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Abstract: Accuratesnake species identification is essential for effective snakebite manage-
ment, particularly in regions like Morocco, where approximately 400 snakebite incidents are
reported annually, with a case fatality rate of 7.2%. Identifying venomous snakes promptly
can significantly improve treatment outcomes by enabling the timely administration of
specific antivenoms. However, the absence of comprehensive databases and rapid identi-
fication tools for Moroccan snake species poses challenges to effective clinical responses.
This study presents a deep learning-based approach for the automated identification of
Moroccan snake species. Several architectures, including VGG-19, VGG-16, and Efficient-
Net B0, were evaluated for their classification performance. EfficientNet B0 emerged as the
most effective model, achieving an accuracy of 92.23% and an F1-score of 93.67%. After
training on the SnakeCLEF 2021 dataset and fine-tuning with a specialized local dataset,
the model attained a validation accuracy of 94% and an F1-score of 95.86%. To ensure
practical applicability, the final model was deployed on a web platform, enabling the rapid
and accurate identification of snake species via image uploads. This platform serves as a
valuable tool for healthcare professionals and the general public, facilitating improved clin-
ical response and educational awareness. This study highlights the potential of AI-driven
solutions to address challenges in snakebite identification and management, offering a
scalable approach for regions with limited resources and high snakebite prevalence.

Keywords: snake species identification; artificial intelligence (AI); deep learning; snakebite
management; Moroccan snakes; healthcare technology; transfer learning; fine-tuning

1. Introduction
Snakebite envenomation is a significant public health concern, with the World Health

Organization (WHO) estimating that 1.8 to 5.4 million people are bitten by snakes annually,
resulting in 1.8 to 2.7 million cases of envenomation. These incidents cause approximately
81,410 to 137,880 deaths per year, while three times as many people suffer amputations
or permanent disabilities due to snakebites [1]. In Morocco, around 400 snakebite cases
are reported annually, with an incidence rate of 0.1 to 1.4 per 100,000 inhabitants and a
case fatality rate of 7.2% [2,3]. Accurate identification of the snake species responsible
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for a bite is critical to selecting the appropriate antivenom and ensuring effective treat-
ment [4]. Although protocols in Morocco emphasize this importance [2], several challenges
hinder the process: Healthcare professionals often lack the necessary training, which limits
the effectiveness of treatment and highlights the need for educational and technological
improvements. Many providers struggle with taxonomically identifying the snake and
instead rely on symptoms to infer the species. Molecular identification techniques, such
as immunoassays that detect venom antigens, also have limitations, particularly in low-
resource settings. In addition, obtaining accurate snake specimens can be difficult, as they
are often damaged or misidentified, further complicating the identification process. A
total of 26 distinct species of snakes are native to Morocco [5], including seven medically
important venomous species. These include Naja naje legionis from the Elapidae family
and six species from the Viperidae family, such as Daboia mauritanica, Cerastes cerastes,
and Bitis arietans, which, together, account for 67.2% of serious envenomations [6]. Despite
their clinical importance, the lack of a comprehensive database and specific identification
tools for Moroccan snakes presents a significant challenge in accurate and rapid species
recognition, particularly in high-risk scenarios.

In recent years, deep learning has expanded tremendously, impacting nearly every
field. Its remarkable classification performance has drawn attention from researchers in
diverse areas such as agriculture [7], software engineering [8], computational biology [9],
healthcare [10], and medicine [11]. However, a major challenge in these fields is the
limited availability of large and reliable datasets, which are essential for building high-
performance predictive models using deep learning techniques. To overcome this issue,
transfer learning has become a widely adopted approach. Transfer learning allows for
knowledge from a model trained on a specific task to be applied to a new model tackling a
related but different task. Recent studies have shown that transfer learning, particularly
when applied to deep convolutional neural networks (CNNs), is highly beneficial as it
reduces the need for large datasets and decreases the training time due to the model being
partially pre-trained. For instance, researchers [12] have achieved excellent results using
transfer learning on Caltech101 datasets. Architectures such as ResNet and InceptionResNet
have demonstrated exceptional performance, with the validation accuracy surpassing 99%,
excelling in precision, recall, and F1-scores. Models like VGG and EfficientNet have
also performed strongly, with EfficientNet achieving a 96.89% accuracy and excellent
precision. In [13], the authors applied pre-trained deep convolutional networks (ResNet50,
InceptionV3, and InceptionResNetV2) to classify cellular morphological changes, achieving
predictive accuracies between 95% and 97%. Gu and Lee [14] introduce an approach
to transfer learning, specifically tailored to medical image analysis. Their framework,
real-world feature transfer learning, leverages models pre-trained on large-scale general-
purpose datasets, such as ImageNet, to classify medical images portraying conditions,
such as pneumonia in X-ray images.These results underscore the effectiveness of transfer
learning in overcoming data limitations, making it an attractive option for snake species
identification in Morocco.

A substantial body of research has explored the application of machine learning and
deep learning to automate snake species identification. Early efforts using machine learn-
ing techniques highlighted key limitations. Amir et al. [15] investigated texture-based
characteristics with the Color and Edge Directivity Descriptor (CEDD), achieving accura-
cies of 89.22% and 87.93% with nearest neighbors and backpropagation neural networks,
respectively. However, their reliance on texture features alone underscored the need to
incorporate additional attributes, such as shape and color, to improve classification out-
comes. With advances in deep learning, convolutional neural networks (CNNs) have
demonstrated remarkable potential in automating feature extraction and enhancing the
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classification accuracy. Patel et al. [16] developed a mobile application to identify nine
species of snakes in the Galápagos Islands, achieving a maximum accuracy of 75% using
Faster R-CNN and ResNet architectures. This study highlighted the utility of mobile-based
solutions for real-time field applications. The study by Binta Islam et al. [17] also demon-
strates the efficacy of deep learning in addressing similar challenges. Their study tested
pre-trained models like VGG16 and ResNet50, as well as a self-trained CNN, to classify
snakes, lizards, and toads from camera trap images. Their results showed that transfer
learning-based models significantly outperformed self-trained models, achieving accura-
cies of 87% (VGG16) and 86% (ResNet50), compared to 72% for self-trained CNN. Yang and
Sinnott [18] developed an iOS application that used CNNs for snake classification, explor-
ing both offline and cloud-based deployment strategies to assess performance differences in
the accuracy and classification time. These findings further validate the benefits of transfer
learning in ecological species classification tasks. Meanwhile, Dandeniya et al. [19] applied
transfer learning to distinguish Russell’s Viper from Indian Rock Python, achieving a 94.5%
precision using pre-trained models and crowd-sourced data from Sri Lankan Facebook
groups. These examples emphasize the adaptability of deep learning techniques to regional
contexts and their potential to address data scarcity through innovative approaches.

Overall, research trends reveal the progression from traditional machine learning to
advanced CNN-based architectures, emphasizing the integration of geographic data and
domain-specific fine-tuning to improve accuracy and applicability. Despite these advance-
ments, there remains a notable absence of research specifically tailored to Moroccan snake
species. Existing models trained in global datasets do not capture the unique characteristics
of snakes native to Morocco, limiting their functionality for local snakebite management.
Previous studies have highlighted the importance of understanding the distribution and
frequency of snake species of venom in different regions to effectively inform healthcare
strategies [20]. In particular, a meta-analysis of global snake assemblages demonstrated
significant variation in the occurrence of venomous species and individuals according to the
habitat and geography, emphasizing the need for region-specific approaches in snakebite
management. To address this gap, this study develops a deep learning-based framework
tailored to Morocco’s unique ecosystem.

The objectives of this study are, first, to evaluate various deep learning architectures,
including VGG-19, VGG-16, and EfficientNet B0, for the automated identification of Moroc-
can snake species. Second, to assess the performance of these models by training them on
the SnakeCLEF 2021 dataset and fine-tuning with a specialized local dataset to improve the
classification accuracy. Finally, to deploy the most effective model as a web-based platform
that enables real-time snake species identification through image uploads. As a result, this
study aims to provide a practical tool that facilitates accurate snake identification, assisting
healthcare professionals in managing snakebite cases and raising public awareness about
snake biodiversity. The key contributions of this work are as follows:

1. Database Construction: We constructed a comprehensive database containing images
and the scientific names of 26 snake species native to Morocco, collected from diverse
habitats across the country. This dataset serves as the foundation for training and
evaluating deep learning models.

2. EfficientNet B0 Architecture: We introduce the EfficientNet B0 model, adapted
through transfer learning, which achieved a state-of-the-art accuracy of 94% on the
Moroccan snake species dataset.

3. Comparative Analysis: We performed a comparative analysis of three CNN architec-
tures—VGG19, VGG16, and EfficientNet B0—fine-tuned specifically for snake species
identification.
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4. Web Application Development: We developed a user-friendly web application that
deploys the most effective model, enabling real-time snake species identification
through image uploads.

The remainder of this paper is organized as follows: Section 2 outlines the methods and
materials, including details on datasets, preprocessing, and model architectures. Section 3
presents the experimentation, results, and the development of the web application for
real-time identification. Finally, Section 4 concludes the study with a summary of findings
and future research directions.

2. Materials and Methods
This section outlines the methodology adopted for this study, detailing snake identifica-

tion techniques, dataset characteristics, preprocessing steps, and deep learning architectures
used. Insights from the literature review informed the integration of both local and global
datasets to ensure robust model performance and ecological relevance, as shown in Figure 1,
which provides an overview of the proposed system.

Figure 1. Overview of the proposed system.

2.1. Local Dataset Description

The local dataset comprises 3922 images representing 26 distinct snake species native
to Morocco. These images were collected by herpetologists from Ibnou Zohr University
(FPT-Taroudant, Morocco) between 2010 and 2023 in diverse natural habitats, including the
Sahara Desert, Atlas Mountains, Rif, and Souss Valley. The dataset classifies snakes into
three venom categories: venomous, non-venomous, and mildly venomous. Furthermore, it
categorizes these species into eight families, encompassing all snake species identified in
Morocco. This comprehensive classification provides valuable insights into biodiversity
and the potential risks associated with each species [5], as summarized in Table 1.

The dataset represents a diverse distribution of classes, with some species well repre-
sented and others underrepresented. For example, medically significant venomous species
(see Table 1), such as Cerastes cerastes and Daboia mauritanica (Figure 2), are more prevalent,
whereas non-venomous species like Eryx jaculus and Macroprotodon abubakeri are relatively
rare in Morocco. This imbalance reflects ecological realities and highlights challenges in
building comprehensive classification models.
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Figure 2. (A): Bitis arietans, (B): Daboia mauritanica, (C): Cerastes cerastes, (D): Vipera monticola,
(E): Cerastes vipera, (F): Echis pyramidum, and (G): Naja haje. Photos by Bouazza A.

Table 1. List of Moroccan snakes with scientific, French, and English names, including venom status
(– harmless, * mildly venomous, *** venomous) [5].

Ophidia (Snakes) French Name/English Name
Family Leptotyphlopidae (Slender Blind Snakes)
Myriopholis algeriensis (Jacquet, 1895) – Leptotyphlops d’Algérie/Beaked Thread-snake
Family Boidae
Eryx jaculus (Linnaeus, 1758) – Boa javelot/Javeline sand boa
Family Colubridae (Colubrids)
Hemorrhois algirus (Jan, 1863) – Couleuvre algire/Algerian Whip Snake
Hemorrhois hippocrepis (Linnaeus, 1758) – Couleuvre fer-à-cheval/Horseshoe Whip Snake
Lytorhynchus diadema (Duméril, Bibron & Duméril, 1854) – Couleuvre fouisseuse à diadème/Awl-headed Snake

Macroprotodon abubakeri (Wade, 2001) – Couleuvre à capuchons d’Abubaker /Abu Baker False
Smooth Snake –

Macroprotodon brevis (Günther, 1862) – Couleuvre à capuchons occidentale/False Smooth Snake
Coronella girondica (Daudin, 1803) – Couleuvre girondine/Southern Smooth Snake
Dasypeltis sahelensis (Trape & Mané, 2006) – Couleuvre mangeuse d’œufs du Sahel/Sahel Egg Eater
Spalerosophis diadema (Schlegel, 1837) – Couleuvre à diadème de Clifford/Diadem Snake

Spalerosophis dolichospilus (Werner, 1923) – Couleuvre à diadème du Maghreb/Mograbin
Diadem Snake

Telescopus tripolitanus (Werner, 1909) * Couleuvre-chatde Tripolitaine/Tripolitan Cat Snake
Family Natricidae
Natrix astreptophora (Seoane, 1884) – Couleuvre astreptophore/Grass Snake
Natrix maura (Linnaeus, 1758) – Couleuvre vipérine/Viperine Snake
Family Lamprophiidae
Boaedon fuliginosus (Boie, 1827) – Couleuvre commune d’Afrique/African House Snake
Family Psammophiidae

Malpolon insignitus (Geoffroy Saint-Hilaire, 1827) * Couleuvre de Montpellier orientale/Eastern
Montpellier Snake

Malpolon monspessulanus (Hermann, 1804) * Couleuvre de Montpellier/Montpellier Snake
Psammophis schokari (Forsskål, 1775) * Couleuvre de Schokar/Schokari Sand Racer
Malpolon moilensis (Reuss, 1834) * Couleuvre de Moïla/Moila Snake
Family Elapidae (Cobras)
Naja haje (Linnaeus, 1758) *** Cobra d’Afrique du Nord/Egyptian cobra
Family Viperidae (Vipers)
Vipera monticola (Saint Girons, 1953) *** Vipère naine de l’Atlas/Atlas Dwarf Viper
Echis pyramidum (Geoffroy Saint-Hilaire, 1827) *** Vipère des pyramides/White-Bellied Carpet Viper
Cerastes cerastes (Linnaeus, 1758) *** Vipère à cornes/Desert Horned Viper
Cerastes vipera (Linnaeus, 1758) *** Vipère de l’erg/Sahara Sand Viper
Bitis arietans (Merrem, 1820) *** Vipère heurtante/Puff Adder
Daboia mauritanica (Gray, 1849) *** Vipère de Maurétanie/Moorish viper

2.2. Global Dataset Description

The SnakeCLEF 2021 dataset provides a broader perspective, consisting of 409,679 im-
ages encompassing 772 snake species from 188 countries across all continents. Of these,
386,006 labeled images are designated for development, while 23,673 unlabeled images
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are reserved for testing. A train–validation split of 90% and 10% is implemented for the
development data to ensure consistent species distributions. This dataset is part of the
SnakeCLEF2021 species identification challenge within LifeCLEF21, by the Conference and
Labs of the Evaluation Forum (CLEF), which proposes data-centric challenges aimed at
identifying and predicting biodiversity [21]. The data were collected from online biodi-
versity platforms such as iNaturalist (https://www.inaturalist.org/, accessed on 25 July
2024), HerpMapper (https://www.herpmapper.org/, accessed on 25 July 2024), and sup-
plemented by images scraped from Flickr (https://www.flickr.com/, accessed on 25 July
2024). Rigorous preprocessing was applied to eliminate duplicate entries and correct
label inaccuracies.

The dataset is organized into clean subsets (from iNaturalist and HerpMapper) and
noisy subsets (from Flickr), facilitating effective model training. However, the dataset
exhibits significant class imbalance. For instance, Thamnophis sirtalis is represented by
22,163 images, whereas Achalinus formosanus has only 10 images, underscoring the challenge
of achieving balanced feature learning [22]. Figure 3 illustrates a range of images from the
Snake CLEF 2021 dataset.

Figure 3. Image examples from the Snake CLEF 2021 dataset.

2.3. Comparison Between the Datasets

Table 2 presents a comparative analysis of the local Moroccan dataset and the Snake-
CLEF 2021 global dataset. This comparison highlights key differences in scale, scope,
and use cases, illustrating their complementary roles in this study.

Table 2. Comparison between the datasets.

Dataset # of Species # of Images Size (GB) Min per
Species

Max per
Species Geographical Scope

SnakeCLEF 2021
(Global Dataset) 772 386,006 66 10 22,163 Global: Multiple

regions worldwide

Local Dataset 26 3922 19 16 377 Local: Moroc-
can ecosystems

2.4. Data Preprocessing

Data preprocessing is a fundamental step in optimizing the performance of machine
learning models. A well-structured preprocessing pipeline ensures reliable and robust
results. For this study, the preprocessing sequence was designed to standardize the datasets
and enhance model training and generalization. All images were resized to a uniform
resolution of 224 × 224 × 3 pixels to ensure compatibility with the input requirements of
deep learning models. During training, a random resized crop operation was applied to
introduce variability and improve the model’s performance.

https://www.inaturalist.org/
https://www.herpmapper.org/
https://www.flickr.com/
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In contrast, validation and test images were resized consistently to maintain evalua-
tion integrity. Data augmentation techniques, including horizontal and vertical flipping,
resizing, and rotation, were applied with a 50% probability during training to mitigate
overfitting and enhance model generalization. These augmentations, implemented using
the Albumentations library [23], included transformations such as RandomResizedCrop,
Transpose, Resize, HorizontalFlip, VerticalFlip, ShiftScaleRotate, and Normalize. Normal-
ization of pixel values was applied to ensure consistency with the model’s pre-training
on the ImageNet dataset and to improve convergence during training. Specifically, pixel
values for each channel RGB were increased to have means of 0.485, 0.456, and 0.406,
respectively, with corresponding standard deviations of 0.229, 0.224, and 0.225.

Figure 4 presents augmented images of Naja haje from the local Moroccan snake dataset,
providing a visual representation of the preprocessing pipeline’s impact. The training
images underwent various random augmentations, including horizontal and vertical
flipping, rotation, and resizing. These augmentations introduce variability to the dataset,
thereby improving the model’s robustness by exposing it to different perspectives of the
same species.

Figure 4. Albumentations-augmented images of Naja haje from the Moroccan local dataset.

This preprocessing step aligns the input data with the distribution expected by the
pre-trained model, promoting stability and more efficient learning. This standardization
improves the model’s ability to generalize to unseen data. Additionally, label preprocessing
was employed to format the categorical labels appropriately for multi-class classifica-
tion. Using label binarization, the categorical labels were converted into binary matrices,
with each class represented as a binary vector [24], enabling the model to effectively handle
the classification of multiple snake species. The datasets were partitioned to ensure a
balanced distribution for training and evaluation. The local dataset was split into 80% for
training and 20% for testing, while the global dataset employed a 90% training and 10%
testing split, maintaining consistent species distributions across subsets. These splits were
designed to optimize model performance and ensure comparability between the datasets.

2.5. Overview of the Approach

This section details the methodology used to develop an accurate snake species identi-
fication model, highlighting three key areas: the selection of CNN architectures (VGG and
EfficientNet), and the application of model tuning and transfer learning. Figure 5 illustrates
our process of transfer learning and fine-tuning, using pre-trained CNN architectures (VGG
and EfficientNet), for snake species classification.
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Figure 5. Transfer learning and fine-tuning process for snake species classification using pre-trained
CNN architectures (VGG and EfficientNet).

2.5.1. VGG Architecture

The VGG architecture, proposed by Simonyan et al. [25], is characterized by its simplic-
ity and depth. The VGG-16 model comprises 13 convolutional layers and 3 fully connected
layers, while the VGG-19 model offers a deeper configuration with additional layers. Both
architectures use 3 × 3 convolutional filters with a stride of 1, enabling the extraction of
intricate image features ranging from simple edges to complex textures and shapes. A key
feature of the VGG architecture is its modular design, which organizes convolutional layers
into blocks, each followed by max-pooling layers. This arrangement progressively reduces
spatial dimensions while preserving essential features, enabling the network to build a
hierarchical understanding of input images. The final fully connected layers perform
the classification based on the features extracted throughout the network. VGG’s deep
structure, especially in versions like VGG-16 and VGG-19, excels in recognizing complex
visual patterns, as demonstrated in its success with the ImageNet dataset. These versions,
comprising 16 and 19 weight layers, respectively (as detailed in Table 3 for VGG-16 and
Table 4 for VGG-19), effectively capture subtle differences, enhancing the classification
accuracy. Although computationally expensive, VGG remains a benchmark architecture
for its high performance across a variety of image recognition tasks.

Table 3. Structure of VGG-16 model.

Stage Operator Resolution #Channels #Layers

1 Conv3 × 3 224 × 224 64 2
2 Conv3 × 3 112 × 112 128 2
3 Conv3 × 3 56 × 56 256 3
4 Conv3 × 3 28 × 28 512 3
5 Conv3 × 3 14 × 14 512 3
6 Fully connected 7 × 7 4096 3
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Table 4. Structure of VGG-19 model.

Stage Operator Resolution #Channels #Layers

1 Conv3 × 3 224 × 224 64 2
2 Conv3 × 3 112 × 112 128 2
3 Conv3 × 3 56 × 56 256 4
4 Conv3 × 3 28 × 28 512 4
5 Conv3 × 3 14 × 14 512 4
6 Fully connected 7 × 7 4096 3

2.5.2. EfficientNet Architecture

EfficientNet, a convolutional neural network built on the principle of “compound
scaling”, optimally balances model width, depth, and resolution to improve accuracy
and efficiency [26]. As illustrated in Figure 6, this approach scales these dimensions pro-
portionally using a compound coefficient (ϕ), enabling EfficientNet to achieve superior
performance with fewer parameters compared to earlier models. The architecture in-
tegrates Mobile Inverted Bottleneck (MBConv) layers and Squeeze-and-Excitation (SE)
blocks, enhancing the network’s capacity to focus on critical features while maintaining
computational efficiency. EfficientNet’s compound scaling ensures an optimal trade-off
between model size and computational power, making it highly suitable for tasks requiring
resource-efficient solutions.

Figure 6. Different scaling methods vs compound scaling [26].

EfficientNet has demonstrated exceptional performance in snake species identification,
outperforming its predecessors by achieving comparable or higher accuracy with signif-
icantly fewer parameters. For instance, while the state-of-the-art GPipe model requires
556 million parameters, EfficientNet attains a similar accuracy using only 66 million pa-
rameters. This efficiency makes EfficientNet particularly advantageous in computationally
constrained environments, offering faster processing without sacrificing accuracy.

The EfficientNet family includes seven variants, EfficientNet B0 through B7, each
designed with varying dimensions [26]. In this study, we used EfficientNet B0 due to its bal-
ance between computational efficiency and accuracy. Table 5 summarizes the architecture
of EfficientNet B0, highlighting its ability to efficiently process images while maintaining
high classification performance.
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Table 5. Structure of EfficientNet-B0 model.

Stage Operator Resolution #Channels #Layers

1 Conv3 × 3 224 × 224 32 1
2 MBConv1, k3 × 3 112 × 112 16 1
3 MBConv6, k3 × 3 112 × 112 24 2
4 MBConv6, k5 × 5 56 × 56 40 2
5 MBConv6, k3 × 3 28 × 28 80 3
6 MBConv6, k5 × 5 14 × 14 112 3
7 MBConv6, k5 × 5 14 × 14 192 4
8 MBConv6, k3 × 3 7 × 7 320 1
9 Conv1 × 1 & Pooling & FC 7 × 7 1280 1

2.5.3. Transfer Learning Approach and Model Fine-Tuning

Transfer learning employs two key approaches: feature extraction and fine-tuning [27].
Feature extraction leverages fixed pre-trained weights to capture relevant features for
the target task, integrating them with a task-specific classifier [28,29]. In contrast, fine-
tuning involves modifying the pre-trained model’s parameters to align with the specific
requirements of the target task [30]. This approach is valued for its computational efficiency
and its ability to facilitate model reuse.

Pre-trained weight was used from the Timm library, which includes models trained
on the extensive ImageNet dataset. ImageNet is a hierarchical image database comprising
over 14 million annotated images spanning 1000 categories, widely recognized for its
contributions to advancing image classification and object detection tasks. To tailor the
model specifically for snake species classification, we implemented a two-stage transfer
learning approach. Initially, the model was pre-trained with weights from the Timm
library [31], using models trained on the extensive ImageNet dataset. In the first stage,
the model was trained on the global SnakeCLEF 2021 dataset, which includes 772 classes,
allowing it to capture generalized image features across a wide variety of snake species.
This stage enabled the model to extract relevant patterns applicable to the broader domain
of snake identification. In the second stage, fine-tuning was applied to adapt the model
to the local dataset. The final layer of the model was replaced with a classification head
specific to the 26 local snake species. We froze the feature extraction layers and unfroze the
fully connected layer to fine-tune the model using a smaller learning rate. This approach
preserved the pre-trained weights while allowing the model to adjust effectively to the
distinct characteristics of the local dataset. Fine-tuning in this stage ensured that the
generalized features learned in the first phase were refined and better aligned with the
specific requirements of the task.

This dual approach—initial training on a large, diverse dataset through transfer learn-
ing followed by task-specific fine-tuning—enabled the model to leverage the generalized
features learned from ImageNet and SnakeCLEF 2021 while efficiently adapting to the
unique morphological and color patterns of the local snake species. This method is hy-
pothesized to improve both classification accuracy and computational efficiency, making
it particularly suitable for addressing the challenges posed by the limited size of the lo-
cal dataset.

3. Experimentation, Results, and Web Application
3.1. Experimental Setup

The experimentation involved training three model architectures, VGG19, VGG16,
and EfficientNet B0, each initialized with pre-trained weights from the Timm library,
based on the extensive ImageNet dataset. The training process was conducted over 50
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epochs using the Adam optimizer [32] with a learning rate of 1 × 10−4. The loss function,
Categorical Cross-Entropy, was used to evaluate the error between the predicted and actual
labels, with a batch size of 64 representing the number of samples processed per iteration.
To enhance the training efficiency and convergence, we employed the StepLR scheduler,
with a step size of 5 epochs and a gamma value of 0.1, to dynamically reduce the learning
rate. All models were implemented and trained using the PyTorch framework, leveraging
Python 3 for its robust libraries, including Timm, which facilitates transfer learning. The
experiments were conducted on a machine equipped with a 12th Gen Intel(R) Core(TM)
i7-12700KF CPU (3.60 GHz, 12 cores), 64 GB of RAM, and an NVIDIA GeForce RTX 3090
GPU with 24 GB of GDDR6X memory. This hardware configuration ensured consistent
performance and efficient handling of all training and evaluation tasks.

3.2. Evaluation Metrics

Evaluation metrics are essential quantitative measures for assessing the performance
and effectiveness of machine learning models. These metrics provide insights into a model’s
predictive capability, generalization ability, and overall quality, enabling the comparison of
different models or algorithms [33]. The primary metrics used in this study are accuracy
and F1-score, calculated using the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
; (1)

F1 =
2 × TP

2 × TP + FP + FN
; (2)

where TP is True Positive, FN is False Negative, FP is False Positive, and TN is True Negative.

3.3. Results and Discussion

After preparing the datasets and loading the pre-trained models, we trained and
evaluated several architectures. The results are discussed below. During the training of
EfficientNet B0, metrics such as the F1-score, accuracy, and loss were recorded for both the
training and validation sets at each epoch. As shown in Figure 7, the training and validation
losses steadily decreased and converged without significant divergence, indicating that the
model avoided overfitting. The alignment between the training and validation F1-scores
confirmed the model’s reliability in terms of precision and recall on the validation set.

Figure 7. EfficientNet-B0 fine-tuning on local dataset.

The comparative results of the trained models are presented in Tables 6 and 7. Efficient-
Net B0 consistently outperformed the VGG architectures, achieving the highest accuracy
of 94% and an F1-score of 95.86% after pre-training on the SnakeCLEF 2021 dataset and
fine-tuning on the local dataset. This superior performance is attributed to EfficientNet B0’s
advanced scaling techniques, which effectively balance the model size, computational cost,
and performance. This balance enables the model to generalize better to the local dataset
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compared to the deeper VGG models, which, despite their strong feature extraction capabil-
ities, are prone to overfitting due to their larger number of parameters. The application of
transfer learning significantly improved the performance of all the models. Pre-training on
a large, diverse dataset such as SnakeCLEF 2021 provided generalized feature representa-
tions that enhanced the models’ ability to adapt to the smaller, domain-specific local dataset.
For example, VGG-16 exhibited notable gains in the accuracy and F1-score compared to
its performance when trained solely on the local dataset, underlining the effectiveness
of leveraging a large pre-trained model. EfficientNet B0 emerged as the most effective
architecture for snake species identification, excelling in both accuracy and F1-score across
all the training scenarios. Its efficient design, leveraging compound scaling and pre-trained
weights, allowed it to outperform the VGG models while maintaining computational effi-
ciency. These results highlight the importance of employing advanced architectures and
transfer learning techniques for tasks involving limited domain-specific data.

Table 6. Comparison of performance metrics across different models trained on the local dataset only.

Model Metric Performance on Testing Data

VGG-19 Accuracy 0.8089
F1-Score 0.8736

VGG-16 Accuracy 0.8429
F1-Score 0.8960

EfficientNet B0 Accuracy 0.9223
F1-Score 0.9367

Table 7. Comparison of performance metrics across different models trained on the SnakeCLEF 2021
dataset and then fine-tuned on a local dataset.

Model Metric Performance on Testing Data

VGG-19 Accuracy 0.8599
F1-Score 0.8936

VGG-16 Accuracy 0.9019
F1-Score 0.9247

EfficientNet B0 Accuracy 0.9400
F1-Score 0.9586

3.4. Web Application

In order both to facilitate the practical application of the research findings and to
provide a convenient tool for snake species identification, a web application has been
developed which enables users to upload images and then to identify the species in
question. The interface allows users to interact smoothly by dragging and dropping an
image into the designated area. Upon uploading an image and clicking the “Submit”
button, the application processes the input instantly using the pre-trained EfficientNet B0
model fine-tuned for Moroccan snake species.

The results section of the application displays the top five predictions, ranked by
confidence scores, as shown in Figure 8. For example, the application can accurately identify
species such as Naja haje (Figure 8) or Bitis arietans (Figure 9), providing detailed predictions
accompanied by confidence levels for each identified species. This intuitive interface and
real-time processing make the application a practical tool for researchers, herpetologists,
and the general public, offering a robust solution for snake species identification.
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Figure 8. Identify the Naja haje.

Figure 9. Identify the Bitis arietans.

To assess the computational efficiency of our models, we tested them on the task of
identifying Naja haje shown in Figure 8 and calculated the inference time and memory usage
on a machine with an Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz 1.80 GHz. The results,
presented in Table 8, show that EfficientNet B0 not only achieved the highest performance
metrics but also demonstrated significantly faster inference times and a lower memory
consumption compared to the VGG models. Specifically, EfficientNet B0 had an inference
time of 31.72 ms and memory usage of 1409.09 MB, while VGG-16 and VGG-19 took
considerably longer and required more memory.

Table 8. Comparison of inference time and occupied memory for different models.

Model Inference Time (ms) Occupied Memory (MB)

EfficientNet B0 31.72 1409.09

VGG-16 251.26 1847.21

VGG-19 339.88 1848.65

4. Conclusions and Future Work
Snake species identification remains a challenging task due to the diversity of species,

subtle morphological differences, and imbalanced datasets. In this study, the EfficientNet B0
architecture, fine-tuned on global and local datasets, achieved a validation accuracy of 94%
and an F1-score of 95.86%. These results demonstrate the potential of deep learning models
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to handle complex classification tasks and adapt to domain-specific challenges through
transfer learning. Despite these promising outcomes, challenges remain, including the
underrepresentation of certain species, the impact of low-quality images, and the presence
of non-snake images in datasets, which poses an additional challenge as the model might
generate False Positives or fail to indicate the absence of snakes. Furthermore, the snake
involved is often not seen, adding another layer of difficulty in accurate identification.
Addressing these limitations is crucial to improving the model’s reliability and adaptability.

Future efforts will explore advanced architectures, such as transformers, for capturing
intricate visual details, and incorporate geographic data to provide contextual support for
classification. Tackling dataset imbalances and extending the system’s application to global
datasets will further enhance its usefulness. These advancements aim to establish a reliable
tool for ecological research and medical applications, improving snakebite management
and biodiversity studies.
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