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Abstract: This study explores the extraction of remote Photoplethysmography (rPPG)
signals from images using various neural network architectures, addressing the challenge
of accurate signal estimation in biomedical contexts. The objective is to evaluate the
effectiveness of different models in capturing rPPG signals from dataset snapshots. Two
training strategies were investigated: pre-training models with only the fully connected
layer being fine-tuned and training the entire network from scratch. The analysis reveals
that models trained from scratch consistently outperform their pre-trained counterparts in
extracting rPPG signals. Among the architectures assessed, DenseNet121 demonstrated
superior performance, offering the most reliable results in this context. These findings
underscore the potential of neural networks in advancing rPPG signal extraction, which
has promising applications in fields such as clinical monitoring and personalized medical
care. This study contributes to the integration of advanced imaging techniques and neural
network-based analysis in biomedical engineering, paving the way for more robust and
efficient methodologies.

Keywords: remote photoplethysmography (rPPG); transfer learning; regression; neural
network architectures; signal extraction; biomedical imaging

1. Introduction
In the realm of remote patient monitoring and telemedicine, the advent of non-contact

vital sign detection stands as a pivotal advancement [1]. The fusion of camera systems with
advanced computer vision algorithms not only revolutionizes healthcare but also promises
a host of practical benefits. By facilitating the extraction of crucial vital signs like heart
rate, respiration rate, and oxygen saturation without the need for direct physical sensors,
this technology not only reduces patient contact but also minimizes infection risks and
enables large-scale deployment. Its potential impact is particularly pronounced in settings
where infection control is of utmost importance, such as during pandemic outbreaks or in
immunocompromised populations.

This paper embarks on an in-depth exploration of the progression from traditional
Photoplethysmography (PPG) to its non-contact variant, Photoplethysmographic Imaging
(PPGI), often referred to as Remote Photoplethysmography (rPPG) [2]. PPG, an optical
technique grounded in the light absorption characteristics of skin tissues, has been a funda-
mental tool for monitoring cardiovascular function [3]. The method works by employing a
light source and a photodetector to detect changes in blood volume, which correlate with
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physiological signals. While PPG is highly accurate and reliable in clinical environments,
its requirement for direct skin contact limits its applicability in certain situations—such as
with burn patients, neonates, or during surgeries—where skin contact may be undesirable
or infeasible. These constraints have driven the shift towards the development of PPGI
or rPPG. PPGI expands on the foundational principles of PPG by leveraging electromag-
netic radiation, photodetectors, and camera systems to capture subtle variations in light
intensity across larger skin surfaces [4]. This broader capability enables more diverse
applications, including the monitoring of mucous membranes [5] and wound care [6],
which would be difficult with traditional contact-based methods. By extending the spatial
coverage and eliminating the need for physical sensors, PPGI introduces new flexibility in
medical diagnostics.

In parallel with this technological evolution, neural networks have emerged as a
crucial component in enhancing the accuracy and robustness of non-contact vital sign
detection [7]. The capacity of neural networks to process complex visual data allows
for more precise extraction of physiological signals from imagery, even in challenging
conditions. For example, neural networks have demonstrated the ability to filter out
noise caused by motion artifacts or variable lighting, which are significant hurdles in the
practical implementations of rPPG [8]. However, despite their promise, neural networks
are not without challenges. Their “black-box” nature raises questions about interpretability
in medical contexts, where transparent and explainable models are essential for clinician
trust [9]. Additionally, the accuracy of these models is heavily dependent on the quality and
diversity of the training data, and they can be prone to biases if trained on narrow datasets.

Recent advancements in neural network architectures, such as convolutional neural
networks (CNNs) and long short-term memory (LSTM) networks, have improved the
state-of-the-art in non-contact signal processing [10]. These models are able to discern
subtle temporal and spatial patterns in the visual data, refining the extraction of vital signs
from video sequences. Nevertheless, future research must continue to focus on overcoming
the limitations posed by real-world variability, ensuring that these systems are reliable
across different patient populations and environmental settings. Furthermore, it is essential
to distinguish between contact and non-contact signal acquisition methodologies. While
traditional PPG requires direct contact with the skin to measure physiological signals, the
focus of this research extends to non-contact methods, specifically PPGI and rPPG. Both
rPPG and PPGI rely on camera-based systems to detect minute changes in skin color, which
are indicative of underlying physiological processes.

Beyond clinical settings, non-contact vital sign detection holds promise in other fields,
such as psychology. For instance, by evaluating physiological responses to external stimuli,
this technology can offer new insights into stress levels, emotional reactions, and overall
mental well-being [11]. This opens the door for applications in mental health monitoring,
where continuous, unobtrusive assessments could complement traditional psychological
evaluations [12]. While the technology is still in its early stages for these applications, the
potential for non-invasive, objective data collection in this field could revolutionize the way
mental health is understood and treated. The application of non-contact vital sign detection
extends to various domains, including telehealth [13], neonatal care [14,15], and continuous
patient monitoring [16]. In telehealth, these technologies enable remote diagnosis and
monitoring, reducing the need for hospital visits and allowing healthcare professionals
to track patient health in real time. In neonatal care, where minimizing physical contact
is critical, non-contact monitoring provides a safe and effective solution for tracking vital
signs in vulnerable infants.
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Our study contributes to this growing body of literature by systematically comparing
various CNN architectures that utilize transfer learning for regression tasks related to rPPG
signal estimation. The significance of our research can be summarized as follows:

• Exploration of Transfer Learning: By leveraging pre-trained models, we aim to reduce
the need for large datasets while still achieving high performance in estimating rPPG
signals. This is particularly important given the limited availability of high-quality
datasets for training deep learning models in this domain.

• Evaluation of Multiple Architectures: We rigorously assess different CNN architectures
to identify which configurations yield the best performance for rPPG signal estimation.
This comparative analysis not only highlights the strengths and weaknesses of each
model but also provides insights into best practices for future research.

• Addressing Practical Limitations: Our work emphasizes the practical limitations
associated with existing methods, including issues related to generalizability and
robustness under varying conditions. By focusing on transfer learning and model
adaptation, we provide a pathway for developing more reliable rPPG estimation
techniques that can be deployed in real-world scenarios.

• Foundation for Future Research: The findings from our study serve as a foundation
for further exploration into advanced techniques for rPPG signal extraction. By
identifying effective models and methodologies, we pave the way for subsequent
research aimed at enhancing the accuracy and applicability of non-invasive heart rate
monitoring technologies.

The following section describes the current state of the problem. Section 3 introduces
the concepts of neural networks, while Section 4 presents the achieved results. Finally, the
last section concludes the paper and outlines future directions for further research.

2. State-of-the-Art
Remote Photoplethysmography (rPPG) has emerged as a promising tool for non-contact

vital sign monitoring, with numerous studies advancing its applications. Wu et al. [17] pro-
posed an Adaptive Neural Network Model Selection (ANNMS) approach to address lumi-
nance variations in outdoor scenarios for monitoring drivers’ heart rates. This approach
reduces the effect of luminance, although it does not entirely eliminate it, as evaluated by
metrics such as Mean Absolute Error (MAE). Here, the focus is on adapting neural models
rather than specifying a particular architecture. This study focuses on facial rPPG signals but
requires further research to overcome limitations like dependency on high-quality cameras.

Revanur et al. [18] made significant strides with the Vision for Vitals (V4V) Chal-
lenge, leveraging high-resolution videos synchronized with diverse physiological signals
under naturalistic conditions. By providing varied scenarios, this work fosters the devel-
opment and benchmarking of advanced video-based models, encouraging architectures
that generalize spontaneous behavior, facial expressions, and lighting variations. This
study identifies challenges in robust video-based physiological estimation, particularly
under naturalistic conditions with spontaneous movements, illumination changes, and
significant motion artifacts. Key limitations include inadequate evaluation protocols, data
imbalances, and the inability to achieve frame-level accuracy for heart rate and respiration
prediction. The authors suggest that future work should improve motion robustness, refine
evaluation metrics, address data diversity, and enhance model generalizability to ensure
better performance in real-world applications.

Pediatiditis et al. [19] introduced a method combining Eulerian magnification and a
3D convolutional neural network (CNN) to extract respiratory rate features from video data.
This approach amplifies subtle skin-color changes and processes them through the CNN,
achieving high accuracy in respiratory rate estimation, suitable for clinical environments.
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Several limitations were identified, including overfitting issues in two subjects, which
affected model generalization, and a small sample size that limited the robustness of the re-
sults. Additionally, the method is computationally and memory demanding due to Eulerian
motion magnification, highlighting the need for further optimization of the architecture,
expansion of the dataset, and development of automatic video magnification techniques.

Wang H. et al. [20] developed a framework for cardio-respiratory monitoring in ICU
settings using CCTV cameras. Their solution involves motion-intensity-focused quality
metrics and Region-of-Interest optimization strategies, improving signal acquisition for
heart rate and respiratory monitoring.

Molinaro et al. [21] proposed a camera-based methodology for respiratory rate estima-
tion, focusing on facial and upper extremity signals, with applications in healthcare, occupa-
tional health, and sports. Although neural networks were not used, their novel algorithms
and noise-reduction techniques effectively addressed motion-related challenges. This
study highlights that careful algorithmic design and post-processing can enhance remote
monitoring and serve as a foundation for integrating neural networks in future solutions.

Zhang et al. [22] utilized multimodal 3D imaging to address motion-related inac-
curacies in vital sign monitoring. Their study suggests improvements in tracking head
movements. By using advanced algorithms and evaluation metrics (e.g., mean absolute
error, correlation coefficient) and leveraging 3D data, this research points toward sophisti-
cated data processing pipelines that can support or be integrated with neural models to
improve accuracy across healthcare, sports, and security applications.

Wang W. et al. [23] explored rPPG for cardiac triggering during MRI, presenting an
algorithm for R-peak prediction. Relying on signal prediction and comparison, the camera-
based PPG could be an alternative to ECG-bassed triggers. This study demonstrates the
viability of the method in improving workflow efficiency and patient comfort. However, the
method faces limitations, including motion sensitivity, lower signal quality under certain
conditions, and challenges with arrhythmia and heart rate variability, which can affect
prediction accuracy. Additionally, this study was conducted on a small group of healthy
volunteers, limiting its generalizability to clinical settings with diverse patient populations.
Further validation in real-world environments and improvements in robustness are needed
to enhance the applicability of camera-based rPPG for cardiac triggering.

Lee et al. [24] introduce LSTC-rPPG, a deep learning framework using a 3D CNN
with an hourglass structure and temporal attention. By compressing and reconstructing
temporal features and combining time- and frequency-domain loss functions, their ar-
chitecture captures both local and global temporal information crucial for robust rPPG
signal prediction.

Xiong et al. [25] propose STGNet, leveraging Spatio-Temporal Graph Neural Networks
(ST-GNNs) to model physiological signal periodicity and consistency. STGNet effectively
reduces noise and focuses on physiologically affluent facial areas by introducing graph-
denoising block and region selection strategies, representing a shift toward graph-based
learning in rPPG. However, the model’s performance is still affected by motion artifacts
and relies on computationally demanding hardware, which may limit deployment on edge
devices. Additionally, more diverse datasets must be validated to ensure its robustness in
real-world applications.

Lee et al. [26] introduce DSE-NN, a deep supervised efficient neural network that
utilizes spectral deep supervision for learning periodic signals. Reducing parameters
and visualizing intermediate representations, this architecture achieves fast convergence,
interpretability, and strong performance with fewer computational resources. This study
reduces computational complexity but still requires further optimization for real-time
deployment on resource-constrained devices. Additionally, it faces challenges such as
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sensitivity to motion artifacts, reliance on controlled datasets, and the lack of validation in
diverse real-world environments.

Zhao et al. [27] developed WTC3D, a specialized neural architecture explicitly de-
signed for pulse acquisition in the Internet of Medical Things (IoMT). The Weighted
Temporally Consistent 3D convolution and spatiotemporal preprocessing modules en-
sure temporal accuracy, efficiency, and resilience to noise. Hybrid loss functions help
align learned features with physiological periodicity, supporting lightweight, real-time
applications. Authors identified the need for larger and more diverse datasets, improved
model generalization, integration of physiological principles, and further optimization for
real-world deployment as areas for future improvement in the WTC3D framework.

Collectively, these studies highlight the evolving landscape of rPPG techniques,
demonstrating that while some approaches integrate advanced neural network models like
CNNs and other specialized architectures, others prioritize algorithmic refinements and
signal processing strategies. Despite notable advancements, there remains a need for more
systematic exploration and standardization of neural network architectures. Such efforts
would enhance reproducibility, ensure robust performance across diverse conditions, and
ultimately facilitate broader clinical and commercial adoption.

3. Materials and Methods
This chapter outlines the methodology employed to compare various Convolutional

Neural Network (CNN) architectures for rPPG signal estimation. It describes the dataset,
preprocessing steps, and the design of different CNN models. This chapter also details the
metrics for evaluation of the model performance and description of the proposed architecture.

3.1. Neural Networks

Neural networks (NNs) are foundational to modern machine learning, designed to
mimic the structure and functionality of biological neural systems. These computational
models consist of interconnected layers of artificial neurons, each performing simple
operations to extract patterns from data. The network’s architecture typically includes an
input layer for raw data, one or more hidden layers for feature extraction, and an output
layer for predictions or classifications [28,29].

The depth of an NN is determined by the number of hidden layers; this distinguishes
shallow networks from deep neural networks (DNNs). Deep networks are particularly
effective at capturing complex, hierarchical features in data, enabling breakthroughs in
tasks such as image recognition and natural language processing [30]. Training an NN
involves iteratively adjusting its weights to minimize the error between predicted and
actual outputs. This is achieved through backpropagation, an algorithm that computes error
gradients and updates weights accordingly using optimization methods like Stochastic
Gradient Descent (SGD) or Adam [31,32]. During training, the dataset is processed over
multiple epochs, with data divided into shuffled mini-batches to balance memory usage
and computational efficiency [33]. A smaller batch size reduces memory requirements but
increases the number of iterations needed to complete an epoch, requiring careful trade-offs
based on hardware and dataset size. To ensure robust performance, the dataset is typically
split into training, validation, and testing subsets. While the training set is used to adjust
weights, the validation set monitors the model’s performance and helps detect overfitting
or underfitting. Overfitting occurs when the model is overly tailored to the training
data, resulting in poor generalization of new data. Conversely, underfitting indicates
that the model needs to be more complex to capture meaningful patterns. Regularly
evaluating performance on validation data helps optimize hyperparameters and avoid
these pitfalls [34,35].
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NNs are highly adaptable, enabling modular systems tailored to specific problems like
classification, regression, or clustering. However, training can be computationally intensive
and prone to challenges like vanishing gradients or local minima. Advances in training
algorithms, regularization techniques, and hardware accelerators have mitigated many of
these issues, allowing for more efficient and scalable models. With their ability to process
complex data and uncover patterns, NNs have transformed fields ranging from healthcare
to finance. By leveraging innovative architectures and robust optimization methods, these
systems continue to expand the boundaries of machine learning.

By leveraging innovative architectures and robust optimization methods, these sys-
tems continue to expand the boundaries of machine learning. Leading corporations and
universities have developed several successful NN models, many available in libraries such
as Keras [36]. These models typically include pre-trained weights for tasks like classifying
1000 image categories, which can be further fine-tuned. Users can also add layers to adapt
these architectures, leveraging features extracted in early layers for visual elements and
later layers for abstract concepts (see Figure 1) [37]. To better understand the versatility and
applications of neural networks, it is essential to explore the following notable architectures
that have shaped the field:

Figure 1. Abstraction levels in neural network image [37].

• VGG (Visual Geometry Group): This CNN is known for its simplicity and uniform
deep structure, using 3x3 convolutional filters and max-pooling for downsampling [38].
Variants like VGG16 and VGG19, with 16 and 19 layers, respectively, are widely used
for image classification but are computationally intensive.

• ResNet (Residual Network): ResNet uses residual blocks with skip connections
to mitigate vanishing gradients, enabling very deep networks like ResNet50 with
50 layers [39]. It excels in tasks such as image classification and object detection.

• Inception (GoogLeNet): This architecture introduces inception modules with parallel
convolutional filters of varying sizes to capture multi-scale features efficiently [40].
Variants like InceptionV3 improve computational efficiency and performance.

• Xception: Inspired by Inception, Xception employs depthwise separable convolutions
for efficient feature extraction, reducing parameters while maintaining accuracy [41].

• MobileNet: Designed for mobile and resource-constrained environments, MobileNet
uses depthwise separable convolutions to achieve lightweight, efficient models [42].

• DenseNet: DenseNet introduces dense blocks with direct connections between layers,
enhancing gradient flow and feature reuse while minimizing parameters [43]. The
number in model names like DenseNet121 represents the total number of layers.

• NasNet: NasNet uses reinforcement learning to automate the design of efficient,
high-performing models for various vision tasks [44].
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• EfficientNet B0: EfficientNet [45] introduces a compound scaling method that bal-
ances network width, depth, and resolution using fixed scaling coefficients, enabling
significantly higher accuracy with fewer parameters and FLOPs compared to archi-
tectures like ResNet and NASNet. The baseline model, EfficientNet-B0, designed
using neural architecture search, employs mobile inverted bottleneck layers with
squeeze-and-excitation optimization, offering a balance between accuracy and effi-
ciency. Variants such as EfficientNet-B1 to B7 scale up these dimensions progressively,
achieving state-of-the-art results in tasks like image classification and transfer learning
while remaining computationally efficient.

• EfficientNet V2: EfficientNetV2 [46] builds on EfficientNet by introducing Fused-
MBConv layers for improved training efficiency and hardware utilization, along with
progressive learning that dynamically adjusts image sizes and regularization during
training to enhance speed and accuracy. The EfficientNetV2 family includes variants
such as B0, S, M, L, and XL, designed to scale across tasks with up to 11× faster training
and 6.8× fewer parameters compared to EfficientNet. These improvements make
EfficientNetV2 highly versatile and efficient for applications ranging from lightweight
mobile tasks to large-scale data processing.

• ConvNeXt: ConvNeXt [47] is a modernized convolutional network architecture that
builds upon the foundational ResNet design, incorporating features like larger kernels,
LayerNorm, and depthwise convolutions inspired by vision transformers, while pre-
serving the straightforward convolutional structure of ConvNets. This design empha-
sizes scalability and efficiency, with variants like ConvNeXt-Tiny and ConvNeXt-Base
optimized for resource-constrained and balanced tasks, respectively, while larger
models such as ConvNeXt-Large and ConvNeXt-XL focus on higher accuracy for
complex and large-scale datasets.

While these architectures are commonly used for classification tasks, their modularity
and adaptability also make them suitable for regression problems. For regression, the
output layer can be modified to have a single neuron (or multiple neurons for multi-output
regression) with a linear activation function to predict continuous values. For example, in
tasks such as predicting physiological signals like heart rate or stress levels from images
or videos, these models’ rich feature extraction capabilities can be leveraged to capture
relevant patterns and correlations from the input data.

3.2. Metrics

In addition to visual assessment, quantitative evaluation of the model’s performance
was conducted using several metrics, implemented via the scikit-learn library. For each
metric, we define yi as the predicted value of the signal derived from remote photoplethys-
mography (rPPG) through facial imaging, and ytrue

i as the corresponding ground truth
value measured from a finger PPG sensor.

• Max Error (ME): The maximum error represents the largest absolute deviation between
the predicted and true values, indicating the peak error in the prediction. A value
of zero corresponds to perfect prediction with no deviation. Mathematically, it is
defined as

ME = max
(∣∣yi − ytrue

i
∣∣). (1)

• Explained Variance Score (EVS): This score reflects the proportion of variance in the
true values captured by the predicted values, providing insight into the accuracy of the
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model’s predictions in explaining signal variance. A score of 1 indicates perfect overlap
in variance, while lower values signify increasing error variance. It is defined as

EVS = 1 −
Var(ytrue

i − yi)

Var(ytrue
i )

. (2)

• Mean Absolute Error (MAE): The mean absolute error represents the average absolute
difference between predicted and true values, making it sensitive to the range of
data values. A lower MAE is preferred, with zero indicating perfect accuracy. It is
calculated as

MAE =
1
n

n

∑
i=1

∣∣yi − ytrue
i

∣∣. (3)

• Mean Squared Error (MSE): A commonly used metric, MSE penalizes larger errors
more heavily due to the squaring of differences, thus emphasizing substantial devi-
ations. The optimal value is zero, representing no deviation between predicted and
true values. It is expressed as

MSE =
1
n

n

∑
i=1

(
yi − ytrue

i
)2. (4)

• R-squared Score (R2): The R2 score quantifies the proportion of variance in the true
values that is captured by the predictions, providing a measure of the goodness of
fit. An R2 value of 1 denotes a perfect fit, while values closer to zero indicate weaker
predictive accuracy. It is defined as

R2 = 1 − ∑n
i=1

(
yi − ytrue

i
)2

∑n
i=1

(
ytrue

i − ytrue
)2 , (5)

where ytrue = 1
n ∑n

i=1 ytrue
i represents the average (mean) of the true values over

all observations.
• Mean Poisson Deviance (MPD): Poisson deviance is useful for measuring predicted

values that represent expected counts or frequency, and it evaluates the extent to
which predictions align with the distribution of the observed values. An MPD of zero
implies perfect alignment with the true data distribution. It is defined as

MPD =
1
n

n

∑
i=1

(
yi − ytrue

i · ln
(

ytrue
i
yi

))
. (6)

Each of these metrics provides a unique perspective on model performance, helping
to assess accuracy, error magnitude, and alignment with the ground truth signals obtained
from finger-based PPG measurements.

4. Results
This study investigates the extraction of remote Photoplethysmography (rPPG) signals

from images using a range of extended neural network architectures. The objective is to
evaluate how effectively different models capture rPPG values from static facial images
from the dataset. The extended architecture is based on known architectures, such as
ResNet or DenseNet. Onto these base architectures, there is an extension of a few dense
layers with a decreasing number of neurons, resulting in one value as the output.
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4.1. Dataset

The dataset employed for this study consists of a subset of recordings from a larger,
ethically approved collection that is slated for publication, ensuring public access to support
future research. This selected subset comprises a total of 18,000 samples, which include
both photographic images and reference photoplethysmography (PPG) signals acquired
from a finger-mounted sensor. Data were collected from three participants, aged 25 to 36,
consisting of two females and one male. The main limitation of this dataset is the small
number of participants. This reduces the generalizability of data and will be addressed
in the future by expanding the number of participants. Each participant was seated in a
controlled setting. Natural lighting was optimized by positioning a ZED camera opposite
windows, allowing high-resolution capture of facial images under soft, ambient light. To
ensure accuracy, the PPG sensor, affixed to the left hand, used a reflective measurement
approach that detects subtle changes in blood volume at the skin’s surface, producing a
reliable reference signal. This configuration allowed for capturing rPPG signals from the
facial region, with PPG from the finger as a comparative benchmark. The ZED camera
captured the participants’ upper body, including the face, neck, and upper torso, to capture
a comprehensive field of physiological indicators. The facial region, rich in vascular
activity, was isolated for rPPG extraction as it minimizes motion artifacts and provides
consistent signal quality. To preprocess the images, the YOLO Neural Network was
employed to detect and crop the facial region from the larger image, with each extracted
face subsequently resized to 64 × 64 pixels and stored in PNG format, maintaining both
quality and compatibility for analysis.

The choice of facial signals for rPPG extraction maximizes data fidelity due to con-
sistent lighting and minimized motion and opens further exploration into physiological
and potentially emotional responses captured from facial signals. During data collection,
participants were given the flexibility to engage naturally, whether in conversation or
silence, to replicate real-world conditions as closely as possible. Throughout this process,
adherence to ethical guidelines was paramount. The data collection adhered to the univer-
sity’s ethical standards, ensuring privacy, informed consent, and participant confidentiality.
The university’s ethics board approved the collection protocols, with all participants fully
briefed on the nature and scope of this study, confirming their consent to participate. The
full dataset, encompassing participant demographics, technical specifications, and detailed
data collection protocols, will be published independently in a dedicated article. This
forthcoming publication will ensure broad access for the research community, enabling
further progress in remote physiological monitoring methodologies.

Description of the System Architecture

The proposed system consists of two main blocks, as shown in Figure 2. The first one
is called the “Base model”, and it represents known architectures described in Section 3.1.
These networks were chosen due to their strong feature extraction capabilities and proven
success in handling complex image data. Originally, these architectures had RGB image
input with a resolution of 224 × 224 × 3. For the proposed system, the input layer’s
data shape is changed to match facial images in the dataset. Resulting in a shape of
64 × 64 × 3 values. The output dense layers are not included in the Base model, so it
will contain only the convolutional part. During training, convolution filters try to find
statistically relevant features in the input data. Therefore, this part will act as the feature
extraction part in the final model. The second block is called the “Extension” and represents
the regression part of the final model. This extension is further divided into three blocks:
Conversion, Dense, and Output. Conversion starts with an average pooling layer with a
window size of 2 × 2. Followed by a Flatten layer to transform higher dimension data into
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a vector. Batch normalization finishes the conversion block. A dense block starts with a
dense layer with a linear activation function. After that, 50% dropout is applied, and batch
normalization is at the end. This block is repeated three times with a decreasing number of
neurons (384, 256, 128). Finally, the Output block comprises a single dense layer with one
neuron that represents the final output value for rPPG estimation. Like previous layers, this
output layer employs a linear activation function to predict continuous values effectively.

Figure 2. Block diagram of the proposed system, illustrating the architecture of the Base model
and Extension.

Base Model: Feature Extraction

1. Input Image:

• The model accepts input images in the RGB format with dimensions 64 × 64 × 3
(64 pixels height and width, with three color channels).

• These images are processed as tensors for further computation.

2. Known Architecture:

• The Base Model utilizes a predefined architecture (e.g., a convolutional neural
network such as ResNet, VGG, ...).

• The architecture consists of several convolutional and pooling layers, forming a
feature extractor.

• These layers sequentially extract hierarchical features from the input image:

– Lower layers capture low-level features (e.g., edges, corners).
– Deeper layers encode high-level features (e.g., shapes, textures).

• Outputs from this block are passed to a pooling layer.

Extension: Regression

1. Average Pooling and Flatten:

• After feature extraction, the output feature maps from the base model undergo
average pooling with a 2 × 2 kernel.
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• Pooling reduces the spatial dimensions, summarizing feature information.
• A flattening layer converts the pooled feature maps into a 1D feature vector to be

fed into the dense layers.

2. Dense Layers:

• The flattened feature vector is passed through three fully connected layers, each
with 128 units and a linear activation function.

• Regularization techniques are employed to prevent overfitting:

– Dropout (0.5): Randomly drops 50% of the connections during training to
promote generalization.

– Batch Normalization: Stabilizes the learning process by normalizing activa-
tions at each layer.

3. Output Layer:

• The final output layer consists of a single neuron with a linear activation function.
• This setup is typically used for regression tasks, where the model predicts a

continuous scalar value.

Training Objective

• The network appears to be designed for a regression task (e.g., predicting a numerical
value based on input images).

• During training, the model optimizes a loss function (such as Mean Squared Error) to
minimize the difference between the predicted and true output.

To optimize the system’s performance, hyperparameters such as learning rate and
network structure were carefully fine-tuned (Table 1). Adjusting these parameters played
a critical role in enhancing convergence speed and avoiding suboptimal solutions. Mod-
ifications to the Base model included fine-tuning the number of layers and filter sizes,
improving the network’s ability to detect intricate visual features. Each hyperparameter
was pivotal in shaping the overall model’s effectiveness. Each hyperparameter plays a criti-
cal role in determining the model’s performance. For training and evaluation, the dataset
was divided into training and testing sets at a 50:50 ratio, with an additional 80:20 split
applied to the training set for model validation. This ensured balanced representation and
systematic training while preserving the temporal integrity of the data, which is critical
for evaluating model performance. The models were trained for 250 epochs with a batch
size of 128, employing the Adam optimizer with a learning rate set at 0.0001. The mean
squared error (MSE) loss function was chosen due to its suitability for regression-based
predictions, minimizing the average squared differences between predicted and true values.
The performance and effectiveness of machine learning models are significantly affected by
various hyperparameters, each playing a crucial role in the model’s overall capability to
achieve optimal results:

• Learning Rate: The learning rate determines how much the model’s parameters are
adjusted after each training step. It directly affects how quickly the model converges
and whether it stabilizes in an optimal state. Selecting the appropriate learning rate is
crucial to preventing issues like underfitting or overfitting.

• Batch Size: Batch size refers to the number of training examples processed together
in each iteration. It influences the speed of training, memory consumption, and
the model’s ability to generalize. The optimal batch size depends on the hardware
constraints and the characteristics of the dataset.

• Activation Functions: Activation functions introduce non-linearity into the network,
allowing it to model complex relationships. Functions such as ReLU, sigmoid, and
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tanh determine how neurons respond to input signals, affecting both the network’s
ability to learn intricate patterns and its training behavior.

• Dropout is a regularization technique that randomly deactivates a subset of neurons
during the training process. This approach helps to prevent overfitting by encouraging
the network to develop more robust features and reducing its dependence on specific
neurons. The dropout rate determines the proportion of neurons that are deactivated
in each forward pass through the network.

• NN Architecture: The architecture of a neural network defines the structure of its
layers, including the types (e.g., convolutional layer, pooling layer, fully connected
layer) and their connectivity. The architecture must be chosen based on the complexity
of the task and the computational resources available to optimize both performance
and efficiency.

Table 1. Hyperparameter tuning.

Model Hyperparameter Value

Epochs 250
Learning Rate 0.0001

Batch size 128
Convolutional Neural Network Activation ReLU

Pooling size 2 × 2
Pooling method “max”

Dropout rate 0.5
Loss function MSE

Deep knowledge and careful tuning of hyperparameters can significantly enhance the
accuracy and performance of computer vision applications. The proposed system explores
the extraction of remote Photoplethysmography (rPPG) signals from images using various
neural network architectures, addressing the challenge of accurate signal estimation in
biomedical contexts. The objective is to evaluate the effectiveness of different models in
capturing rPPG signals from dataset snapshots. Two training strategies were investigated:
pre-training models with only the fully connected layer being fine-tuned and training
the entire network from scratch. The analysis reveals that models trained from scratch
consistently outperform their pre-trained counterparts in extracting rPPG signals.

Advantages of the Proposed Model:

• Transfer Learning Ready: By using a “known architecture” in the base model,
pre-trained weights from a well-established model can be leveraged to improve
feature extraction.

• Regularization: Dropout and Batch Normalization ensure stability and reduce the
likelihood of overfitting.

In summary, our modified network architecture effectively combines various neural
network architectures with tailored components for regression tasks in rPPG signal esti-
mation. By focusing on feature extraction through convolutional layers and implementing
structured dense connections for regression, we aim to enhance both accuracy and effi-
ciency in processing facial images for rPPG applications. This approach not only leverages
existing knowledge in deep learning but also contributes novel insights into optimizing
these architectures for specific signal estimation tasks.

4.2. Exprimental Part

This section outlines the experimental setup and the results derived from our experi-
ments. The experiment was conducted on a computational system featuring an Intel Core
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i7-9700 processor, 32GB of RAM, and an NVIDIA RTX 2070 GPU with 8GB of dedicated
memory. The software environment utilized included the Anaconda distribution, along
with popular deep learning frameworks such as Torch, TensorFlow, and Keras. Each neural
network architecture was enhanced by integrating four fully connected layers and three
pooling layers, all utilizing linear activation functions. Optimization of the models was
carried out using the Adam algorithm. The training spanned 250 epochs, with a batch
size of 128 and a learning rate set to 0.0001. The Mean Squared Error (MSE) loss function
was applied during the optimization process to minimize the average squared differences
between predicted and actual values. The success of our experiments relies on the dataset
used for training and evaluating our neural networks. We plan to publish the full dataset,
including participant demographics and data collection methods, soon. This will ensure its
availability to the research community, supporting further advancements in the field.

The experimental results were analyzed by grouping the tested architectures into
families based on their structural similarities. A primary focus was placed on evaluat-
ing the resemblance between reconstructed photoplethysmogram (PPG) signals and the
measured signals, particularly concerning the accuracy of peak positions critical for heart
rate (BPM) estimation. This extension aims to explore the architectures and their respec-
tive performance further. For each epoch of training, a random batch of 128 images was
selected from the training dataset. After preprocessing, which included facial extraction
and normalization, an input data matrix of dimensions (128, 64, 64, 3) was generated.
Correspondingly, the output was a vector of 128 PPG values, each linked to a single image.
For the evaluation phase, continuous image sequences were utilized to visualize both the
measured and predicted PPG signals, enabling a qualitative assessment of the models.

Results for Signal Reconstruction

In our study, we explored various neural network architectures for the task of remote
photoplethysmography (rPPG) signal estimation. Among the examined models, Xception
emerged as a standout performer, demonstrating a well-reconstructed PPG curve that
closely aligned with the ground truth, as depicted in Figures 3 and 4. This indicates that
Xception effectively captured the essential features of the rPPG signal, which is critical for
accurate heart rate monitoring. Xception is an extension of the Inception architecture, utiliz-
ing depthwise separable convolutions that significantly reduce the number of parameters
while maintaining high performance. This design allows for efficient feature extraction,
making it particularly suitable for tasks requiring detailed analysis of complex signals such
as rPPG. The results suggest that Xception’s ability to model intricate patterns in the data
contributes to its superior performance in reconstructing PPG signals.

Figure 3. Predicted rPPG signal from Xception (orange line) architecture compared to the original
PPG signal obtained from the subject (blue line).
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Figure 4. Predicted rPPG signals from ResNet50 (orange line), ResNet101 (green line), and ResNet152
(yellow line) architectures are compared to the original PPG signal obtained from the subject
(blue line).

The ResNet101V2 architecture also showed promising results, potentially due to
its enhanced residual connections compared to its predecessor. These connections help
mitigate the vanishing gradient problem, allowing gradients to flow more easily through
deeper layers during training. As illustrated in Figure 5, this capability enables better
feature extraction at deeper levels of the network, which is essential for capturing subtle
variations in rPPG signals that are crucial for accurate heart rate estimation.

Figure 5. Predicted rPPG signals from ResNet50V2 (orange line), ResNet101V2 (green line), and
ResNet152V2 (yellow line) architectures are compared to the original PPG signal obtained from the
subject (blue line).

MobileNet outperformed ResNet, likely due to its lightweight design and implementa-
tion of depthwise separable convolutions. As shown in Figure 6, MobileNet’s architecture
allows for efficient feature mapping while minimizing computational load. This efficiency
is particularly advantageous when working with large datasets or in environments with
limited computational resources. The architecture’s ability to maintain performance with-
out requiring extensive resources makes it an attractive option for real-time applications.

Figure 6. Predicted rPPG signals from MobileNet (orange line) and MobileNetV2 (green line)
architectures are compared to the original PPG signal obtained from the subject (blue line).
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DenseNet architectures exhibited consistent reliability across various configurations.
The tightly connected layers within DenseNet facilitate feature reuse, enhancing gradient
flow and enabling effective learning of features throughout the network. As depicted in
Figure 7, this characteristic contributes to DenseNet’s robust performance.

Figure 7. Predicted rPPG signals from DenseNet121 (orange line), DenseNet169 (green line), and
DenseNet (yellow line) architectures are compared to the original PPG signal obtained from the
subject (blue line).

The NasNetLarge architecture achieved competitive results, showcasing its ability to
adaptively search for optimal network structures tailored to specific tasks (Figure 8). The ar-
chitecture search methodology employed by NasNet allows for customized configurations
that maximize performance based on task requirements. This adaptability is particularly
beneficial in complex applications like rPPG signal estimation.

Figure 8. Predicted rPPG signals from NasNetMobile (orange line) and NasNetLarge (green line)
architectures are compared to the original PPG signal obtained from the subject (blue line).

In contrast, both versions of EfficientNet performed poorly in our evaluations. This
underperformance may be attributed to the complexity of the architecture exceeding that
of the dataset being analyzed. Further investigation is needed to understand why other
complex architectures succeeded where EfficientNet did not (Figure 9).

Similarly, ConvNeXt also exhibited suboptimal performance. One possible explanation
is that ConvNeXt attempts to extract features across different scales, which may interfere
with the overall signal representation derived from the entire image (Figure 10). This scale
variance could lead to confusion in feature extraction processes, ultimately affecting the
accuracy of rPPG signal estimation.
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Figure 9. Predicted rPPG signals from EfficientNetB0 (orange line) and EfficientNetV2B0 (green line)
architectures are compared to the original PPG signal obtained from the subject (blue line).

Figure 10. Predicted rPPG signals from ConvNeXtTiny (orange line) and ConvNeXtBase (green line)
architectures are compared to the original PPG signal obtained from the subject (blue line).

Among the architectures assessed, DenseNet121 demonstrated superior performance,
offering the most reliable results in this context. These findings underscore the potential of
neural networks in advancing rPPG signal extraction, which has promising applications in
fields such as clinical monitoring and personalized medical care. This study contributes
to the integration of advanced imaging techniques and neural network-based analysis in
biomedical engineering, paving the way for more robust and efficient methodologies.

Table 2 presents the regression metrics for the tested architectures, offering a quantita-
tive evaluation of their predictive capabilities. Highlighted values in the table represent
the three best-performing models across the examined metrics. Figure 11 complements
this table by visually comparing the error metrics for all architectures. This visualization
reinforces the numerical results, further emphasizing DenseNet121’s superior performance
and highlighting differences across the tested models.

In our case, we conducted a comprehensive performance comparison of various
machine learning architectures for rPPG signal estimation, utilizing three key error metrics:
MAE, MSE, and MPD. These metrics provide a robust framework for evaluating the
accuracy and reliability of the models in reconstructing PPG signals from video data.
Among the tested models, DenseNet121 emerged as the top performer, achieving the lowest
MAE and MSE values. This indicates that DenseNet121 not only provides superior accuracy
in estimating rPPG signals but also demonstrates a high level of reliability across different
testing conditions. The architecture’s design, characterized by densely connected layers,
facilitates efficient feature reuse and enhances gradient flow, which are crucial for capturing
the intricate patterns inherent in PPG signals. The results of our comparison highlight
the effectiveness of DenseNet121 as a leading architecture for rPPG signal estimation,
while also demonstrating that Xception and MobileNetV2 are strong contenders. The
findings underscore the importance of selecting appropriate machine learning models
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based on specific application requirements and available computational resources. Further
exploration into optimizing architectures like ConvNeXt may be warranted to enhance
their performance for this critical task in non-invasive physiological monitoring.

Table 2. Regression metrics for tested architectures.

Architecture ME EVS MAE MSE R2 MPD
(Best Value) 0 1 0 0 ±1 0

Xception 0.493 0.848 0.033 0.005 0.844 0.009
VGG16 0.561 0.000 0.148 0.031 −0.002 0.059
VGG19 0.553 0.000 0.148 0.031 0.000 0.059

ResNet50 0.605 0.180 0.145 0.035 −0.152 0.070
ResNet101 0.582 0.067 0.143 0.030 0.029 0.057
ResNet152 0.537 0.288 0.110 0.022 0.288 0.042

ResNet50V2 0.458 0.099 0.140 0.028 0.097 0.053
ResNet101V2 0.548 0.700 0.068 0.009 0.700 0.018
ResNet152V2 0.567 0.174 0.135 0.032 −0.029 −1.000

MobileNet 0.602 0.383 0.102 0.019 0.368 0.042
MobileNetV2 0.609 0.096 0.142 0.030 0.006 0.060
DenseNet121 0.526 0.855 0.032 0.004 0.855 0.009
DenseNet169 0.539 0.810 0.042 0.006 0.810 −1.000
DenseNet201 0.529 0.739 0.065 0.010 0.663 0.020

NasNetMobile 1.473 0.332 0.105 0.022 0.267 0.039
NasNetLarge 0.535 0.802 0.044 0.006 0.792 0.012
EfficientNetB0 0.511 0.040 0.148 0.034 −0.024 0.069

EfficientNetV2B0 1.146 −0.103 0.558 0.348 −9.574 −1.000
ConvNeXtTiny 0.525 0.000 0.156 0.038 −0.150 0.076
ConvNeXtBase 0.478 0.000 0.152 0.033 −0.001 0.068

All metrics are measured for the specified architectures based on test datasets. Bold values in the table represent
the three best-performing models across the examined metrics.

Figure 11. Performance comparison of machine learning architectures for rPPG signal estimation
using three error metrics: MAE, MSE, and MPD. Among the tested models, DenseNet121 achieved
the lowest MAE and MSE, indicating superior accuracy and reliability for this task. While other
architectures, such as Xception and MobileNetV2, demonstrated relatively competitive performance,
models like ConvNeXt exhibited higher error rates, suggesting lower suitability for precise rPPG
signal estimation.

This comparative analysis contributes valuable insights into the ongoing development of
machine learning applications in remote photoplethysmography, paving the way for future
research aimed at improving accuracy and efficiency in heart rate monitoring technologies.



AI 2025, 6, 24 18 of 22

5. Discussion and Conclusions
This study systematically evaluated several neural network architectures for extracting

rPPG signals from facial images, highlighting their suitability for non-contact physiological
monitoring systems. Two distinct training approaches were employed: one focusing on
pre-training with only the fully connected layers trained and another training the entire
network from scratch. These approaches provided valuable insights into the adaptability
and performance of various architectures. The results revealed notable differences in per-
formance across architectures, with some models benefiting from increased depth, such as
ResNet, while others, like DenseNet, performed optimally with fewer layers. DenseNet121
emerged as the most effective architecture among all the networks tested, consistently
delivering superior performance across diverse evaluation metrics. Its ability to reuse
features and balance gradient flow proved particularly advantageous in accurately ex-
tracting subtle PPG signals from the input data. This success can be attributed to several
factors. The modified DenseNet121, with its enhanced feature extraction capabilities, lever-
aged a well-structured convolutional base to extract relevant patterns while mitigating
noise and distortions. The additional dense layers tailored for regression tasks enabled
precise signal prediction, highlighting the value of customizing established architectures
for specific applications like rPPG. While DenseNet121’s performance was robust, other
architectures, such as ResNet and MobileNet, also demonstrated competitive results under
certain configurations. Interestingly, ResNet and MobileNet exhibited strengths in specific
configurations, suggesting that architecture depth and layer connectivity should be opti-
mized based on the complexity of input data and target tasks. The strong performance of
MobileNet’s version 1 highlights the potential of lightweight models for applications in
resource-constrained environments, such as handheld devices. Despite these successes,
challenges remain. The variability in input data quality, influenced by factors such as
lighting conditions and motion artifacts, poses significant hurdles. While DenseNet121
managed to perform well under these constraints, further refinements, such as data aug-
mentation or domain adaptation, could enhance robustness. Additionally, this study’s
reliance on a specific dataset limits the generalizability of findings, underscoring the need
for broader benchmarking. It is important to emphasize that these results were obtained on
a dataset with a small number of participants, and an extended experiment with a greater
number of participants is needed to further validate the model performance and improve
generalizability. The choice of hyperparameters, including the learning rate and dropout,
played a crucial role in the training process. However, systematic exploration of these
parameters may reveal configurations that yield even better performance. The decision to
employ a mean squared error (MSE) loss function proved effective for this regression task
but may benefit from comparison with other loss functions tailored for physiological signal
prediction. Building on the findings of this study, future research will focus on refining
the proposed methodology to enhance system accuracy and broaden its applicability. Key
areas of exploration include:

• Hyperparameter Optimization: Fine-tuning parameters such as learning rates,
dropout rates, and layer configurations in DenseNet121 and other promising models
to further improve performance and reduce prediction errors.

• Expanding Signal Scope: Extending the system to extract additional physiological
signals such as blood pressure and respiratory rate. This expansion will increase
the clinical utility of the system, enabling comprehensive health monitoring in a
non-contact manner.

• Real-Time Applications: Developing a standalone system optimized for real-time
operation on handheld devices. This step will involve adapting the architecture to
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handle resource constraints while maintaining accuracy, paving the way for portable
and scalable monitoring solutions.

• Addressing Variability in Input Data: Exploring techniques to improve the robust-
ness of the system under diverse conditions, including varying lighting, skin tones,
and motion artifacts. This may involve integrating data augmentation strategies or
employing domain adaptation techniques to enhance model generalization.

• Benchmarking with Larger Datasets: Testing the system on larger and more diverse
datasets to validate its scalability and reliability. Incorporating datasets with real-
world variability will ensure the robustness of the model in practical applications.

• Investigating Lightweight Architectures: Exploring more efficient neural network
architectures tailored for edge computing, such as MobileNet variants or transformer-
based models optimized for smaller datasets.

• Clinical Integration: Collaborating with medical professionals to evaluate the system
in clinical environments, particularly for applications in telemedicine, neonatal care,
and ICU monitoring.

In conclusion, the insights from this study highlight the potential of neural networks,
particularly DenseNet121, in advancing non-contact physiological monitoring. However, it
must be reiterated that the findings are based on a limited dataset and should be interpreted
as a foundation for future investigations rather than definitive conclusions. Future work aims
to create a comprehensive, scalable, and clinically relevant tool for real-time health monitoring
by addressing the identified challenges and expanding the system’s functionality.

Our study not only contributes valuable insights into the effectiveness of NN transfer
learning models for rPPG signal estimation but also addresses critical challenges faced in
this field. By providing a comprehensive comparison and analysis, we hope to inspire fur-
ther advancements in non-contact physiological monitoring technologies that can improve
patient care and outcomes. In summary, our comparative analysis highlights the strengths
and weaknesses of various NN architectures in the context of rPPG signal estimation.
Xception and ResNet101V2 demonstrated superior capabilities due to their effective feature
extraction mechanisms, while MobileNet offered a lightweight alternative with efficient
performance. DenseNet’s reliability and NasNetLarge’s adaptability further underscore
the potential of these architectures in advancing non-invasive heart rate monitoring tech-
nologies. Conversely, EfficientNet and ConvNeXt illustrate the challenges associated with
overly complex models when faced with specific datasets. Our findings emphasize the
need for careful consideration of architecture selection based on task requirements and
data characteristics in future research endeavors.
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The following abbreviations are used in this manuscript:

ANNMS Adaptive Neural Network Model Selection
CNN Convolutional Neural Network
EVS Explained Variance Score
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ME Max Error
MPD Mean Poisson Deviance
MSE Mean Squared Error
NN Neural Network
PPG Photoplethysmography
PPGI Photoplethysmography Imagining
rPPG remote Photoplethysmography
SGD Stochastic Gradient Descent
VGG Visual Geometry Group
V4V Vision for Vitals
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