for each track and its harmonics. A CycleGAN-based network re-
fines the spectrogram images to improve perceptual quality, and the enhanced spectrogram
is reconstructed into audio using the inverse short-time Fourier transform.

Although machine learning models demonstrate exceptional predictive capabilities,
they are often criticized for their opaque nature, often referred to as “black boxes” [20].
This lack of transparency presents significant challenges in understanding the underlying
mechanisms of these models and evaluating the reliability of their predictions [21]. In-
terpretability in machine learning refers to the extent to which humans can comprehend
and articulate the decision-making processes and behaviors of these complex models [22].
Explainable Artificial Intelligence (XAI) has emerged as a solution to enhance the inter-
pretability of machine learning models. It employs two primary approaches: intrinsic
explainability, which involves designing models inherently interpretable, and post hoc
explainability, which provides insights into the decision-making process after the model
has been trained [23].

To delve deeper into the interpretability of Long Short-Term Memory (LSTM) net-
works, one study [24] analyzed their performance using n-gram models, finding that
LSTMs excel in tasks requiring long-range reasoning. Another study [25] introduced a
novel interpretation framework inspired by principles of computational theory. Further-
more, researchers in [26] developed an interpretable variant of recurrent neural networks
(RNNs) known as SISTA-RNN. This architecture is grounded in the sequential iterative
soft-thresholding algorithm and leverages the concept of deep unfolding [27]. Additionally,
a new explainable convolutional neural network (XCNN) was proposed in [28] as an end-to-
end framework aimed at enhancing interpretability. A separate investigation [29] explored
the use of fine-grained information to explain the decisions made by encoder-decoder
networks utilizing CNNs and LSTMs.

Attention mechanisms, introduced as part of modern deep learning frameworks, have
been a topic of ongoing debate. While some studies argue that attention weights can serve
as reliable indicators of feature importance and provide meaningful explanations [30],
others contend that the distributions of attention weights lack inherent interpretability and
require further processing to yield insights [30,31]. To address these conflicting perspec-
tives, a study [32] conducted a manual analysis of attention mechanisms across various
natural language processing (NLP) tasks. The findings demonstrated that attention weights
can indeed be interpretable and are correlated with measures of feature importance that
encapsulate linguistic attributes.

In musical style transfer, advancements in neural architectures, such as generative
adversarial networks (GANs), have facilitated domain-specific tasks like instrument recog-
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nition and adaptation [33]. These methods have been applied to datasets like IRMAS,
demonstrating their potential to transform musical attributes effectively. Despite these
advancements, the limitations of parallel data dependency, vocabulary constraints, and re-
liance on complex feature pipelines remain largely unaddressed. This work aims to bridge
these gaps by proposing a fully differentiable, end-to-end framework that eliminates paral-
lel data requirements, is vocabulary agnostic, and operates directly on acoustic features.

The traditional sequence-to-sequence (seq2seq) learning framework encodes a source
sequence into a fixed-length vector in a single step, which often limits its ability to effectively
model the structural correspondence between source and target sequences. To address this
limitation, rather than relying on linearly weighted attention mechanisms, a recurrent neu-
ral network (RNN)-based approach, termed cyclic sequence-to-sequence (Cseq2seq), was
proposed in [34]. Key observations include the following: (1) Cseq2seq effectively learns
source-target correspondences without requiring explicit attention mechanisms, and (2) the
encoder and decoder can share RNN parameters without compromising performance.

3. Methods
An encoder–decoder-based architecture, along with a reference encoder, was used to

reconstruct the input acoustic feature sequence during the training phase and perform audio
style transform by conditioning the input source audio sequence with the target-specific
style embeddings computed from the reference encoder during the testing phase. A GAN-
based fine tuning scheme similar to [35] was also employed to remove any noisy artifacts
and improve upon the naturalness of the generated audio. The network architecture for
the method is shown in Figure 1 and explained below.
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Figure 1. Overview of the method. The encoder network takes acoustic features of the source audio
as input. The reference encoder takes the Mel spectrogram of the source audio during training and
of the target class during the testing phase. The decoder network combines the outputs of encoder
and reference encoder networks to reconstruct or transform audio. A latent discriminator based
adversarial training scheme is employed to learn target independent encoded representations.

3.1. Encoder/Decoder Networks

This architecture incorporates a hybrid approach that combines one-dimensional
(1D) convolutional layers integrated with gated linear units (GLUs) [36] and bidirectional
Long Short-Term Memory (LSTM) networks [37] to construct the encoder and decoder
components. The 1D convolutional layers, augmented by GLUs, are useful in capturing
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the spectral relationships within the sequences of input acoustic features. The bidirectional
LSTMs model the temporal characteristics of those acoustic sequences. Inspired by recent
works [38,39], residual connections and instance normalization are also included in the
encoder and decoder networks. These inclusions help in stabilizing the training process
and the generation of high-resolution output audio sequences.

3.2. Reference Encoder

To remove the training vocabulary dependence and the requirement for intermediate
phonetic representations, the authors have trained a reference encoder jointly with the
encoder–decoder networks. The reference encoder is trained to capture target specific style
embeddings, where the target corresponds to a speaker or a musical instrument in our case.

The reference encoder is designed to be similar to the encoder network, with the main
difference being the use of unidirectional LSTMs instead of bidirectional LSTMs. A global
mean pooling layer has also been added on top of the unidirectional LSTMs to capture
the global style-specific features from the input audio while ignoring the local phonetic
specific features. The global mean pooling layer ensures that the learned style embeddings
are independent of local features such as phonetic content.

Before training the reference encoder jointly with the encoder–decoder network, it
has first been pre-trained on a simple classification task to predict the target audio class
from the input acoustic feature sequences. This pre-training ensures that the reference
encoder can learn a mapping from the global style-specific features of the input audio
sequence to a fixed length vector, which we denote as audio style embeddings. These
style embeddings are then further fine-tuned by jointly training the reference encoder with
the encoder–decoder networks. These target-specific style embeddings provide global
conditioning and help in transforming the audio from source to target class.

3.3. Training Process

During the training process, the authors utilized the acoustic features of the ground
truth audio, specifically the Mel-Frequency Cepstral Coefficients (MFCCs) and Mel spectro-
grams, as inputs to the encoder and reference encoder networks. The reference encoder is
designed to compress these input acoustic features into a fixed-length vector representation,
referred to as style embeddings. These style embeddings capture the stylistic attributes of
the audio and are subsequently concatenated with the latent representation generated by
the encoder network. This combined representation is then fed into the decoder, which
reconstructs the input acoustic features corresponding to the original audio sequence,
ensuring that the stylistic and temporal details are effectively preserved.

We use a combination of Mean Absolute Error (MAE) and Pearson Correlation Coef-
ficient ryy ′ as our reconstruction loss function as given in (1). Here, ryy′ is defined as the
Pearson Correlation Coefficient between the predicted output y′ and the ground truth y,
calculated as follows:

ryy′ =
Cov(y, y′)

σyσy′

where Cov(y,y’) denotes the covariance between y and y′, and σy and σy ′ represent their
respective standard deviations. The value of ryy ′ ranges from −1 to 1, with 1 indicating a
perfect positive correlation. To maximize ryy ′ , we minimize the negative of its value in the
loss function.

Lrec(θ) = ∑n
i=1

∣∣∣∣yi − y′i
∣∣∣∣− ryy′ (1)
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3.4. Latent Discriminator

A latent discriminator-based adversarial training scheme is employed to ensure that
the encoder learns target class-independent latent representations. An auxiliary classi-
fier acts as the discriminator, tasked with predicting the target class c from the encoded
representation z of an input audio utterance. The discriminator’s loss is defined as follows:

Llat(θ) = −E[log(P(y|enc(x) )] (2)

where P(y|enc(x)) represents the predicted probability of the target class y given the encod-
ing of x, and E denotes the expectation over the latent distribution p(enc(x)). In contrast,
the encoder is trained adversarial to maximize the discriminator’s uncertainty, with the
encoder’s loss given as follows:

Lae(θ) = Lrec(θ)− βLlat(θ) (3)

This adversarial interplay ensures the encoded representations are class-invariant,
enabling effective audio transformations that preserve target-independent features. Here,
β is a hyperparameter that controls the relative weight of the adversarial loss term in
the encoder’s overall loss function. Adjusting β helps balance the encoder’s focus on
disentangling target-specific features while maintaining effective representation learning.

The authors devised the latent discriminator using a bank of gated convolutional
layers along with instance normalization and dropout layers. The discriminator takes the
encoded latent representations of an acoustic feature sequence as input and predicts the
probability distribution over the target class. This latent discriminator based adversarial
training scheme is essential since it enforces a regularization over the encoded latent
representations and ensures that the learned representations are target class independent.

3.5. WGAN-Based Fine Tuning

An adversarial based fine-tuning scheme is also applied to remove any noisy arti-
facts and buzzy sound effects present in the generated audio and to improve upon its
naturalness. Given the well-known challenges associated with training Generative Adver-
sarial Networks (GANs), the authors adopt a more stable variant, the Wasserstein GAN
with Gradient Penalty (WGAN-GP) [40]. This approach is not only easier to train but
also exhibits improved convergence behaviour. In the proposed framework, the decoder
acts as the generator under this fine-tuning strategy. For the discriminator, we design a
network comprising a series of two-dimensional (2D) convolutional layers, enabling it to
differentiate between genuine acoustic feature sequences and those synthesized by the
model. The discriminator outputs a scalar value that represents the “realness” of an input
feature sequence x; a higher scalar value indicates a higher likelihood that x is real.

The discriminator is trained to maximize the adversarial loss by correctly identifying
real and generated feature sequences. Conversely, the generator (decoder) is optimized
to deceive the discriminator by minimizing a combination of the adversarial loss and the
reconstruction loss. This dual-objective setup ensures that the generator not only produces
realistic acoustic features but also preserves the fidelity of the original input, facilitating
high-quality audio transformation.

3.6. Process of Conversion

During the inference phase, audio transformation can be achieved by feeding the
acoustic features of the target audio whose style is to be transferred as an input to the
reference encoder while feeding the acoustic features of the source audio as input to the
base encoder. The output from the decoder is the transformed audio sequence with local
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phonetic specific features from the source audio and global style specific features from the
target audio, respectively.

4. Experiments
4.1. Datasets

The authors assess the effectiveness of the proposed method on two distinct audio
transformation tasks: voice conversion and musical style transfer. For the voice conversion
task, we leverage two datasets: CMU Arctic [41] and L2 Arctic [42]. The CMU Arctic dataset
comprises approximately 1150 utterances spoken by seven speakers, representing a mix of
US English and various other accents. Complementing this, the L2 Arctic dataset extends
the CMU Arctic by including recordings from twenty non-native English speakers whose
first languages (L1s) include Hindi, Korean, Mandarin, Spanish, and Arabic. Notably, all
speakers in the L2 Arctic dataset narrate the same set of utterances as recorded in the original
CMU Arctic dataset, enabling consistent comparisons. These datasets maintain consistent
utterances across speakers, allowing for controlled experiments and fair benchmarking of
audio transformation tasks, even if they do not explicitly include vocalized voice features.

For the musical style transfer task, the IRMAS dataset is utilized [43], which is specifi-
cally designed for instrument recognition in musical audio. This dataset provides a diverse
range of recordings, making it suitable for evaluating the ability of the proposed method
to adapt and transform musical styles effectively. These datasets collectively ensure a
comprehensive evaluation of the approach across diverse audio transformation challenges.
It consists of musical audio excerpts of ten different musical instruments, such as cello,
acoustic guitar, piano, etc. A subset of 12 speakers, six females and six males, across six
different nationalities, i.e., English, Hindi, Korean, Mandarin, Spanish, and Arabic, respec-
tively, is selected for the voice conversion task. On the other hand, for musical style transfer,
a subset of 6 musical instruments, namely piano, saxophone, violin, flute, trumpet, and
acoustic guitar, respectively, is selected. The dataset is randomly split into training and
testing sets in a 5:1 split ratio for each task.

4.2. Audio Formats

For input acoustic features, we employ Mel-Frequency Cepstral Coefficients (MFCCs)
and Mel spectrograms in the case of voice conversion tasks, while for musical style transfer,
we utilize Mel spectrograms exclusively. These acoustic features are chosen for their ability
to effectively capture the spectral and temporal characteristics of audio, which are essential
for accurate transformation. All acoustic features are computed using the parameters
specified in Table 1, ensuring consistency and reproducibility across the evaluations. These
features serve as the foundation for the model’s encoding and transformation processes,
enabling robust and high-quality results for both tasks. Audio is synthesized from the
predicted Mel spectrograms using the Griffin-Lim algorithm [44].

Table 1. Parameters used for computation of acoustic features.

Parameter Value

Sample Rate 16,000

Frame Length 50 ms

Frame Shift 12.5 ms

n-FFTs 2048

# Mels 128

# MFCCs 40



AI 2025, 6, 16 9 of 17

Table 1 outlines the final configuration of parameters used for acoustic feature ex-
traction, including sample rate, frame length, frame shift, number of FFT points, number
of Mel bands, and number of MFCCs. These parameters were selected through a series
of preliminary experiments designed to balance computational efficiency, fidelity of rep-
resentation, and suitability for the target audio transformation tasks. The sample rate
of 16,000 Hz was chosen as it provides sufficient frequency resolution to capture human
speech and musical instruments without incurring excessive computational overhead. The
values of frame length and frame shift reflect a trade-off between temporal resolution
and frequency detail. A frame length of 50 ms ensures adequate frequency resolution
for capturing harmonic structures, while the 12.5 ms shift reduces redundancy without
sacrificing temporal dynamics.

The high FFT resolution was adopted to accurately represent fine spectral details,
essential for both voice and music transformations. The configuration of 128 Mel bands bal-
ances the need for detailed spectral representation with computational efficiency, enabling
the model to learn meaningful representations of diverse audio styles, and the 40 MFCCs
capture the most critical features for speech and audio analysis while minimizing redun-
dant information, making them suitable for both tasks evaluated in this work. The final
parameter configuration was derived iteratively, guided by empirical evaluations of model
performance on validation data. The chosen parameters consistently produced high-quality
audio transformations across seen and unseen targets, validating their effectiveness in
meeting the project goals.

4.3. Training Details

The authors train the network using the Adam optimizer, configured with a learn-
ing rate (lr) of 0.001, along with momentum parameters β1 = 0.9 and β2 = 0.999. These
parameters were chosen to obtain the best results in terms of accuracy and Mean Opinion
Score. A batch size of 32 is employed to balance computational efficiency and convergence
stability. The training process spans 100 epochs, with an initial 30-epoch pre-training phase
dedicated to the reference encoder. This pre-training ensures that the reference encoder
effectively captures style embeddings before the full network is fine-tuned, enhancing the
overall performance and stability of the model. Finally, 20 epoch GAN-based fine tuning
was performed.

4.4. Baselines

The evaluation of our proposed method against eight existing systems aims to ensure
a comprehensive comparison across a variety of approaches and their capabilities. The
selected baselines represent a diverse set of established and state-of-the-art methods. The
Conditional Variational Autoencoder (CVAE) [8] and Conditional Sequence-to-Sequence
Network (CSeq2Seq) [29] employ local conditioning mechanisms for audio transformations
and serve as representative approaches for methods utilizing explicit conditioning on
attributes. Their inclusion allows us to benchmark against widely recognized frameworks
that share structural similarities with our approach.

The Any-to-Any Voice Conversion Network [10] uses an SI-ASR system for intermedi-
ate phonetic transcriptions, enabling comparisons with approaches dependent on explicit
intermediate representations. It highlights the advantages of bypassing such dependencies
in our framework. By incorporating prosodic features such as F0 contour modeling, a deep
neural network (DNN) system [15] demonstrates the impact of prosody on audio quality
and naturalness. It provides a contrast to our focus on spectral features. Another work [16]
leverages reference encoders to integrate multi-source information, combining acoustic
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features from native references and linguistic data with conventional phonetic posterior
grams (PPGs).

The Sparse Anchor-Based Representation (SABR) algorithm [17] addresses time-
alignment issues in native-to-nonnative voice conversion. Comparing against this algo-
rithm emphasizes our method’s ability to perform robust transformations without requiring
specialized alignment strategies. The Foreign Accent Conversion (FAC) System [18] is a
many-to-many approach that generalizes to unseen non-native speakers without native
references, directly aligning with our goal of robust transformations for unseen targets.

CycleGAN-Based Networks [19] incorporate adversarial networks for perceptual
quality enhancement, and demonstrate the effectiveness of adversarial techniques in audio
transformations, enabling us to benchmark our WGAN-based fine-tuning approach.

These systems were selected not only for their methodological diversity but also
for their relevance to the tasks of voice conversion and musical style transfer. Each one
represents a unique approach to handling challenges such as parallel data dependency,
phonetic alignment, or generalization across unseen targets. Comparing our results with
these systems provides a holistic view of the strengths and limitations of our method in the
broader context of existing solutions.

4.5. Evaluation Metrics

To evaluate the performance of our method with the baselines, the authors compute
the Mean Opinion Score (MOS); the higher, the better. The score has been computed for
both seen (speakers or musical instruments present in the training set) and unseen (speakers
or musical instruments not present in the training set) targets. In addition to MOS, for the
voice conversion task, the authors also evaluate the naturalness of the generated audio for
four cases, as shown below:

• Intra-gender voice conversions.
• Inter-gender voice conversions.
• Intra-nationality voice conversions.
• Inter-nationality voice conversions.

5. Results and Discussion
In Table 2, the subjective evaluations (MOS) of all the baselines and the proposed

method are reported for both the tasks. To evaluate the audio quality, the Mean Opinion
Score (MOS) is calculated, following a standard methodology. Human evaluators rate the
audio generated by our method and baseline models on a 5-point numerical scale, where 1
corresponds to “bad”, 2 to “poor”, 3 to “fair”, 4 to “good”, and 5 to “excellent”. Each audio
sample from the experiments was assessed by five human raters with normal hearing.

These results demonstrate that the proposed method gives better results than seven
systems for audio transformations targeting previously seen identities and achieves com-
petitive performance with one system across both seen and unseen target identities. The
baselines relying on an intermediate Automatic Speech Recognition (ASR) system have
significant drawbacks. Specifically, its dependence on phonetic transcriptions limits porta-
bility to new datasets, as obtaining such transcriptions is resource-intensive. The proposed
method relies solely on easily extractable acoustic features, making it adaptable to any
dataset transformations without requiring intermediate ASR systems.

This approach captures fundamental phonetic properties, as well as the identity-
specific nuances of speakers or instruments. This enables the model to apply these attributes
to unseen words, pitches, target speakers, or musical instruments with minimal degradation
in audio quality. This flexibility highlights the robustness of our method compared to
conventional systems. In addition to subjective MOS evaluations, we present a visual
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analysis of the outputs in Figure 2, where examples of spectra generated by our approach
are shown.

Table 2. Mean Opinion Score (MOS) for both seen and unseen targets on voice conversion and
musical style transfer tasks. Higher MOS is better.

Method MOS

Seen Target Voice Conversion Musical Style Transfer

Ground Truth 4.53 4.07

FAC 3.03 -

DNN 3.09 -

SABR 3.18 -

CVAE 3.31 3.08

C-Seq2Seq 3.50 3.26

PPG sequence 3.52 -

MSVC 3.77 -

CycleGAN - 3.64

Our Method 3.72 3.50

Unseen Target Voice Conversion Musical Style Transfer

DNN 2.72 -

MSVC 3.51 -

Our Method 3.44 3.36
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Figure 2. MFCC and spectrogram plots for source audio, target audio and generated audio for voice
conversion and musical style transfer.

It provides a visual analysis of the audio transformations achieved by the proposed
method, showcasing the MFCC and spectrogram plots for the source audio, target audio,
and the generated audio. The MFCC plots illustrate how the model captures the spectral
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envelope of the source audio while effectively adapting it to match the stylistic attributes
of the target audio. This is particularly evident in the transformed spectrograms, where
the harmonic structures and energy distributions align closely with the target audio while
retaining key phonetic features from the source.

To further validate the representations encoded by the reference encoder, the learned
style embeddings for voice conversion and musical style transfer tasks have been analyzed.
These embeddings, shown in Figure 3, highlight the ability of the encoder to preserve
identity-related characteristics across diverse audio transformation scenarios. The style
embeddings are visualized using the t-SNE algorithm with perplexity = 30 and number of
iterations = 300. The t-SNE plots show that the reference encoder is able to cluster sounds
belonging to the same target identity classes together, thus confirming that the reference
encoder can encode the global style-specific features and the target identity.
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dimensional t-SNE plots for six random speakers (three females and three males) on left and for four
random musical instruments on right.

Figure 4 shows the MOS for naturalness, calculated for both seen and unseen speakers
to evaluate our method over cross-nationality and cross-gender audio transformations.
The results indicate that the proposed method is able to generate intelligible and natural
speech across gender as well as nationality. While these results indicate the robustness of
the method in generating natural-sounding outputs, it is important to note that the primary
focus of this work is on vocal voice transformation rather than general speech synthesis.

The intelligibility and naturalness of the transformed audio serve as evidence of the
model’s effectiveness in preserving the stylistic and phonetic nuances essential to high-
quality voice transformation. These findings reinforce the framework’s suitability for
applications requiring nuanced changes to vocal characteristics while maintaining overall
audio quality.

Finally, to ensure that the latent representations from the encoder are independent of
the target identity after the latent discriminator-based adversarial training, the authors train
a target class verification system that takes the latent representations from the encoder as
input to predict the target class identity. The verification accuracies for both the tasks with
and without the latent adversarial training are reported in Table 3. The drop-in verification
accuracies after latent discriminator-based adversarial training confirm that the encoder is
able to learn latent representations that are independent of the target identity.
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Table 3. Target verification accuracies before and after the latent adversarial training. L.A.: latent
adversarial.

Task Acc. w/o L.A. Training (%) Acc. w/L.A. Training (%)

Voice Conversion 93.2 57.15

Musical Style Transfer 86.34 69.1

While the proposed method eliminates dependencies on parallel data and phonetic
alignments, it relies on high-quality acoustic feature extraction (e.g., MFCCs and Mel
spectrograms) to achieve optimal performance. Additionally, the adversarial training
phase, while enhancing robustness, introduces computational overhead, which may limit
the framework’s applicability in real-time scenarios.

The method’s reliance on Griffin-Lim reconstruction for audio synthesis, although
effective, introduces occasional artifacts, impacting the naturalness of the transformed audio
in certain cases. Furthermore, while competitive with ASR-based systems, the proposed
approach’s quality lags slightly behind in some unseen target scenarios, underscoring the
challenges in generalizing across significantly diverse datasets.

The model processes acoustic features like MFCCs and Mel spectrograms to capture es-
sential phonetic characteristics such as formants and harmonics. Future enhancements may
involve using metrics like Mel Cepstral Distortion to measure spectral distance between
original and transformed audio, reflecting how well phonetic structures are preserved [45].
The model encodes speaker-specific vocal traits or instrument-specific tonal qualities into
fixed-dimensional embeddings, which can be evaluated using metrics like Speaker Verifica-
tion Accuracy to ensure the generated audio retains the identity of the target [46].

This framework demonstrates generalization beyond training data by generating
audio for unseen scenarios—such as new speakers—without compromising style or in-
telligibility. Metrics like Phonetic Transcription Error Rate can assess how accurately the
transformed audio aligns with intended phonetic content [47]. The model produces audio
transformations with high naturalness and fidelity, ensuring that the output sounds realistic.
Signal-to-Noise Ratio can quantify the clarity of the transformed audio by comparing signal
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strength to background noise. Future improvements can leverage these metrics to enhance
objective evaluations and refine the model’s performance.

Explainable AI (ExAI) in natural language processing (NLP) predominantly empha-
sizes deciphering the internal mechanisms of underlying models rather than providing
insights into specific classification outputs. A comprehensive review [48] consolidates
progress in various aspects of interpretability, including the behavior of word embeddings,
the internal dynamics of RNNs and transformers, the rationale behind model decisions, and
the array of visualization techniques employed. The review also underscores the intercon-
nected nature of these interpretability methods, shedding light on how they complement
and build upon one another.

Among NLP architectures, Long Short-Term Memory (LSTM) networks and Convolu-
tional Neural Networks (CNNs) exhibit relatively higher inherent interpretability due to
their structured operation and transparent feature extraction processes. However, attention-
based models, despite their effectiveness, require more rigorous and targeted analysis to
achieve complete transparency. This calls for the development of advanced techniques to
elucidate how these models prioritize and weigh different inputs during decision-making.

6. Conclusions
The proposed fully differentiable, end-to-end audio transformation framework offers

several impactful implications and opportunities for both future research and practical
applications. By removing the need for parallel, time-aligned data and intermediate
phonetic representations, this approach reduces the burden of data collection and improves
scalability across diverse datasets and languages. Its vocabulary-agnostic design further
enhances its versatility, enabling audio transformations for previously unseen speakers,
musical instruments, and styles.

Optimizing the framework for lower latency and computational efficiency could facili-
tate real-time applications, such as live voice modulation or musical improvisation tools.
Additionally, fine-tuning the model for specialized domains like healthcare or education
(e.g., accent conversion for language learners) could expand its applicability. However,
ethical concerns, such as potential misuse of voice conversion for identity spoofing or
spreading misinformation, must be systematically addressed.

The evaluation framework employed in this study combined objective metrics with
subjective insights, recognizing that aspects of audio quality are influenced by human
perception. Future evaluations should include detailed statistical analyses of subjective
ratings—such as standard deviation, interquartile range, or confidence intervals—to better
quantify variability and consistency in evaluators’ opinions.

This would provide a clearer understanding of subjective assessments and strengthen
the robustness of conclusions. Additional metrics, such as listener agreement rates or score
breakdowns by demographic groups, could further validate the model’s reliability across
diverse contexts.
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