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Abstract: Background: COVID-19 genetic sequence research is crucial despite immu-
nizations and pandemic control. COVID-19-causing SARS-CoV-2 must be understood
genomically for several reasons. New viral strains may resist vaccines. Categorizing
genetic sequences helps researchers track changes and assess immunization efficacy. Classi-
fying COVID-19 genome sequences with other viruses helps to understand its evolution
and interactions with other illnesses. Methods: The proposed study introduces a deep
learning-based COVID-19 genomic sequence categorization approach. Attention-based
hybrid deep learning (DL) models categorize 1423 COVID-19 and 11,388 other viral genome
sequences. An unknown dataset is also used to assess the models. The five models’ ac-
curacy, f1-score, area under the curve (AUC), precision, Matthews correlation coefficient
(MCC), and recall are evaluated. Results: The results indicate that the Convolutional neural
network (CNN) with Bidirectional long short-term memory (BLSTM) with attention layer
(CNN-BLSTM-Att) achieved an accuracy of 99.99%, which outperformed the other models.
For external validation, the model shows an accuracy of 99.88%. It reveals that DL-based
approaches with an attention layer can accurately classify COVID-19 genomic sequences
with a high degree of accuracy. This method might assist in identifying and classifying
COVID-19 virus strains in clinical situations. Immunizations have lowered COVID-19
danger, but categorizing its genetic sequences is crucial to global health activities to plan
for recurrence or future viral threats.

Keywords: attention layer; convolutional neural network; COVID-19; deep learning;
genome sequencing; sequence classification

1. Introduction
The COVID-19 pandemic, induced by the SARS-CoV-2 virus, has posed a considerable

worldwide health issue [1]. It has resulted in unprecedented death, disease, and economic
effects. Given the size of the problem and the fact that the disease’s progress is hard
to predict, it is essential to find and focus on those most at risk [2]. The pandemic has
been mitigated in several regions globally due to the advancement and dissemination of
successful vaccinations, including the mRNA-based Pfizer-BioNTech and Moderna vac-
cines. Notwithstanding these developments, the analysis of COVID-19 genomic sequences
remains essential [3].

The genetic code tells us a lot about how the pandemic has changed. It makes it easier
to make medicines to fight the virus [4]. With genetic material information, health workers
could work out which virus is infecting a patient. Nucleic acid, also called deoxyribonucleic
acid (DNA), is the molecule that saves an organism’s genetic information and which is
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necessary to continue developing and processing. The four nucleotide bases that make up
a genome are Adenine (A), G (Guanine), C (Cytosine), and T (Thymine). With this chain of
nucleotides and DNA, a ribonucleic acid (RNA) molecule can be made [5]. Global genomic
real-time monitoring should be a vital part of any reaction to an outbreak [4].

The Global Initiative for Sharing Avian Influenza Data (GISAID) fosters beneficial
collaboration between researchers by collecting and storing genomes worldwide for further
comparison [6]. The United States of America (USA) and the United Kingdom (UK) have
the highest genome sequence published in GISAID [7]. The multinational HapMap project
aims to provide the typical patterns of variability in human genes and how they relate
to health, disease, response to therapy, and environmental variables [8,9]. In addition,
hundreds of COVID-19 genomes have been given to GISAID, where researchers release
data from patient samples from different nations in light of the significant worldwide
diversity in the death rate caused by COVID-19 [10–12].

Insights into the virus’s origins, modes of transmission, genetic variety, and evolution-
ary history have been made possible by sequencing the SARS-CoV-2 genome. Compre-
hending the genomic sequences of SARS-CoV-2 is crucial for several reasons. It enables
scientists to observe the virus’s development and identify the introduction of new vari-
ations, which might affect vaccination effectiveness and public health efforts. Secondly,
genetic investigations elucidate the virus’s transmission patterns and origins, and therefore
inform current and future pandemic responses [13].

Despite the pandemic being managed, ongoing genomic surveillance remains es-
sential to identify possible alterations that may result in vaccine resistance or enhanced
transmissibility. As artificial intelligence (AI) solutions have developed, they have be-
come indispensable for handling the ever-growing databases linked with viral genome
research [14]. Machine learning (ML) is applied in bioinformatics, which seeks to under-
stand biological data via computing. One of the trickiest parts of genomics is determining
how to classify genes as healthy or diseased [15,16].

In this research, we use the COVID-19 genome sequence dataset to develop a clas-
sification model with a few different deep learning (DL) techniques. The classification
of the genome sequence provides medical professionals with a helpful tool for the early
detection of viruses. The primary goals of this investigation are as follows: to carry out
genome sequence analysis, which assists in the detection of the COVID-19 genome, and
to carry out deep learning models, such as hybrid DL models with attention layers. The
different models employed for the study are Bidirectional gated recurrent units (BGRU)
with attention (BGRU-Att), Bidirectional long short-term memory (BLSTM) with attention
(BLSTM-Att), Convolutional neural network (CNN) with BLSTM-Att (CNN-BLSTM-Att),
and CNN-BGRU-Att. The study’s most significant contributions are:

• The study proposes a hybrid DL-based approach for efficiently classifying COVID-
19 genome sequences using CNN with BLSTM, BGRU, and an attention layer. It is
a novel contribution, as existing studies have used CNN with BLSTM models for
sequence classification;

• While previous studies may have used k-mer counting with a single k value, the k
values employed in this study (3 to 6) may differ from previous works. It could lead
to different and potentially better results;

• The study employs the sliding window method to overcome the class imbalance
problem. It is a novel contribution, as existing studies of genome classification use
other oversampling approaches like the Synthetic Minority Oversampling Technique;

• The study evaluated the proposed approach on an unseen external dataset, adding
confidence to the findings and potentially aiding reproducibility.
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Thus, the research question for the study is as follows: How does a hybrid attention DL-
based approach (BLSTM-Att, BGRU-Att, CNN-BLSTM-Att, and CNN-BGRU-Att) perform
accurately in classifying COVID-19 genomic sequences, and how well does it generalize to
an unseen external dataset?

The remaining report layout can be broken down into the following sections: Section
Two is a background study of genome sequence classification. It is followed by methodology
in section three and study results in section four. The discussions of the results with
reference to related work are explained in section five, followed by the study’s conclusion
(section six).

2. Literature Review
To fully grasp the evolution, medical, and epidemiological aspects of COVID-19

and the necessity of early diagnosis and therapy, it is essential to understand the genetic
sequence of SARS-CoV-2 [17]. According to Ahmad et al. [18], it is critical to comprehend
the COVID-19 genomic alterations that have taken place. In the research presented by
Hu et al. [19], the modeling of large input sequences (200 kb) was investigated, and it was
shown that the model architecture needed to include self-matched modularization. The
second innovation is the establishment of harmony between the predictability of models
and their interpretability, which has led to the latter being increasingly relevant in meeting
biological criteria.

The DL models help predict the genome sequence and can be used in various contexts,
such as customized medicine and the detection of diseases [20]. Genomic sequencing could
identify the genotype of the virus in a blood specimen, which can help track and trace
potential transmission sources [21]. Methods for diagnosis involve real-time polymerase
chain reactions to analyze nucleic acids and viral genome sequencing for the localization of
infectious sources. Determining the viral load helps track how the disease progresses [22].
Zhu et al. [23] explain in their study how they created a statistical framework for COVID-19
by using SARS-CoV-2 complete genome sequencing in conjunction with electronic medi-
cal records.

Table 1 explains the background papers on ML and DL in genome sequence clas-
sification. DL has many applications in sequence analysis, like performing imputation
based on correlation with genes, dimensionality reduction with specific algorithms, cell
annotations, and computation [24]. COVID-19 data analysis can be accelerated and im-
proved by concerted efforts to promote accessible research and information sharing [25].
Purohit [26] studied the correlation and alignment analysis of different virus genome se-
quences with COVID-19 and concluded a low annealing temperature with the COVID-19
virus. It is the reason why COVID-19 can be found in a wide variety of forms throughout
different countries.

Table 1. Previous studies of AI models for COVID-19 genome sequence.

Reference Model Genome Sequence Results

[27] DQNN COVID-19 genome sequences Accuracy = 94.10%

[28] MLP Five different coronaviruses with
10,000 sequences Accuracy = 97.32%

[29] SVM COVID-19 and influenza virus with
107,000 sequences Accuracy = 99.40%

[30] NB, SVM, KNN COVID-19 and non-COVID-19 virus
with 7331 sequences Accuracy = 99.39%
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Table 1. Cont.

Reference Model Genome Sequence Results

[31] Capsule network COVID-19 and non-COVID-19 virus with
10,988 segments Accuracy = 100.00%

[32] RF, KNN, SVM, DT COVID-19 sequence in 6 countries Accuracy = 98.90%

[33] Neurochaos Learning COVID-19 and other viruses (multi-class)
with 361 sequences Accuracy = 99.80%

[34] CNN, CNN-LSTM,
CNN-BLSTM

86,637 sequences with COVID-19 and
seven other viruses. Accuracy = 94.88%

[35] KNN, SVM 260 sequences of COVID-19 and
healthy patients Accuracy = 98.84%

[36] XGB, RF, LR, KNN, DT, SVM,
NB

300 sequences with COVID-19 and three
other viruses. Accuracy = 97.00%

[37] SVM, RF, DT, KNN, GB 113,927 protein sequence of COVID-19 and
non-COVID-19 viruses Accuracy = 98.69%

[38] CNN, CNN-LSTM,
CNN-BLSTM

329 sequences of COVID-19 and
non-COVID-19 viruses Accuracy = 99.95%

[39] KNN, RF, DT, SVM 1582 sequences of COVID-19 and
non-COVID-19 viruses Accuracy = 97.47%

[40] CNN, CNN-LSTM,
CNN-BLSTM

66,153 sequences of COVID-19 and five
other viruses Accuracy = 93.16%

[41] SVM, RF, KNN, DT, AB, MLP 1615 sequences of COVID-19 and
non-COVID-19 viruses Accuracy = 99.80%

[42] SVM, KNN, NB, RF, DT 1334 sequences of COVID-19 and
non-COVID-19 viruses Accuracy = 93.00%

[43] LR, KNN, SVM, DT, RF 9238 COVID-19 with 27 countries Accuracy = 100.00%

Abbreviations: DQNN: Deep quantum neural network, AUROC: area under the receiver operating characteristic
curve, AUC: area under the curve, ROC: receiver operating characteristic, DT: Decision tree, SVM: Support vector
machine, MLP: Multi-layer perceptron, KNN: K-nearest neighbors, CNN: convolutional neural network, LR:
Logistic regression, AB: Ada boosting, XGB: extreme gradient boosting, RF: Random forest, NB: naïve Bayes,
LSTM: long short term memory, BLSTM: bi-directional LSTM, LD: linear discriminant, DNA: deoxyribonucleic
acid, RNA: ribonucleic acid, HIV: human immunodeficiency virus, HCV: hepatitis C virus.

Most previous studies have not used external data to test the prediction. According
to Riley et al. [44], the model should be externally tested on new data to ensure that it is
reliable and works well on real data.

3. Materials and Methods
The methodology of the study is illustrated in Figure 1. Python (version 3.9) with Ten-

sorFlow (version 2.10) and Scikit-Learn (version 1.0) library was used in this work [45,46].
For genome sequence analysis the Biopython (version 1.79) tool was used [47].

3.1. Dataset and Data Balancing

The genome sequence dataset was collected from open-source data [48]. It contained
1557 COVID-19 genome sequences (Label-0) and 11540 other viruses’ genomes (Label-1).
After cleaning the dataset, the total count consisted of 12,811 with 1423 Label-0 and
11,388 Label-1 sequences. The average sequence length of the COVID-19 genome was
29,837, and that of the other viruses was 15,789. The classes are highly imbalanced, with
Label-0 having a lesser sequence count than Label-1.
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Figure 1. Methodology of the study.

To balance the class frequencies, a sliding window method was used to create a new
set of minority classes (Label-0) [49]. The sliding window from the starting position of a
COVID-19 sequence was used to extract a window of nucleotides. This window could then
be replaced with a new sequence of nucleotides generated by a random DNA sequence
generator. The process could be repeated, sliding the window along the DNA sequence
until it reached the complete length and replaced the nucleotides within the window with
new, randomly generated sequences. The new sequences were developed with a size
of 10,000. After generating a new series based on COVID-19, the total count for Label-0
changed to 11,375, which resulted in a complete sequence count of 22,763. This dataset was
used for training and validating the model with a ratio of 70:30.

The external validation was based on a new unseen dataset downloaded from the Na-
tional Center for Biotechnology Information (NCBI), which has complete DNA sequences
for viruses and is accessible to the public [50]. The collected DNA sequence databases
include COVID-19, MERS, Dengue, Ebola, Influenza, and Rota. Since the trained model is
binary classification, viruses other than COVID-19 were grouped into one and labeled as
Label-1. Table 2 presents the count of every virus in the external dataset. The total count
was 4622.

Table 2. Detail of genome sequence external dataset.

Virus Total Sequences Maximum Length Minimum Length

COVID-19 722 29,903 29,454
Dengue 700 10,736 202
Ebola 600 19,043 587
MERS 1000 30,484 110

Influenza 1000 2396 159
Rota 600 3538 441
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It is common for real-world datasets to have class imbalances, meaning that some
classes may have significantly more or fewer samples than others. In such cases, it is often
necessary to balance the class distribution in the training data to ensure that the model is
not biased toward the majority class. However, when testing the model on unseen data, it
is unnecessary to balance the class distribution as it reflects the real-world distribution.

3.2. Data Pre-Processing

The character sequence was encoded with k-mer counting. K-mer counting is used in
sequence read error correction, metagenomic sequencing, and genome and transcriptome
assembly. K-mers are simply length k subsequences. Equation (1) displays the sequence’s
overall length after k-mer counting.

Total sequence length = L − k + 1 (1)

where k is the length given in the k-mer, and L is the overall length of the input sequence.
For a DNA sequence, n is 4 with four nucleotides: A, C, G, and T; and k represents the
sequence’s potential monomers.

After applying the k-mer counting encoding method, the raw sequence was converted
to English-like statements. For example, consider a random sequence as ‘GGAAAATC-
TATTGGT.’ Then a window of length three is made, and one character is moved from
left to right at a time. So, the sequence is split into ‘GGA’, ‘GAA’, ‘AAA’, ‘AAA’, ‘AAT’,
‘ATC’, ‘TCT’, ‘CTA’, ‘TAT’, ‘ATT’, ‘TTG’, ‘TGG’, and ‘GGT’. So, the total sequence length
of k-mer counting is 15 − 3 + 1 = 13. Here, in the example, 13 sequences are generated.
In the proposed study, we used K-mer counting with k value ranges from 3 to 6. The
best performance of the model based on each k value was evaluated. The countVectorizer
function in the Scikit-Learn module was then used to vectorize each English-like sequence
using the character-level analyzer. The data were split into 70% training and 30% testing.
The model was externally evaluated on the new unseen data.

3.3. Deep Learning Models

BLSTM-Att, BGRU-Att, CNN-BLSTM-Att, and CNN-BGRU-Att are the DL models
utilized in this study. BLSTM is architecture for recurrent neural networks (RNNs) that
combines forward and reverse information flows to improve the accuracy of sequence
classification tasks. It is an expansion of the standard long short-term memory (LSTM)
model that handles sequence inputs in both models’ routes. The processing of the input
sequence by the forward LSTM in the order in which it was supplied produces a hidden
state sequence. The reverse LSTM oppositely processes the input sequence, and the hidden
state sequence is created as a result. The output of the BLSTM model is produced by
appending the forward and backward sequences of the hidden states. BLSTM is better
than standard LSTM because it can acquire contextual information from both the input
sequence’s past and future states. As a result, it is more effective when used for sequence
classification tasks. In natural language processing (NLP), BLSTM has been used for tasks
including part-of-speech tagging, text categorization, and sentiment analysis [51,52].

Because of their ability to accurately describe sequential data with long-term depen-
dencies, BGRU are widely used in various industries. BGRU are an extension of Gated
Recurrent Units (GRUs) that includes two layers of GRUs operating in opposing direc-
tions. This allows the model to capture forward and backward dependencies in the input
sequence. The GRU is a specialized form of the RNN that has gating mechanisms. These
mechanisms allow the network to selectively update and reset its hidden state based on
the input at each time step. BGRU models can capture each input token’s past and future
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contexts because they are constructed using two GRU layers stacked in opposite directions.
This enables them to learn more complicated relationships in the input sequence [53,54].

Convolutional neural networks, more often referred to as CNNs, have garnered
significant interest in recent years because they are so good at various NLP tasks, including
the classification of text [55]. CNNs were initially designed to perform tasks associated with
image processing; nevertheless, their performance in NLP tasks has been attributed to their
ability to acquire hierarchical and local properties from the input data. CNNs can learn
these properties, which helps them perform well in natural language processing (NLP)
tasks [56].

This research uses a hybrid model that incorporates a CNN layer to extract features
from the input sequence, which is then followed by a BGRU or BLSTM layer. Upon
inputting a sequence into the model, it is initially transformed into an integer index using a
tokenizer. This index pertains to a certain character inside the vocabulary. The Embedding
layer functions as a lookup table that associates integer indices with their respective dense
vector representations. If the input index for a character is 5, the Embedding layer extracts
the 5th row from the embedding matrix, which holds the dense vector corresponding to
that character. A convolutional layer, a max pooling layer, a BGRU layer or a BLSTM layer,
an attention layer, and a dense layer are included in the model, and their purpose is to
categorize the target label. The complete summary of the models is depicted in Figure 2.
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DL uses “attention” to boost the efficiency of models that operate on sequential
data, such as text or time-series information. Introduced by Vaswani et al. (2017) in
“Attention is All You Need,” the attention mechanism transformed sequence modeling by
allowing models to dynamically focus on the most pertinent sections of input sequences [57].
Attention may be utilized to increase performance [58–60]. During the process of making a
forecast, the purpose of attention is to enable the model to focus on the aspects of the input
sequence that are most significant to the task. When applied to neural networks, attention
may be understood as a system that learns a set of weights over the input sequence. These
weights indicate the relative significance of each component in the sequence concerning
the prediction job. After that, these weights are utilized to compute a weighted sum of
the input sequence. This weighted sum is then sent to the subsequent layer of the model
in the form of input data, enabling the model to emphasize the most relevant areas of
the sequence.

To guarantee interpretability in the proposed study, a single-layer attention mechanism
is utilized. Attention is included before the model’s final output layer and after the CNN’s
feature extraction stage. This placement improves classification performance by allowing
the model to concentrate on the most relevant characteristics that were taken from the
genomic data. The attention layer’s scoring mode is the dot-product or Luong-style
attention. The Attention layer receives the query (Q) and key(K)-value(V) pair. The query
and key-value pair are obtained from the RNN layer output. Hence, Q = K = V, which
sets up the self-attention mechanism. This approach emphasizes temporal or geographical
aspects in genomic data by focusing on connections within the same sequence. At each
timestep, the bidirectional RNN collects sequence dependencies and produces rich feature
representations. These characteristics feed into the attention mechanism, so the model
learns to prioritize the sequence depending on the task. The attention score (AS) and output
are defined as:

AS = Q.KT (2)

Attention output = so f tmax
(

AS√
dk

)
.V (3)

where Q is the query vector, K is the key vector, V is the value vector, T is the sequence
length, and dk is the dimensionality of the bidirectional output. The complete architecture
is explained in Figure 3.

The parameters of the models used in this work are mentioned in Table 3. The number
of units in the CNN layer was set as 128 with a 2 × 2 kernel size. For this study, only
one layer was evaluated for CNN, BGRU, and BLSTM models. All other parameters
employed for the CNN, BGRU, and BLSTM were the default values. The output space
dimensionality for BLSTM and BGRU was set to 64. Thus, the attention layer operated on a
128-dimensional space.

Table 3. Parameters of the model.

Parameters Value

Loss binary_crossentropy
Epochs 50

Activation Sigmoid
Optimizer Adam

learning rate 0.001
Batch size 64

EarlyStopping Validation loss, patience = 5
ReduceLRonPlateau Validation loss, patience = 2
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The tuning parameter is the learning rate. The EarlyStopping and ReduceLROnPlateau
were used to overcome the overfitting problem in DL models. The epoch was set to 50,
and the patience for ReduceLROnPlateau was set to 2. If the validation loss was stable or
increasing, the learning rate parameter was updated to a factor of 0.1. (The initial learning
rate was set to 0.001.) The model exited the training if the validation loss in EarlyStopping
was not decreasing for five epochs. The pseudo-code for the proposed study is mentioned
in Figure 4.

3.4. Evaluation Metrics

Accuracy, precision, recall, and f1-score were the criteria used to analyze the classifica-
tion result. In addition, the confusion matrix for each approach was considered. Data that
were not evenly distributed may not have been correctly measured using accuracy [61].
As a direct consequence of this, f1-score, precision, and recall were also utilized [62]. A
confusion matrix was employed to evaluate performance measures based on true positives
(trPos), true negatives (trNeg), false positives (faPos), and false negatives (faNeg). A cal-
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culation was made to determine how many classified samples were relevant, known as
precision (as shown in Equation (4)). Recall determined how many relevant samples were
classified (Equation (5)). F1-score is the mean of recall and precision (Equation (6)) and the
accuracy of the model in Equation (7). The Matthews Correlation Coefficient (MCC), as
shown in Equation (8), is a statistic utilized to assess the efficacy of binary classifications. It
offers a balanced metric applicable even when the classes vary significantly in size.

Precision =
trPos

trPos + f aPos
(4)

Recall =
trPos

trPos + f aNeg
(5)

F1-Score =
2trPos

2trPos + f aPos + f aNeg
(6)

Accuracy =
trPos + trNeg

trPos + trNeg + f aPos + f aNeg
(7)

MCC =
trPos.trNeg − f aPos. f aNeg√

(trPos + f aPos)(trPos + f aNeg)(trNeg + f aPos)(trNeg + f aNeg)
(8)

The ROC Curve, also known as the Receiver Operating Characteristic Curve, is an
efficient method for determining the accuracy of binary classifiers. The behavior of the
classifier may be understood by graphing the True Positive Rate (TPR) and the False
Positive Rate (FPR) concerning each threshold. As the model better classifies the data, the
ROC curve moves closer and closer to the top left corner. To determine how much of the
graphic falls inside the range of the curve, we computed the AUC (area under the curve).
The model is better when the AUC becomes closer to one [63].
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4. Results
In the study, the data were split into 70–30 methods for training and validation. The

models employed in this work consist of four DL models: BLSTM-Att, BGRU-Att, CNN-
BLSTM-Att, and CNN-BGRU-Att. The k-mer counting with k values ranging from 3 to
6 was tuned for each model. The model was checked on in respect to unseen new data
to evaluate whether the model’s classification was reliable [44]. The platforms employed
in this study were Nvidia GeForce GTX 1080 Ti (19 GB memory) and Nvidia Titan V
(20 GB memory). Python 3.9, TensorFlow 2.10, Scikit-learn 1.0, and BioPython 1.79 were the
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library packages employed to build the models. There are 1423 COVID-19 sequences and
11,388 genome sequences from different viruses that make up the complete dataset. The
sample nucleotides in DNA from COVID-19 and different virus categories are specified in
Figures 5 and 6. The letters A (Adenine), G (Guanine), C (Cytosine), and T (Thymine) are
referred to as the DNA’s four bases. Figure 5 demonstrates that a random sample sequence
taken from the COVID-19 target label has 8954 instances of adenine, 9594 instances of
thymine, 5863 instances of guanine, and 5492 instances of cytosine.
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Similarly, other viral labels’ random sample genome sequences have also been given
in Figure 6. It reveals that adenine has a count of 3143, guanine has a count of 2092, thymine
has a count of 3070, and cytosine has a count of 1927. Figures 5 and 6 provide a comparison
examination of the nucleotide composition (counts of A, T, G, and C) between random
sequences of COVID-19 and other viral genomes. This is essential for comprehending
the genetic traits and variations that may occur across various virus strains. Visualizing
nucleotide counts assists in understanding possible changes in genomic structure that may
affect the behavior of these viruses.

The comparison of two sequences can be performed using a dot matrix. It functions
based on the DNA sequence, and it will map a dot whenever it detects a match on the
base of the DNA sequence. In most cases, understanding the sequence alignment better is
beneficial. Figure 7 shows a sample dot matrix of COVID-19 and other viruses’ genome
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sequences. This form of representation can assist in recognizing patterns in the sequences,
such as those that are similar or that repeat themselves. Only the first 20 nucleotide bases of
the random sequence are shown here since its length is too great to be shown in its entirety.
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Classification Results

The genome sequence classification used K-Mer counting with a countVectorizer for
encoding the data. The k size of the K-Mer counting was used as a tuning parameter. The
DL models were BLSTM-Att, BGRU-Att, CNN-BLSTM-Att, and CNN-BGRU-Att. The
parameters were tuned to obtain better performance for each model. The tuning parameter
is the learning rate. Since the models reach the best accuracy with one hidden layer, it was
not tuned further, as increasing the hidden layer increases the time to fit the model.

Table 4 shows the accuracy of the validation data for the k-mer counting method.
Looking at the metrics, we can see that the models generally performed well across the
board. For all the metrics, higher values indicate better performance. The models consis-
tently achieved high accuracy, with values above 0.99 for most cases. AUC values are also
high, meaning solid predictive ability. CNN-BLSTM-Att showed the highest accuracy of
99.93% with k values of 6 and 5. For the corresponding k value, both the models achieved
high precision, recall, and f1-score values (0.9991, 0.9994, and 0.9993). The AUC score is
higher for CNN-BLSTM-Att, with a value of 0.9993. It indicates that the model accurately
distinguished between positive and negative samples or correctly ranked the predicted
probabilities for the classes.

To evaluate the model performance based on all four models and k-mer values,
analysis of variance (ANOVA) was employed in this study. The metrics, accuracy, and AUC
are used here to analyze performance. The null hypothesis states no significant difference
between the means of measuring parameters according to the four DL models. The p-value,
according to the model, is depicted in Table 5. The null hypothesis is rejected if the p-value
is less than 0.05. The measures other than recall specify a significant difference between
the mean values. It depicts that one group is different from the other. The Tukey test was
performed to identify which group is diverse [64].
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Table 4. Classification results of all models with different k-mer methods for validation.

Model k-mer Accuracy AUC Precision Recall F1-Score

BLSTM-
Att

k = 3 0.9970 0.9971 0.9965 0.9976 0.9970
k = 4 0.9949 0.9949 0.9920 0.9976 0.9949
k = 5 0.9980 0.9979 0.9982 0.9976 0.9980
k = 6 0.9980 0.9981 0.9970 0.9991 0.9980

BGRU-
Att

k = 3 0.9938 0.9939 0.9906 0.9970 0.9938
k = 4 0.9943 0.9943 0.9903 0.9982 0.9943
k = 5 0.9962 0.9962 0.9962 0.9962 0.9962
k = 6 0.9953 0.9953 0.9912 0.9994 0.9953

CNN-
BLSTM-

Att

k = 3 0.9968 0.9968 0.9959 0.9976 0.9968
k = 4 0.9980 0.9981 0.9973 0.9988 0.9980
k = 5 0.9993 0.9993 0.9991 0.9994 0.9993
k = 6 0.9993 0.9993 0.9991 0.9994 0.9993

CNN-
BGRU-

Att

k = 3 0.9965 0.9965 0.9953 0.9976 0.9965
k = 4 0.9966 0.9966 0.9944 0.9988 0.9966
k = 5 0.9980 0.9981 0.9973 0.9988 0.9980
k = 6 0.9985 0.9985 0.9976 0.9994 0.9985

Table 5. The ANOVA results for analyzing the model’s performance.

Factor Response p-Value

Model

Accuracy 0.01
AUC 0.01

Precision 0.02
Recall 0.362

F1-score 0.01

The results of the Tukey test are shown in Figure 8. It shows that the models, CNN-
BLSTM-Att, and BGRU-Att, are significantly different. All other models are not different
according to the mean value. So, the CNN-BLSTM-Att is considered the best model with
99.93% accuracy.
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health workers understand the COVID-19 virus and infection. This study employed a
sliding window method to solve the class imbalance problem during training. The k-mer
method with countVectorizer was used to encode and vectorize the sequence. The k value,
6, showed the highest performance, as shown in Table 4. The result shows 99.93% accu-
racy with the CNN-BLSTM-Att model for classifying the test sequence. The model better
classifies the sequence of COVID-19 and other viruses.

The suggested models were evaluated across different k values to find the best balance
between classification accuracy and overfitting. The results found that k = 6 had the greatest
accuracy and generality for the genomic sequences studied, which is a good balance. In
genomic sequence analysis, the k-mer size decision is a crucial factor as it directly affects
the data representation and, thus, the model’s classification performance. Smaller k values,
like k = 3, capture local patterns; greater k values, such as k = 6, allow deeper contextual
representation.

The study analyzed how well the models performed on different datasets. The external
data had 722 COVID-19 sequences and 3922 other virus sequences (Table 2). The data
were not balanced as they reflected real-world distribution. The results are depicted in
Table 6. The CNN-BLSTM-Att performed better with an AUC score of 0.9886, accuracy of
99.61%, 100% precision, a 0.9772 recall value, and an f1-score of 0.9885. The MCC score is a
robust metric for binary classification with class imbalance. The CNN-BLSTM-Att showed
a 0.9863 MCC score, which indicates a perfect prediction.

Table 6. Classification result of unseen external data.

Model k-mer Accuracy AUC Precision Recall F1-Score MCC

BLSTM-Att

k = 3 0.9566 0.8727 1.0000 0.7454 0.8541 0.8416
k = 4 0.9656 0.8996 0.9982 0.7994 0.8878 0.8753
k = 5 0.9690 0.9090 1.0000 0.8180 0.8998 0.8879
k = 6 0.9702 0.9125 1.0000 0.8250 0.9041 0.8924

BGRU-Att

k = 3 0.9615 0.8886 0.9945 0.7781 0.8731 0.8597
k = 4 0.9855 0.9579 0.9984 0.9160 0.9555 0.9481
k = 5 0.9624 0.8898 1.0000 0.7795 0.8761 0.8636
k = 6 0.9920 0.9771 0.9985 0.9545 0.9760 0.9716

CNN-
BLSTM-Att

k = 3 0.9580 0.8775 0.9981 0.7553 0.8600 0.8470
k = 4 0.9884 0.9659 1.0000 0.9317 0.9647 0.9586
k = 5 0.9940 0.9822 1.0000 0.9644 0.9819 0.9785
k = 6 0.9961 0.9886 1.0000 0.9772 0.9885 0.9863

CNN-
BGRU-Att

k = 3 0.9730 0.9227 0.9950 0.8464 0.9147 0.9030
k = 4 0.9852 0.9566 1.0000 0.9132 0.9546 0.9472
k = 5 0.9876 0.9784 0.9630 0.9644 0.9638 0.9563
k = 6 0.9925 0.9780 1.0000 0.9559 0.9775 0.9733

The AUC score and the ROC curve of the external dataset evaluated on four models are
illustrated in Figure 9. From the plot, the CNN-BLSTM-Att model shows better classification
with an AUC score of 0.9886 and k = 6. The AUC score of CNN-BGRU-Att is 0.9780, of
BLSTM-Att is 0.9125, and of BGRU-Att is 0.9771.

5.1. Cross-Validation Results

A five-fold cross-validation (CV) was executed, wherein the dataset was partitioned
into five equal-sized folds. In each iteration, one fold served as the validation set, while the
remaining four folds were utilized for training. This procedure was executed five times,
guaranteeing that each fold functioned as the validation set precisely once.
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It was performed on the best k value in k-mer (k = 6 from the results obtained in
Table 6) to reduce the bias from the train/validation split. Examining various k values
may yield further insights into the model’s efficacy and its responsiveness to diverse k-
mer sizes. This issue will be tackled in future studies, by performing a more thorough
examination of k values ranging from 3 to 6, which might potentially strengthen the validity
of our conclusions.

For each fold, the epoch was set to 25. The average accuracy from all five folds of all
models reached a performance of 99%. The best result was achieved by the CNN-BLSTM-
Att model and each fold’s accuracy, and loss is plotted in Figure 10. The average accuracy
from all the folds for the CNN-BLSTM-Att model was 99.99%.

The unseen data were evaluated on the best model and are depicted in Table 7. The
CNN-BLSTM-Att model outperformed all other models with an accuracy of 99.88%, an
AUC score of 0.9965, and an MCC score of 0.9957.

Table 7. Classification result of unseen data based on 5-fold CV with k = 6.

Models Accuracy AUC Precision Recall F1-Score MCC

BLSTM-Att 0.9915 0.9965 0.9873 0.9957 0.9915 0.9897
BGRU-Att 0.8904 0.9313 0.6096 0.8694 0.7554 0.7240

CNN-BLSTM-Att 0.9988 0.9965 1.0000 0.9929 0.9964 0.9957
CNN-BGRU-Att 0.9976 0.9957 0.9929 0.9929 0.9929 0.9957

5.2. Comparison of Performance with Previous Studies

Khodaei et al. [29] showed an accuracy of 99.4% with influenza and the COVID-19
virus. This was achieved using the SVM model. In another study by Hammad et al. [30], the
sequence classification using KNN achieved 99.39% accuracy with first and second-order
extracted features. Similarly, Bihter Das [35] has shown that extracting and selecting features
from DNA sequences and model evaluation using SVM and KNN performs better in
classifying COVID-19 and normal sequences. The CNN combined with BLSTM and LSTM
was analyzed by Whata et al. [38] with 329 sequences, which achieved 99.95% accuracy.
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Most previous studies have not used external data to test the prediction. Table 8 shows the
comparison of the proposed research in relation to prior studies.
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Table 8. A comparison of the proposed research in relation to prior studies with binary classification.

Authors Sequence
Length Method Accuracy

External Test
Sequence

Length

External Test
Accuracy

Khodaei et al. [29] 107,000 SVM 99.40% - -
Hammad et al. [30] 7331 KNN 99.39% - -

B. Das and S.
Toraman [31] 10,988 Capsule network 100% - -

Bihter Das [35] 260 SVM 98.84% - -
Alkady et al. [37] 113,927 RF 98.69% - -
Whata et al. [38] 329 CNN-BLSTM 99.95% - -
Singh et al. [39] 1582 RF 97.47% - -
H. Arslan [41] 1615 KNN 99.8%

Proposed study 12,811 CNN-BLSTM-Att 99.99% 4622 99.88%

5.3. Limitations and Future Work

The study employed a novel hybrid DL model with an attention mechanism and used
external data for validation. Different k values were also tuned for the k-mer encoding
method. Also, a sliding window approach was used for class imbalance problems. Even
though the work had these advantages, there were limitations, such as dataset size. Future
studies could benefit from larger and more diverse datasets to enhance the robustness of
the classification models. It would enable researchers to determine the generalizability and
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adaptability of the models to different viral pathogens, thereby enhancing their potential
applications beyond COVID-19.

6. Conclusions
The study proposed a DL-based approach for efficiently classifying COVID-19 genome

sequences, aiming to address the urgent need for accurate and efficient methods in classify-
ing the virus strains. Four DL models, namely, BLSTM-Att, BGRU-Att, CNN-BLSTM-Att,
and CNN-BGRU-Att, and two different datasets were analyzed for classifying the COVID-
19 genome sequences. The training and testing data with 12811 sequences were first
classified with an accuracy of 99.99% by CNN-BLSTM-Att and a k-mer value of six. Then
new unseen data were tested on the models as an external validation, with 4662 sequences,
and an accuracy of 99.88% was achieved. This showcases the efficacy of DL-based ap-
proaches with attention layers in accurately classifying COVID-19 genomic sequences. The
high degree of accuracy achieved suggests the potential of implementing this strategy in
clinical settings to aid in identifying and classifying future pandemic responses. Although
the study attained encouraging outcomes with the existing dataset, augmenting it to en-
compass a broader range of viral genomes might substantially enhance the model’s efficacy.
This will not only improve the model’s generalization capabilities but also augment the
expanding corpus of knowledge on genetic diversity.
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