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Abstract: The .NET framework is widely used for software development, making it a target
for a significant number of malware attacks by developing malicious executables. Previous
studies on malware detection often relied on developing generic detection methods for
Windows malware that were not tailored to the unique characteristics of .NET executables.
As a result, there remains a significant knowledge gap regarding the development of
effective detection methods tailored to .NET malware. This work introduces a novel
framework for detecting malicious .NET executables using statically extracted method
names. To address the lack of datasets focused exclusively on .NET malware, a new
dataset consisting of both malicious and benign .NET executable features was created.
Our approach involves decompiling .NET executables, parsing the resulting code, and
extracting standard .NET method names. Subsequently, feature selection techniques were
applied to filter out less relevant method names. The performance of six machine learning
models—XGBoost, random forest, K-nearest neighbor (KNN), support vector machine
(SVM), logistic regression, and naive Bayes—was compared. The results indicate that
XGBoost outperforms the other models, achieving an accuracy of 96.16% and an F1-score
of 96.15%. The experimental results show that standard .NET method names are reliable
features for detecting .NET malware.

Keywords: malware analysis; malware detection; windows; static analysis; .NET;
machine learning

1. Introduction

Since its establishment in 2002, the Microsoft .NET framework has become essential for
cross-platform application development and is known for its flexibility and comprehensive
ecosystem that includes a variety of programming languages, including C#, VB.NET, and
F# [1]. Features such as just-in-time (JIT) compilation and extensible class libraries equip
.NET to create scalable and secure software. However, these same features can also simplify
the process of developing malicious Windows malware by attackers. Statistical studies also
reveal a significant increase in malware targeting Windows devices over the past decade,
highlighting the growing interest in security measures [2].

In Windows malware analysis, the difference between static analysis and dynamic
analysis has become particularly obvious [3]. Static malware detection scans the content
of Portable Executable (PE) files without actually executing the malware samples. During
static analysis, analysts extract features, including string patterns, opcodes, and byte
sequences [4]. The extracted features are used to determine whether a file is malware or
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not. However, static analysis may quickly identify characteristics of known malware [5],
although it struggles against unknown and zero-day threats as well due to its reliance on
signature databases [6,7]. Next, dynamic analysis of malware behavior includes extracting
features such as network behavior, registry changes, system calls, and memory usage.
Windows Application Programming Interface (API) call sequences are one of the most
representative features in behavior-based malware detection [8]. Dynamic analysis [4]
provides crucial insights into malware behavior during execution but is resource-intensive
and also poses risks for sandbox escapes.

The .NET Framework consists of two primary components: the Common Language
Runtime (CLR) and the .NET class library. The CLR acts as a critical layer between the
Common Intermediate Language (CIL) code and native machine instructions [9], enabling
language-agnostic execution and platform independence. Unlike C/C++ applications,
which are compiled directly into machine code, every .NET application—whether written
in C#, VB.NET, or any other .NET-compatible language—is compiled to CIL and stored in
assembly formats such as .dll or .exe. Upon execution, the CLR compiles these instructions
into machine code at runtime [10].

Consequently, we must be aware that current malware detection methods use APIs
based on static APIs or dynamic API sequences to classify malware [11] and are primarily
designed to target malware executables written in C/C++. The static APIs extraction
method using existing PE analysis tools encounters limitations when applied to malware
written in .NET languages. Unlike C/C++ binaries, where APIs can be statically extracted
from the import table, this approach is not directly applicable to .NET binaries due to
differences in their Portable Executable (PE) structures [12]. In .NET, method references are
stored in metadata and Intermediate Language (IL) code, which requires specialized tools
to parse and analyze, as these methods are not listed in the import table in the same way as
in native binaries.

In NET environments, the Common Intermediate Language (CIL) is generated during
compilation instead of machine code [13]. Moreover, the reliance on dynamic API se-
quences collected through executing malware in a sandbox makes the classification process
slower [7].

Recent studies on malware detection in Windows have mostly focused on analyzing
API sequences rather than investigating .NET-specific features, as shown in research by
Zhang et al. [14]. The authors in [14] used dynamic analysis of malware with semantic
analysis of API sequences, which, although reliable, still brings notable security risks linked
with malicious code execution. Furthermore, “API-MalDetect” [2] used deep learning
to distinguish between benign and malicious API patterns, presenting the possibility of
an accurate assessment capable of identifying complex malware activities hidden within
real processes. However, these machine learning methods rely heavily on the availability
of large, unique, and well-organized datasets that contain API call sequences extracted
from executing the samples in an isolated sandbox. This requires large computational re-
sources, which makes their implementation difficult in resource-constrained environments.
Similarly, many studies, such as [8,15-20], have used deep learning techniques to analyze
malware through applications of API call patterns. These investigations have mostly fo-
cused on general environments without specific consideration of the .NET framework.
Thus, this oversight highlights a major gap, as none of these studies explicitly discuss or
utilize the unique attributes of the .NET environment in malware detection methodologies.

Recognizing the challenges posed by the .NET environment as we discussed earlier,
which is highly affected by malware attacks, this study presents a new framework specifi-
cally designed for .NET applications. We aim to reduce the risks associated with executing
potentially malicious code by leveraging advanced decompilers like dnlib [21] to statically
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extract standard .NET method names from .NET executables. Our methodology also uses
machine learning models to analyze the extracted methods, which will be trained on a
structured dataset containing benign and malicious .NET executables.

The main contributions of this paper can be summarized as follows:

e Develop a framework for detecting malicious .NET executables using extracted
method names.

e  Create a dataset by collecting malware and benign .NET executables from online
sources and extract NET methods from these samples.

o  Evaluate the effectiveness of accurately detecting .NET malware using only .NET
method names.

e  Compare the performance of different machine learning models and identify the most
accurate model for .NET malware detection.

e  EBvaluate the impact of feature length on the classification accuracy of different machine
learning models, including XGBoost [22], random forest [23], K-nearest neighbor
(KNN) [24], support vector machine (SVM) [25], logistic regression [26], and naive
Bayes [26] in .NET malware detection.

The organization of this paper is as follows: Section 2 reviews related works, identify-
ing gaps and setting the stage for our contributions. Section 3, “Preliminary”, introduces
essential concepts and definitions. In Section 4, we present our proposed framework.
Section 5 examines the empirical evaluation of the model’s performance, which includes
both results analysis and discussion (Results and Discussion). In Section 6, we discuss the
limitations and future work of our research. The paper concludes in Section 7, summarizing
key findings.

2. Related Work

Malware detection within Windows operating systems is becoming more sophisticated,
driven by continued advances in malware techniques that exploit the complexities of
modern computing environments [6]. As we mentioned in the introduction, most of the
recent studies that work on malware detection in Windows are mostly based on API call
sequences. Furthermore, machine learning and deep learning models have been relied upon
to improve malware detection accuracy in both static and dynamic techniques. Refs. [2,14]
demonstrated the use of deep learning to analyze semantic differences in API call sequences,
providing a more precise understanding of malware behavior. Although these techniques
are promising, they require large, constantly updated training datasets. Another work,
ref. [11], proposed combining static and dynamic analysis with deep learning to overcome
the limitations of traditional techniques. The model improves detection by considering not
only the frequency and sequence of API calls but also the arguments, which traditional
detectors often ignore. Furthermore, deep learning techniques were applied to identify
important features and capture contributions from both types of analysis, ensuring a
balanced discovery approach.

Furthermore, a long short-term memory (LSTM) network approach has been used
to classify malware based on API call sequences [20]. LSTM models are able to learn
complex patterns over time, making them well suited for identifying malware that displays
modifications in behavior during its execution. However, the computational overhead of
training these models as well as the demand for large datasets for training present signifi-
cant difficulties that may delay their functional deployment. Another related effort [19]
used a sequence of recurrent neural networks (RNNs) and LSTM to dynamically parse
API call sequences, aiming to overcome the limitations imposed by code obfuscation in
static analysis and evasion techniques in dynamic analysis. The work used a series of steps
that include data preprocessing, n-gram-based feature extraction, and inverse frequency
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document frequency for feature selection and orientation in training the RNN-LSTM model.
However, this approach achieved an impressive 92% accuracy rate based on a dataset of
3000 different malware and benign traces. Challenges such as the computational overload
of training and the need for large, representative datasets remain significant obstacles that
may hinder wider distribution.

Transfer learning has been explored by various studies to improve malware detection
performance. One such study [27] leverages transfer learning by fine-tuning the pre-trained
language model GPT-2 on API call sequences. The primary objective is to develop a
model capable of predicting and identifying malicious behavior patterns in the early stages
of Windows malware execution. Fine-tuning allows the model to adapt to the specific
domain of API call sequences, improving its ability to recognize patterns of malicious
behavior that are otherwise difficult to detect using traditional methods. Another study [28]
used transfer learning by fine-tuning the pre-trained InceptionV3 model on malware
signature representations formatted as 2D images. The resulting approach yielded a good
performance, surpassing that of comparative models such as LSTM.

In different techniques, the authors in [4] used a combination of word embedding
and Markov chain modeling to analyze API call sequences. They start by using word
embedding to group API functions based on contextual similarities and then cluster these
functions to simplify API sequences. A semantic chain transition matrix is then developed
to capture the relationships between the clusters, which helps in constructing a Markov
chain model. This approach has demonstrated high accuracy using large-scale datasets;
however, this technique requires significant computational resources for training and may
not scale efficiently in resource-constrained environments, representing a limitation in its
applicability. An additional innovative method for in-memory malware analysis has been
developed for .NET applications [29]. This method focuses on identifying anomalies in
how functions allocate and manage memory, which may indicate the presence of malicious
activity. Although this approach provides a direct way of detecting malware by examining
its behavioral patterns in system resource use, it requires extensive system access and may
not be suitable for environments with strict privacy or operational constraints.

To address these challenges, the current research proposes an entirely new framework
leveraging static method extraction techniques tailored specifically for the NET framework.
This framework aims to bypass the difficulties and resource-intensity issues associated
with dynamic analysis of executing suspicious code. By using machine learning algorithms
to evaluate extracted .NET methods, this work aims to create a detection system that is less
demanding on operational resources while still being reliable.

3. Preliminaries

This section explains the basic principles of the NET malware detection framework
and discusses static and dynamic analysis techniques and their unique advantages and
challenges. It highlights the differences between .NET and C/C++ executables, focusing
on the essential aspects of efficient NET methods extraction. Additionally, it explains the
process of decompiling .NET executables.

3.1. Malware Analysis Techniques

There are two basic methods for malware analysis: static analysis and dynamic
analysis. Each method offers unique advantages and disadvantages when it comes to
detecting and countering malware.

A. Static analysis

Static analysis involves examining malware without executing its code. This method
is useful in identifying malware attributes, including metadata, strings, structure, and
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code, making it a cornerstone of signature-based detection systems [30]. This technique is
effective in detecting known malware and is used by signature-based detection systems
by comparing the provided code signature with a database containing known malware
signatures. On the other hand, static analysis faces many challenges in effectively identify-
ing and analyzing malware. Malware developers often use obfuscation and encryption to
hide the malicious functionality of their code, making it difficult for static analysis tools to
detect the true functionality [31].

B. Dynamic analysis

Dynamic analysis refers to a technique used in malware analysis where the behavior
of suspicious code or software is examined by observing its actions in a secure, controlled
environment [14]. This method offers several advantages, such as the ability to extract
obfuscated APIs from encrypted or obfuscated malware by observing system calls [4]. It
also detects evasive malware that modifies behavior when detected or remains dormant
and provides complete visibility of malware behaviors like network communication, file
manipulation, and registry changes. However, dynamic analysis has several disadvantages.
Its analysis time is slower than static analysis due to the need to create a secure environment,
execute the malware, and monitor its activities. It also places considerable demands on
computational resources [30]. Moreover, there is always a risk that the malware may escape
the controlled environment, potentially infecting other systems or networks.

3.2. .NET vs. C/C++ Executables

Knowing the differences between the execution and combination of .NET and C/C++
executables is essential for malware evaluation, especially when using .NET method extrac-
tion techniques.

A. .NET Executables

.NET Framework architecture is illustrated in Figure 1. .NET executable files (NET
applications) are converted into CIL, also recognized as bytecode, during the compilation
process. IL instructions, unlike machine code, are not executed directly by the hardware but
rather by the CLR [32]. The CLR utilizes a technique called JIT compilation to transform
CIL into machine code at runtime. Thus, .NET executables exhibit platform independence
until JIT-compiled, as the same .NET application can function on any system that supports
the .NET framework or .NET Core. This flexibility is particularly advantageous in multi-
platform environments [33].

B. C/C++ Executables

C/C++ executable files are compiled directly into machine-specific instructions in-
tended for the target architecture, resulting in code that can be executed directly by the
hardware without the need for an intermediary. Due to this, C/C++ executables possess
less portability than .NET-CIL, as a C/C++ program compiled for an x86 architecture
will not run on Advanced RISC Machine (ARM) [34] without recompilation for the ARM
platform. The C/C++ executables that are compiled into machine code for a specific target
architecture expose a reduced degree of system independence, while INET-CIL is more
adaptable across various platforms due to its abstract and non-machine dependent.
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Figure 1. .NET framework.

3.3. Decompiling .NET Executables for Malware Analysis

The main feature of our dataset is the NET method names. We can extract method
names from samples dynamically or statically. Dynamically extracting .NET method names
involves executing malware in a sandbox environment. This approach allows us to trace
the executed method names in their actual order, resulting in an accurate representation
of its method usage. However, it comes with significant drawbacks. The process is time-
consuming due to the need for creating and managing a secure sandbox, and it requires
substantial hardware resources. Instead, we used the static extraction method for more
efficiency. To achieve this, we used the dnlib library [21] to decompile the .NET executables.
After the decomplication, we parse the decompiled code and systematically extract the
.NET methods. This technique is faster and more resource efficient than dynamically
extracting .NET methods from malware execution.

4. Proposed Framework

In this section, we present a framework specifically developed for using .NET ex-
traction methods for advanced Windows malware detection. Our methodology involves
several important stages, including collecting .NET samples, extracting .NET methods,
creating the dataset, and applying machine learning models. Details of this framework are
shown in Figure 2.
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Figure 2. The proposed .NET malware detection framework.

4.1. Portable Executable Samples Collection

To address the lack of publicly available datasets focused exclusively on .NET samples,
we built a new dataset that contains only .NET samples for the purpose of this research.
The total number of collected samples was 148,645 samples. All the samples were Windows
executables, which could be written in various programming languages such as C++, Go,
or Rust. Malware samples were obtained from MalwareBazaar [35] and VirusShare [36],
while benign samples were downloaded manually from SourceForge [37] and Github [38].

To extract NET samples from the collected samples, we searched for the presence
of the “IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR” directory in the Portable
Executable (PE) optional header. This directory points to the CLR (Common Language
Runtime) header. If present, then the PE file is a .NET executable. We found this method is
the most reliable method to determine if a PE executable is .INET executable. We automated
this process using Python and the pefile library [39], which enables us to read PE headers
efficiently. Out of 143,397 malware PE samples we collected, we extracted 8759 .NET
samples, representing approximately 6% of all collected malware PE samples.

4.2. Features Extraction: NET Methods Extraction

Feature extraction is an important step in transforming our dataset into a format
suitable for machine learning models. In this process, we aimed to identify and extract
standard .NET methods from decompiled .NET executables. We focused on extracting
standard .NET methods that can be imported from standard .NET libraries such as Sys-
tem.IO and Microsoft.Win32. A standard .NET library is a collection of pre-built classes,
interfaces, and functions that are bundled together as part of the .NET Framework. The
parameter values passed to the method were ignored since they do not hold significance
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for our analysis as we focused on detecting the presence of specific methods within a
sample. Instead, we aimed at determining if a particular method was present or absent
in the code, regardless of its usage context. Each sample should contain a minimum of 10
different method names to be included in the final dataset. At least 10 different method
names were selected to ensure proper representation of features, reduce noise, enhance
model robustness, improve classification accuracy, maintain balance of the dataset, and
simplify the feature extraction process, thus building a high-quality dataset for effective
machine learning exercise. Algorithm 1 explains the steps of the feature extraction process
and building a high-quality dataset for reliable machine learning training.

Algorithm 1: .NET Features extraction

Input: Directory path of .NET executables samples
Output: Features of each sample written in a text file
Begin
source_dir <— Directory path of .NET executables samples
result_dir <— Directory path of the samples features
for each file in source_dir do
load the assembly file and iterate through modules, types, and methods
for each method do
if method is a .NET standard method then
preprocess the method name
add the cleaned method name to a HashSet of .NET method names
end if
end for
if the total number of unique .NET method names is >= 10 then
create a new text file in result_dir
write methods names from the HashSet to a text file
else: skip to next assembly
end if
end for

In order to analyze .NET executables, we first decompile them using dnlib [21]. The
decompiled sample consists of multiple interconnected modules. Each module represents
a separate unit within the executable that can be analyzed independently.

Subsequently, we iterate over each module in the decompiled sample with the goal
of extracting all the methods it contains. For every method, we check if the method is a
standard .NET method by checking the namespace of the method. If a method is a standard
.NET method, we preprocess the method name by removing the passed arguments to it and
convert the method name to lowercase before adding its preprocessed name to a hashset of
extracted features for the sample. The total unique methods of each sample must equal
or be larger than 10 to be added to the dataset. Next, we write the preprocessed method
names to text files. Each text file is labeled with the SHA256 hash value of its corresponding
sample to maintain a well-organized dataset for further analysis. Samples with fewer than
10 unique method names are ignored as they may not yield sufficient context for accurate
classification. Figure 3 shows some features extracted from the files.
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Figure 3. Sample of .NET extracted features.

4.3. Dataset Creation

Creating our dataset involves selecting method names based on their frequencies of
occurrence within both malware and benign samples. A limit of 50 occurrences (frequency
threshold) is set for each method name frequency in each class to filter out rare method
calls. Moreover, this threshold reduces the overall dimension of the dataset by reducing the
number of selected method names from each class. Increasing the frequency threshold value
results in a lower number of final features, as less common method names are excluded.
Choosing to use a threshold of 50 is a strategic decision aimed at optimizing the dataset for
subsequent analysis. It is designed to ensure that the data used to train machine learning
models is manageable and meaningful, increasing the possibility of accurate classification
while reducing noise and irrelevant information.

The steps of feature selection process are as follow:

1.  Count the frequency of method names within both the malware class and the benign
class.

2. Filter out method names with a frequency below a predefined threshold (frequency
threshold equals to 50 in our case) from both classes.

3. Identify the top 30 most frequent method names in each class separately.

4. Determine the set of common method names between malware and benign classes by
intersecting the two sets.

5. Merge the feature set of both classes using the OR operation between the sets.

6. Remove any common method names from the merged feature set.

The feature selection process was conducted on the entire dataset prior to any under-
sampling and splitting for training and testing. The use of the entire dataset for feature
selection is relevant in malware detection research [40—42], where the goal is to identify
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global features and patterns that are most discriminative across classes. Although separat-
ing feature selection from the training and testing datasets is theoretically ideal, it may not
always be feasible, especially when the dataset is limited in size. In our case, we applied
feature selection to the entire dataset since our feature selection method, which is based
on frequency thresholding, requires sufficient data to accurately identify global features
and patterns.

Our feature selection process uses label information. While labels were used during
the feature selection step, this was a one-time preprocessing step. The final global features
were fixed after this stage. During training and inference, the model relies only on the
presence or absence of these features, ensuring no label dependence at inference time.
The reason we chose to apply label-dependent frequency thresholding is to ensure that
we explicitly remove top common features that are shared between both malware and
benign samples. This process improves the feature selection, ensuring that the final set
is not only statistically relevant but also discriminative. By separating the dataset into
malware and benign samples, we can explicitly target the overlap of features between the
two, which would be difficult to achieve in a purely label-independent process. However,
it is important to note that the resulting set of 556 global features remained fixed and
independent of the subsequent training and evaluation processes. This ensures that no
iterative feedback influenced the classifier.

We then selected the top 30 method names from each category (malware and benign)
to highlight the common features in each class. Choosing the top 30 method names
instead of a larger number (e.g., top 100) allows us to find and remove the most common
features while minimizing the removal of less common methods that may be essential for
accurately representing the samples’ features. Intersection analysis was applied to reduce
the dimensionality of the dataset by finding and removing common features between
malware and benign classes.

Figure 4 presents a Venn diagram that visually represents the top 30 most frequent
methods within the malware class (red circle) and the top 30 most frequent methods in the
benign class (green circle). The intersection of these two circles contains 16 methods that
exist within both groups.

Table 1 also shows the frequency distribution of the top 10 most common methods (the
intersection) between the malware and benign categories. Furthermore, the top 10 methods
with the highest frequency under both malware and benign categories after removing
common methods are shown in Table 2. Top frequently used methods in the malware class,
as shown in Table 2, do not necessarily imply that they are not used by benign samples;
instead, they are used less frequently compared to their usage within the malware class.

Table 1. Frequency of the common methods in malware and benign classes.

Frequency in Frequency in

Method Name Malgvare Cylass Benc%gn Ci’ass
system.string::concat() 1377 2864
system.string::get_length() 1091 1984
system.string::replace() 923 1325
system.diagnostics.process::start() 757 1368
system.string::op_equality() 810 2196
system.threading.thread::sleep() 795 801
system.string::get_chars() 841 920
system.io.stream::close() 705 944
system.io.file::exists() 727 1571

system.string::format() 735 1524
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Figure 4. Venn diagram.

Table 2. Comparison of top 10 frequent method names in malware and benign categories.

Rank Malware Class—Method Name Count Benign Class—Method Name Count
1 system.text.encoding::getstringy() 860 system.string::op_inequality() 1705
2 system.text.encoding::get_utf8() 855 system.string::trim() 1135
3 system.text.encoding::getbytes() 850 system.string::indexof() 1077
4 system.convert::frombase64string|() 807 system.io.textwriter::writeline() 981
5 system.io.stream::read() 724 system.io.directory::exists() 927
6 system.io.stream::write() 720 system.string::startswith() 923
7 iﬁiﬁﬁgﬁggg;:ﬁﬁﬁgﬂ;22?;:;85' 704 system.reflection.assembly::getname() 887
8 system.io.memorystream::toarray() 674 system.text.stringbuilder::append() 872
9 system.reflection.assembly::load() 617 system.io.textwriter::close() 836
10 system.io.stream::get_length() 616 system.string::equals() 796

The final dataset consists of 556 unique .NET method names as features alongside two
additional columns: “file” and “class”. The “file” column holds a unique hash value for
each sample, while the “class” column represents the binary representation (0 for benign,
1 for malware) of each analyzed sample’s class label. The binary vectorization process is
then applied to each feature name within our final dataset. This approach involves setting
a value of either 1 or 0 based on the presence or absence of that specific method name
within a given .NET sample’s method names. In our work, we used static analysis to
extract method names (features) from decompiled code. The order of these method names
cannot be known without executing the sample and intercepting the called methods. Binary
vectorization is a suitable choice when the order of features is not important or known.
However, in certain scenarios, like API call sequences, which are used in [2] and [20], the
order of features is known, and it is important to preserve the order of the tokens during
tokenization to provide context and ensure accurate classification by the ML classifier. An
example of an appropriate tokenization method that considers the order of the tokens
is word-level tokenization, which assigns a unique numerical value to each token in the
vocabulary while maintaining their original sequence [43]. Lastly, samples containing
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fewer than 10 features are excluded from the dataset due to insufficient context for accurate
classification, as mentioned previously.

We used random sampling as a data balancing technique. As shown in Table 3,
following the dataset creation process, the benign class comprised the majority of instances
with 2435 examples, while the malware class consisted of 1598 instances. The reduction
in the dataset creation process happens because there are samples that contain less than
10 features from the final selected features. Those samples are ignored because they do
not provide enough context for ML classification. For a fair evaluation, we balanced both
classes by randomly selecting an equal number of samples from each category, resulting in
1500 samples per class. Table 4 shows the number of samples for before and after the data
balancing process with the reduction percentage.

Table 3. Number of samples before and after applying the dataset creation process.

Class Before Dataset After Dataset Reduction
Creation Process Creation Process Percentage
Malware 8759 1598 81%
Benign 5248 2435 37%

Table 4. Number of samples before and after applying the data balancing process.

Before Dataset After Dataset Reduction
Class . .
Balancing Balancing Percentage
Malware 1598 1500 6%
Benign 2435 1500 38%

A. Machine Learning Training

In this work, machine learning plays a crucial role by automating the identification
of malicious patterns and behaviors in .NET executables. Training models on a dataset
derived from files with .NET method names (both benign and Malware) allows for accurate
classification between malware and legitimate software. Six machine learning algorithms
were selected based on their diverse strengths and applicability to binary classification
tasks in malware detection. We chose to use XGBoost, random forest, KNN (K-nearest
neighbors), SVM (support vector machine), logistic regression, and naive Bayes. The
XGBoost algorithm was selected due to its ability to handle high-dimensional data and
capture complex patterns. Its regularization techniques make it robust against overfitting,
particularly when working with noisy datasets. We considered the random forest because of
its ensemble nature, which combines multiple decision trees to improve predictive accuracy.
It is known for its resilience against overfitting and its ability to handle both categorical
and continuous data, making it effective in capturing the variance in our dataset. The KNN
is a non-parametric algorithm that performs well in detecting local data structures, which
can be important when distinguishing between similar benign and malicious executables.
However, it can be sensitive to the scale of the data and is less robust to noise, which is
mitigated by the other models. The SVM was chosen due to its strength in handling binary
classification problems. By maximizing the margin between classes, SVM is particularly
effective when there is a clear boundary between malware and benign samples, though it
can be computationally intensive on larger datasets. We selected logistic regression for its
simplicity and interpretability. It serves as a strong baseline model, providing insight into
how features contribute to the classification of malware. However, it may struggle with
more complex patterns that are better captured by ensemble models. Lastly, Naive Bayes
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was included due to its effectiveness in high-dimensional spaces, like the one created by
numerous method names in our dataset.

These models were chosen to complement one another, with each model bringing
a unique set of strengths to mitigate potential weaknesses in the others. By employing
this diverse set of algorithms, we ensured a more comprehensive evaluation of their
effectiveness in detecting .NET malware.

5. Evaluation and Results

In evaluation and testing, the model was configured with Python 3.11 running on
Debian 11 (64-bit) Linux, powered by a 2.90 GHz Intel(R) Core(TM) i5-9400 CPU with
32 GB of RAM. Moreover, the model’s performance was evaluated using accuracy, pre-
cision, recall, as well as Fl-score metrics. The formulas to determine these metrics are
presented below:

Accuracy = TP+ TN 1)

Y= TP¥TNTFP+FN

. TP
Precision = TP+ EP ()
TP
R = —

ecall TPrEN 3)
Fl— 2 X Precision x Recall )

Precision + Recall

The symbol TP stands for “true positives”, pertaining to cases where the model
correctly predicts the positive class. The symbol TN signifies “true negatives”, which
are scenarios through which the model correctly recognizes the negative category. FP
represents “false positives”, where the model incorrectly forecasts the positive class, and
FN means “false negatives”, where the model fails to correctly determine the positive class.

5.1. Experimental Results

Our experiment involved testing six different machine learning models—XGBoost,
KNN, random forest, logistic regression, naive Bayes, and SVM—on the built dataset
consisting of 1500 malware samples and 1500 benign samples. The features length for
all the samples is 556 features. We selected these models based on their popularity and
effectiveness in classification tasks. The diverse selection of models would provide a
comprehensive evaluation of their capabilities in our .NET malware detection task.

To ensure robustness and generalization, we evaluated the models using five-fold
cross-validation. This technique involves splitting the dataset into five equal-sized subsets
and training the model on four of them while testing it on the remaining subset. We
repeated this process for each subset, averaging the results to obtain a final performance
score. By averaging the evaluation metrics over all 5 folds, we minimized the risk of bias
that may result from using a single train-test split, ensuring a more robust and reliable
comparison between the models. To achieve an optimal balance between precision and
recall in our classification task. We prioritized the Fl-score as the primary criterion for
model selection. The model with the highest average F1-score across the folds was selected
as the best-performing model.

In terms of overall performance in the five-fold cross-validation, the XGboost model
performed the best with an accuracy of 96.16%, followed by random forest with an accuracy
of 95.36%. From the result shown in Table 5, we can see that all models performed well,
with XGBoost having the highest accuracy and F1-scores among them. This shows that
using XGBoost for this binary classification is the optimal choice. The superior performance
achieved by XGboost is primarily due to its advanced ensemble learning approach, which
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builds decision trees sequentially to correct the errors made by previous trees. This allows
XGBoost to capture complex and non-linear patterns in the data effectively. Malware
detection often involves complex feature relationships, making it difficult for models to
achieve accurate results. However, XGBoost’s gradient boosting framework is particularly
effective at identifying these through its iterative process. Furthermore, XGBoost’s ability
to handle both large feature spaces contributed significantly to its performance, allowing it
to distinguish between malware and benign samples with high precision and recall.

Table 5. Performance metrics of all six different models (5-fold cross-validation).

Model Accuracy Precision Recall F1-Score
XGBoost 96.16% 96.17% 96.14% 96.15%
Random forest 95.36% 96.94% 93.96% 95.28%
KNN 90.73% 90.25% 90.51% 90.71%
SVM 95.16% 96.41% 93.79% 95.08%
Logistic 95.3% 95.6% 94.92% 95.27%

regression

Naive Bayes 88.66% 91.79% 84.96% 88.24%

Random Forest demonstrated a strong performance with high precision (96.94%), but
its recall (93.96%) was lower. This observation suggests that the model tends to favor
precision over recall, potentially reducing false positives at the expense of missing some
positive instances. SVM shows a similar pattern, with precision (96.41%) surpassing recall
(93.79%). The model’s reliance on optimizing the decision boundary through a margin-
based approach likely explains its high precision but a slightly lower recall. Logistic
Regression shows a strong performance with an accuracy of 95.3% and an Fl-score of
95.27%. This model’s strength lies in its simplicity and effectiveness in linearly separable
data, although it lacks the flexibility of more complex models like XGBoost in capturing
non-linear patterns.

KNN performed moderately, with an accuracy of 90.73% and an F1-score of 90.71%.
The limitations of this model in handling complex decision boundaries can be attributed
to its reliance on proximity-based decision making, which becomes less efficient in high-
dimensional data as the number of features increases. Naive Bayes shows the weakest
performance across all models, with an accuracy of 88.66%. Naive Bayes” assumption of
feature independence may limit its effectiveness on datasets where feature interactions
are important.

In Figure 5, the receiver operating characteristic (ROC) curve for each model is pre-
sented. Results indicated that all models achieved high area under the curve (AUC) scores.
Random forest has a slightly better overall performance with an AUC score of 0.992 com-
pared to XGBoost, which achieved an AUC score of 0.990. A higher AUC score indicates
better capability to separate between the positive and negative classes, meaning that the
model is more likely to correctly classify samples as either positive or negative.

The analysis of the confusion matrices for the six models highlights distinct differences
in their ability to classify malware and benign samples. Figure 6 contains the confusion
matrix on the test dataset for all the models. The KNN model demonstrates a moderate
level of performance, correctly identifying 301 benign samples and 249 malware samples,
but with 23 false negatives and 27 false positives, indicating a balanced yet slightly less
precise performance compared to other models. The Random Forest model shows superior
accuracy with only 9 false positives and 17 false negatives, suggesting that it effectively
identifies benign and malware instances with minimal misclassification. The SVM and
logistic regression models exhibit comparable performance, both having 14 false positives,
with 17 and 13 false negatives, respectively. This indicates reliable classification capabilities,
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with logistic regression marginally outperforming SVM in terms of fewer false negatives.
Naive Bayes, while still performing reasonably well, has a higher count of false negatives
(42) and false positives (20), suggesting that it struggles more with precision and recall
compared to other models. XGBoost achieves the best overall performance with only
8 false negatives and 13 false positives, indicating a high level of both precision and recall.
This model’s confusion matrix reflects its superior capacity to correctly classify both benign
and malware samples, showcasing it as the best choice for this classification task.
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Figure 5. ROC curves comparison of all tested classifiers.
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5.2. Feature Importnace

In order to understand which features were most influential in the classification of
malicious .NET executables, we applied SHAP (SHapley Additive exPlanations), a unified
framework for interpreting machine learning models [44]. SHAP assigns each feature
an importance score based on how it contributes to individual predictions, making it
particularly effective for obtaining global feature importance. We chose SHAP because our
goal was to identify the most significant features that impacted the model’s predictions at a
global level. Unlike simpler feature importance metrics, SHAP considers the interaction
between features and provides consistent explanations across different models.

We applied this analysis to the best-performing model, XGBoost, to identify the most
impactful features in the classification. Figure 7 presents the global feature importance plot,
which displays the top 10 most influential features contributing to the model’s decision-
making process. The last bar in Figure 7 represents the cumulative SHAP value for the
remaining 546 features, indicating their combined effect on the model. The x-axis of Figure 7
represents the mean absolute SHAP values, indicating the magnitude of each feature’s
contribution to the model predictions. The y-axis lists the top features in descending order
of importance. Figure 7 highlights methods such as “system.convert::frombase64string()”
and “system.reflection.assembly::load()”, which are more frequently used in malicious
executables compared to benign ones. The “system.convert::frombase64string()” method is
used to obfuscate code or malicious payloads, while “system.reflection.assembly::load()” is
used by malware to load additional code (assemblies) dynamically at runtime.

system.convert::frombase64string() +0.79
system.reflection.assembly::load() +0.61
system.reflection.assemblyname::get_version() +0.6
system.string::op_inequality() { +0.34
system.environment::getfolderpath() +0.33

system.runtime.compilerservices.runtimehelpers::getobjectvalue() | +0.31

system.string::startswith() | +0.3

system.reflection.assembly::gettypes() | +0.28

system.reflection.methodbase::invoke() | +0.28

system.io.textwriter::close() | +0.27

Sum of 546 other features +11.15

0 2 4 6 8 10 12
mean(|SHAP value|)

Figure 7. Global feature importance.

Figure 8 shows the SHAP summary plot for the top 10 most important features, which
provides a more detailed view of how each feature behaves across the entire dataset. In
this plot, each dot represents a single feature value in a row from the dataset. The x-axis
represents the SHAP value, indicating whether the feature pushes the prediction toward
the positive class (malware) or the negative class (benign). The y-axis lists the features
in order of importance. Dots colored in red correspond to high feature values, while
blue dots represent low feature values. The insights from Figure 8 are consistent with
those from Figure 1. For example, the features “system.convert::frombase64string()” and
“system.reflection.assembly::load()” are shown to have higher SHAP values for higher
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feature values, meaning that when these methods are used in a sample, they influence the
model’s prediction towards the malware class (positive class). This alignment across the
two figures confirms the importance of these features in driving the classification decision.

High

system.string::op_inequality() ..N

Feature value

system.string::startswith() oo

system.io.textwriter::close() .
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SHAP value (impact on model output)

Figure 8. SHAP summary plot for the top 10 features.

5.3. Impact of Feature Length on Classification Performance

In this experiment, we aim to assess the effect of varying feature lengths (method
names) on the classification performance. The experiment was structured to systemati-
cally adjust feature length and monitor the resulting adjustments in classification metrics,
including precision, recall, and F1-score.

Initially, we set a limit of 10 method names per sample as our model. This criterion
ensures uniformity across all samples for consistent comparison. If a sample exceeds the
ten-method name limit, then an arbitrary selection of features is chosen while setting the
remaining ones to zero. This process continues with gradually increasing limits of 40, 60, 80,
and finally, 100 features per sample. By following this approach, we systematically explore
the impact of varying lengths of feature vectors on our analysis while ensuring a consistent
total number of features for each sample. Throughout this experiment, we evaluated the
performance of our ML models—XGBoost, random forest, KNN, logistic regression, naive
Bayes, and SVM—on each iteration to compare the impact of varying feature lengths on
the classification results. The goal is to systematically analyze how increasing the number
of method names (features) influences the accuracy, precision, recall, and F1-score. Table 6
below showcases the evaluation metrics for all four models with varying feature lengths.

The experiment findings showed that increasing feature length generally resulted
in higher overall accuracy across all models. Including more method names as features
gives machine learning models more information to differentiate and classify malware
samples effectively. Both SVM and random forests have a similar pattern in performance
improvement as the maximum number of features increases. Specifically, the test set
accuracy of both models did not change when increasing the maximum number of features
from 80 to 100 for both models. Naive Bayes’s performance is generally lower than that of
the other models across all evaluation metrics and feature lengths. However, its test set
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accuracy slightly increases as the maximum features length grows. XGBoost consistently
outperforms the other models in terms of accuracy when the feature length is greater than
20. Naive Bayes does not show significant improvement with increasing feature length
and performs relatively lower than KNN.SVM and random forest demonstrate comparable
performance, with random forest showing slightly better results at shorter feature lengths
(less than 40) than all modes. This suggests that random forest may be more efficient in
handling shorter feature length data as compared to efficient, which appears to rely on
longer feature lengths for accurate classification.

Table 6. Evaluation metrics for all five models with different feature lengths.

Model Features Length Accuracy Precision Recall F1-Score
XGBoost 20 88.00% 93.85% 78.67% 85.60%
40 94.33% 95.07% 92.27% 93.65%
60 94.83% 94.79% 93.75% 94.26%
80 95.50% 95.53% 94.48% 95.00%
100 96.00% 95.25% 95.95% 95.60%
Random forest 20 91.00% 96.58% 83.08% 89.32%
40 94.00% 97.20% 89.33% 93.10%
60 94.33% 96.12% 91.17% 93.58%
80 95.00% 96.53% 92.27% 94.36%
100 95.50% 96.57% 93.38% 94.95%
KNN 20 83.16% 82.75% 79.41% 81.05%
40 87.50% 87.45% 84.55% 85.98%
60 89.50% 89.13% 87.50% 88.31%
80 89.83% 89.51% 87.86% 88.68%
100 90.50% 89.96% 88.97% 89.46%
SVM 20 88.33% 95.08% 78.30% 85.88%
40 92.50% 95.21% 87.86% 91.39%
60 93.33% 94.61% 90.44% 92.48%
80 94.33% 95.07% 92.27% 93.65%
100 94.66% 94.77% 93.38% 94.07%
Logistic regression 20 87.04% 93.04% 78.67% 85.25%
40 93.00% 94.57% 89.70% 92.07%
60 92.66% 93.84% 89.70% 91.72%
80 93.50% 94.63% 90.80% 92.68%
100 94.50% 94.75% 93.01% 93.87%
Naive Bayes 20 88.83% 90.51% 84.19% 87.23%
40 89.33% 91.60% 84.19% 87.73%
60 89.50% 91.63% 84.55% 87.95%
80 89.66% 92.00% 84.55% 88.12%
100 89.66% 92.00% 84.55% 88.12%

6. Limitations and Future Work

The main limitation of our methodology is the inability to reliably detect obfuscated
or packed .NET malware samples. This is because our approach relies solely on static
analysis, which decompiles the malicious sample and extracts method names from the
decompiled code. Obfuscation and packing techniques are often used by attackers to avoid
detections that rely on static analysis. As a result, our approach may be less effective
in detecting certain types of .NET-based malware, particularly those designed to evade
detection through obfuscation or packing.

Our framework is designed for binary classification (malware or benign), but in future
work, we plan to collect samples from different classes of malware and evaluate machine
learning models’ ability to accurately classify each malware sample into its respective class.
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This will require collecting samples for different classes of malware and fine-tuning machine
learning models to achieve high accuracy in multi-class classification tasks. Moreover, we
plan to evaluate the effectiveness of deep learning architectures such as recurrent neural
networks (RNNs) or long short-term memory (LSTM) on our dataset; this will involve
training and testing deep learning architectures on our dataset and assessing their ability
to accurately classify malicious and benign .NET executables. Additionally, we also plan to
evaluate different tokenization and vectorization methods, such as Word2Vec [45] or word-
level tokenization, on the features and assess their impact on the performance of machine
learning classifiers. This will allow us to determine which tokenization and vectorization
approaches are most effective for our specific dataset and problem domain.

7. Conclusions

This paper proposed a new methodology to detect malicious .NET executables using
statically extracted method names. The research created a dataset consisting of these
standard method names and evaluated the effectiveness of using these methods to detect
NET malware executable files. The dataset, which is ready for use after the preprocessing,
consists of 556 features (.NET method names) and 3000 rows. The dataset consists of
1500 benign and 1500 malware samples. Furthermore, our results indicate that standard
.NET methods are reliable features to detect .NET malware through examining them on
a variety of machine learning models, such as XGBoost, random forest, KNN, logistic
regression, naive Bayes, and SVM. The results of our experiments demonstrated that
XGboost outperformed other models with a test set accuracy of 96.16% and an Fl-score of
96.15%. In addition, we confirmed that longer feature lengths enhance the confidence of
the classifier’s predictions.
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