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Abstract: Predicting crop performance is key to decision making for farmers and business
owners. Tacna is the main olive-producing region in Perú, with an annual yield of 6.4 t/ha,
mainly of the Sevillana variety. Recently, olive production levels have fluctuated due to
severe weather conditions and disease outbreaks. These climatic phenomena are expected
to continue in the coming years. The objective of the study was to evaluate the performance
of the model in natural and specific environments of the olive grove and counting olive
fruits using CNNs from images. Among the models evaluated, YOLOv8m proved to be
the most effective (94.960), followed by YOLOv8s, Faster R-CNN and RetinaNet. For the
mAP50-95 metric, YOLOv8m was also the most effective (0.775). YOLOv8m achieved the
best performance with an RMSE of 402.458 and a coefficient of determination R2 of (0.944),
indicating a high correlation with the actual fruit count. As part of this study, a novel
olive fruit dataset was developed to capture the variability under different fruit conditions.
Concluded that the predicting crop from images requires consideration of field imaging
conditions, color tones, and the similarity between olives and leaves.

Keywords: fruit detection; fruit counting; deep learning; YOLOv8; Faster R-CNN;
RetinaNet

1. Introduction
Olive production is an important agro-industrial activity for the economic and social

development of the southern region of Perú, with 95% of the national production and
an average yield of 6.4 t/ha [1]. The Tacna Region is characterized as a pioneer in olive
production, with its economic benefits determined by the productivity and efficiency
of profitability achieved in recent years. This has driven economic dynamism at the
regional level, as evidenced by the production and agro-export of olives [1]. Tacna’s local
economy depends on having stable production levels. However, climate change has caused
significant variability in annual olive production in recent years; between 2022 and 2023,
Tacna olive production decreased by 27%, and the early forecast for 2024 indicated an even
more drastic decrease in production, caused by the El Niño–Southern Oscillation [2,3].

The automatic estimation of olive crop yield is necessary to select production strategies
to mitigate the effects of climate change [4] and can also reduce labor costs, improve the
accuracy of yield forecasts, and support farmers in developing more rational harvesting
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and marketing strategies. Past works on quantitative crops have exploited computer vision
techniques for oranges [5], lemons [6], apples [7], blueberries [8], plums [9], walnuts [10],
tomatoes [11], and grape bunches [12]. Changing lighting conditions, occlusion, shadows,
relative scale, and complex backgrounds negatively affect fruit detection accuracy [13–15].

Regarding olive detection, past works have applied feature engineering to compute
image descriptors based on mathematical morphology and relied on local contrast thresh-
olding for segmentation [16,17]. Clustering in RGB color space using k-nearest neighbors
was used to detect the ripening stage of olive fruit batches using a real-time computer vision
method [18]. Although fruit detection based on deep learning has shown good results,
the accurate counting of olive fruits is a challenging problem. Detection and localization
errors may occur due to artifacts, background clutter, lighting fluctuations, scale variations,
and occlusion. Even for a trained eye, it may be difficult to distinguish an olive from the
foliage [19].

In this paper, we present an initial attempt to detect olives using widely varying
deep learning techniques. The main objective of the study was to evaluate the model’s
performance in natural and specific olive grove environments. To carry this out, we built a
dataset of Sevillana olives and compared six deep learning models (YOLOv8m, YOLOv8s,
Faster R-CNN 101, Faster R-CNN 50, RetinaNet 101, and RetinaNet 50) using RGB images
captured in real production conditions. The suitability of each model was established by
computing well-known object detection metrics.

In this study, a novel contribution is presented: (a) It is the first time that we have a
dataset of images of harvested olive fruits in Tacna, Perú. (b) Although learning models
have been used in previous research for detection tasks in agricultural environments, our
work introduces an exhaustive evaluation of latest YOLOv8 models, applied specifically
to the counting and detection of olive fruits of the Sevillian variety, which has not yet
been explored in this domain. (c) Our approach not only uses YOLOv8 but also compares
it with YOLOv8m, YOLOv8s, Faster R-CNN 101, Faster R-CNN 50, RetinaNet 101, and
RetinaNet 50, evaluating key metrics such as average precision (map), training time, and
average inference time. This comparative study provides information on the advantages
and limitations of the models to provide a solid basis for selecting models based on the
reader’s needs. (d) Although there is previous research related to the detection of fruits
of crops such as tomatoes, apples or citrus fruits, our work focuses on olive fruits (olives),
which present unique challenges due to size (1.5 to 3.5 cm), branch density, and variability
in colors and textures.

2. Literarature Review
In recent years, significant advancements have been made in the automated detection

of fruits and disease-related lesions. These advancements can be divided into two types of
approaches: the use of feature engineering and supervised or unsupervised classification.
For instance, the Hough transform [20,21] and the k-means algorithm are used in [22,23].
Features such as color, shape, texture, and edges of a fruit [24,25] can be exploited for feature
extraction. The ability to recognize fruits in complex scenes is the main disadvantage of this
type of detection. Changes in lighting, clutter, and noise negatively affect detection rates.

A more recent approach relies on convolutional neural networks (CNNs). Deep-
learning-based methods automatically extract image features from large sample datasets [25].
CNNs have been used for crop disease [26], weed [27], and fruit ripeness detection [28].

Deep-learning-based detectors may have one or two processing stages. Single-stage
detectors are trained by optimizing both object classification and localization simultane-
ously. Two-stage algorithms generate a large number of potential detections, which are
then tested to determine if they contain the target object [29]. R-CNN [30], Fast R-CNN [31],
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and Mask R-CNN [32] are examples of two-stage CNNs used in fruit detection. Two-stage
detection algorithms report higher accuracy than single-stage algorithms to detect objects at
different scales and with complex spatial relationships. However, they are computationally
demanding, as they perform classification and refinement in separate steps.

In Fu et al. [33], a Fast R-CNN is used for kiwi recognition, which demonstrated good
robustness against changes in lighting and leaf occlusion. Kim et al. [9] used RGBD images
of plums for growth estimation, considering various environments, including the depth
information of objects in an outdoor field, based on the R-CNN model. Mu et al. [11] used
a model to detect ripe tomatoes, addressing issues such as fruit occlusion and variable
lighting conditions, based on the R-CNN model. Zhou et al. [34] used Faster R-CNN
to identify oranges at different maturity levels in a natural environment under various
weather conditions. Jia et al. [35] used a detection and segmentation method for apples
based on Mask-R-CNN to improve the detection of overlapping fruits.

The YOLO architecture Redmon et al. [36] has also been applied for the detection and
counting of grape clusters using YOLOv3, YOLOv4, and YOLOv5 models Sozzi et al. [37].
Kuznetsova et al. [38] compared the YOLOv3, YOLOv3-Dense, Faster R-CNN, DaSNet-
v2, and LedNet models for apple detection. Yang et al. [39] used YOLOv8 for tomato
detection and compared it with SSD, Faster R-CNN, YOLOv4, YOLOv5, and YOLOv7.
Ma et al. [40] proposed a lightweight detection algorithm based on YOLOv7-tiny using
RMSE and MAE metrics to evaluate counting accuracy. In Wu et al. [10], YOLOv8 was
used for the identification and counting of walnuts in UAVs images. Xiao et al. [41] trained
two models, YOLOv8 and CenterNet, extracting visual features from images of apples and
pears, focusing on detailed analysis of the skin to predict the fruit class.

3. Materials and Methods
3.1. Detection Architectures

The six models that were subjected to analysis are outlined below.

3.1.1. YOLOv8

YOLOv8 is a popular real-time object detection algorithm that has been improved over
time, with its first version (YOLOv1) proposed in 2015 and the most recent, YOLOv8, intro-
duced in 2023. YOLOv8 has 5 versions with different scales: YOLOv8n (nano), YOLOv8s
(small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extra large). These versions
share a common architectural approach but differ in the depth and width of their layers [42].
The versions YOLOv8s (depth: 0.33, width: 0.5) and YOLOv8m (depth: 0.67, width: 0.75)
were chosen for use.

3.1.2. Faster R-CNN

Faster R-CNN is an object detection architecture that efficiently and accurately ad-
dresses the problem of generating region of interest (ROI) proposals. It consists of three
main components: a shared convolutional network, a Region Proposal Network (RPN),
and a detection module [43]. Faster R-CNN 50 (Backbone: ResNet50+FPN) [44] and Faster
R-CNN 101 (Backbone: X101-FPN) [45] were chosen for use.

3.1.3. RetinaNet

RetinaNet is a single, unified network composed of a base network and two task-
specific subnetworks. The base network is responsible for computing a convolutional
feature map over the input image and is a pre-existing convolutional network. The first
subnetwork performs convolutional object classification on the output of the base net-
work, and the second subnetwork performs convolutional regression of bounding boxes.
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Both subnetworks have a simple design specifically proposed for dense single-stage detec-
tion [46]. RetinaNet 50 (Backbone: ResNet-50) and RetinaNet 101 (Backbone: ResNet-101)
were chosen for use [47].

Table 1 shows the number of parameters of the models, as well as the AP (average
precision), traditionally called “mean average precision” (mAP) [48]. The “mAP50-95”
value was obtained by the models when evaluated on the COCO dataset [42,45].

Table 1. Characteristics of deep learning models.

Model Number of Parameters COCO mAP50-95

YOLOv8s 11.2 M 44.9
YOLOv8m 25.9 M 50.2

Faster R-CNN 50 42 M 40.2
Faster R-CNN 101 105 M 43.0

RetinaNet 50 38 M 38.7
RetinaNet 101 57 M 40.4

YOLOv8 stands out for its speed and accuracy, making it ideal for real-time applica-
tions [5,36]. Faster R-CNN performs well in handling complex backgrounds and occlusion
due to its robust design [43], while RetinaNet balances precision and efficiency by using
focal loss, making it ideal for handling detection imbalances [46].

3.2. Tacna Olive Dataset

The proposed dataset was used for training and evaluating object detection models.
Olive trees of the Sevillana variety were selected for the study, as shown in Figure 1. The
tress images are located in the district of La Yarada, Los Palos, in the outskirts of Tacna
(coordinates: 18◦15′16.1′′ S 70◦26′30.7′′ W).

Figure 1. Image of the olive tree (a) and crop obtained from the image of the olive tree (b).

3.2.1. Data Acquisition

A Canon EOS Rebel T6i camera with a CMOS sensor of 22.3 mm × 14.9 mm and a
resolution of 24.2 MP, a measuring tape to measure the distance between the olive tree
and the camera (5 m approximately), and a tripod were used to record images at the same
distance from each tree trunk. The lens aperture was set to f/4.5 so that the depth of field
allowed well-focused images of both the inner and outer leaves of the tree while having
a full tree in the scene. The image acquisition work was performed between 10:00 and
17:00 h. The camera gain was set to 100 and the aperture to f/4.5. A total of 8 photos per
tree were captured by positioning the tripod around each tree at 45-degree steps. In total,
100 trees were photographed, mostly resulting in 815 RAW images in CR2 format. Photos
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were selected based on their focus quality, resulting in a sample of 503 images for analysis
(Figure 1).

Variations in lighting and camera position are inherent in the outdoor agricultural
environment (Yarada Los Palos) due to factors such as changing sunlight, shadows cast by
branches, or different recording angles. These conditions reflect the actual environment in
which our model was implemented and contribute to the ecological validity of the study.
To reduce inconsistencies, images were taken in groups in the morning and afternoon to
account for direct light, partial shade, and cloudy days and at eight different angles of
the tree. This ensures that the model is exposed to different weather conditions (sunny,
partly cloudy, and cloudy). This allowed us to have images that represent the variability
of natural illumination, position with respect to the sun, and that projected by the sun.
This variability will allow the models trained from this dataset to be robust to a variety of
environmental conditions.

3.2.2. Data Generation

The olive trees were photographed, resulting in 815 images. These images were
formatted to uncompressed .PNG format to reduce storage without lost of detail. Finally,
24 regions of each tree image were cropped to optimize data processing. The dataset
consisted of 19,560 images of 1000 × 1000 pixels. A representative sample of 12,072 images
was carefully selected for labeling, taking into account the variation in lighting based on the
time of capture in a balanced manner, thus reducing the time spent on the labeling process.

3.2.3. Data Labeling

The labeling phase began with 480 randomly selected .png images of olive fruits,
manually labeled by an expert using the software Label Studio v14.3. Olive fruits were
delimited using “bounding boxes”. An additional set of 576 images was subsequently
labeled by the research team, with manual refinement by an expert to correct potential
errors. This cyclic process of team labeling and expert labeling refinement was repeated
over 5 iterations, during which the number of expert-labeled images gradually increased
from 480 in the first iteration to 5064 in the final iteration. In each cycle, newly labeled
data were used to improve the labeling process, enabling the efficient expert annotation of
10,728 images in the dataset.

The dataset was divided into 8549 (70.82%) images for training, 2179 (18.05%) images
for validation, and 1344 (11.13%) images for testing, ensuring representativeness for each
tree. Table 2 shows the information regarding the number of olive tree images, as well as
the crops and pixels, after labeling 12,072 images. Ten training iterations of the studied
models were performed to compare and generate the indicator reports for each epoch and
model in a .csv file for subsequent analysis and evaluation.

Table 2. Sevillana variety olive tree dataset information

Number of
Trees

Olive Tree
Images

Image
Crops

Image Size
(px)

Image Crop
Size (px) Training Validation Test

62 503 12,072 6000 × 4000 1000 × 1000 8549 2179 1344

3.3. Data Processing
3.3.1. Training

The training of the learning models was carried out on a workstation with the fol-
lowing specifications: Intel® Xeon® Silver 4214 2.20 GHz processor, 64 GB DDR4 2933
366 MHz RAM, 1 TB SSD storage, NVIDIA A5000 24GB GPU. Operating system: Ubuntu
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22.04 LTS, CUDA Ver. 12.1, OpenCV, Jupyter-Lab v4.0.6, and other libraries focused on
implementing deep learning models for object detection.

During this stage, each of the selected models was trained 10 times, as explained
below: YOLOv8s, YOLOv8m, Faster R-CNN 50, Faster R-CNN 101, RetinaNet 50 and
RetinaNet 101 models.Training was set to 100 epochs, with a batch size of 4 and a learning
rate of 0.001, using pre-trained weights from the COCO dataset.

Figure 2 shows the technical process and training developed in this work.

Olive Fruit Dataset (10,728 images of 1000 × 1000 px)

Data Preparation (train=70.82%, valid=18.05%, test=11.13%)

YOLOv8s
(Pre-training with
COCO weights)

M
od

el
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Training Configuration (epochs=100, batch=8, learning rate=0.001)

Model Comparison - Count

Select Best Epoch for Each Run (Based on mAP50 and mAP50-95 indicator)

RetinaNet 101
(Pre-training with
COCO weights)

Faster R-CNN
101

(Pre-training with
COCO weights)

Raw Images of Olive Trees .CR2 (4000 × 6000 px)

Generate Olive Tree Image Cuts (1000 × 1000 px)

Manual labelling

Olive Tree Images .PNG (4000 × 6000 px)

Im
ag

e 
La
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Model training YOLOv8s

Label inference and refinement
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ite
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RetinaNet 50
(Pre-training with
COCO weights)

Faster R-CNN 50
(Pre-training with
COCO weights)

YOLOv8m
(Pre-training with
COCO weights)

Figure 2. Technical process (from top to bottom): data acquisition, generation, and labeling; partition-
ing; training; and results.

3.3.2. Count

To carry out the counting measurement, all the olive fruits predicted by the models in
the image crops were summed. Subsequently, the results from these crops were grouped
by each complete image, and finally, 8 images were grouped for each tree, thus allowing a
total fruit count for each tree to be obtained.

3.4. Evaluation Metrics
3.4.1. Intersection over Union (IoU)

According to Padilla et al. [49], the IoU measures the overlap area between the pre-
dicted bounding box and the actual bounding box, divided by the area of union between
them. By comparing the IoU with a given threshold “t”, we can classify a detection as
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correct or incorrect. If IoU ⩾ t, the detection is considered correct. If IoU < t, the detection
is considered incorrect. Its calculation is determined in Equation (1).

IoU =
area of overlap
area of union

(1)

3.4.2. Mean Average Precision (mAP)

The mean average precision (mAP) is a metric used to assess the accuracy of object
detectors across all classes in a given dataset [49].

mAP =
1
N

N

∑
i=1

APi (2)

3.4.3. MAP50

The mAP50 value is calculated with a single Intersection over Union (IoU) value of
0.50 [48].

3.4.4. MAP50-95

The mAP50-95 value is calculated over multiple Intersection over Union (IoU) values.
Specifically, 10 IoU thresholds are used, ranging from 0.50 to 0.95 in steps of 0.05 [48]. In
order to estimate mAP50-95, it was necessary to take steps of 0.05, starting from an IoU
threshold of 0.5 and stopping at 0.95. The average precision in this interval is the AP of a
single class. By repeating this process for all classes and calculating the mean of all classes,
it is possible to calculate the mAP50-95 [50].

3.4.5. Root Mean Square Error (RMSE)

The root mean square error (RMSE) has been used as a standard statistical metric to
measure model performance in meteorology, air quality, and climate research studies [51].
The RMSE and the MAE are calculated for the dataset as

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (3)

4. Results
4.1. Model Results for the mAP50 Indicator

In Figure 3, the mAP50 value is shown on the validation set for the models over the
100 epochs of training. The best results from the runs are highlighted, and the highest
mAP50 values for each model are marked with stars in the respective colors indicated in
the figure legend.

It can be observed that among the six models studied, the YOLOv8m model shows
the best performance with an mAP50 value of 0.9496 at epoch 77. The YOLOv8s model
reached a maximum mAP50 value of 0.94685 at epoch 78. The Faster R-CNN 101 model
obtained a maximum mAP50 value of 0.723431 at epoch 97, while the Faster R-CNN
50 model achieved a maximum mAP50 value of 0.722168 at epoch 99. The RetinaNet 101
model reached a maximum mAP50 value of 0.693666 at epoch 97, and finally, the RetinaNet
50 model achieved a maximum mAP50 value of 0.683174 at epoch 99.
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Figure 3. Mean average precision (mAP50) of the deep learning models.

4.2. Model Results for the mAP50-95 Indicator

Figure 4 shows the mAP50-95 value on the validation set for the models over the
100 epochs of training. The best results from the runs are highlighted, and the highest
mAP50-95 values for each model are marked with stars in the respective colors indicated in
the figure legend.

Figure 4. Mean average precision (mAP50-95) of the deep learning models.

It can be observed that the YOLOv8m model achieved the best performance with
an mAP50-95 value of 0.77533 at epoch 80. The YOLOv8s model reached a maximum
mAP50-95 value of 0.7707 at epoch 79. The Faster R-CNN 101 model obtained a maximum
mAP50-95 value of 0.462735 at epoch 99, while the Faster R-CNN 50 model achieved a
maximum mAP50-95 value of 0.455714 at epoch 99. The RetinaNet 101 model reached a
maximum mAP50-95 value of 0.416039 at epoch 98, and finally, the RetinaNet 50 model
achieved a maximum mAP50-95 value of 0.410199 at epoch 99.

4.3. Model Results for the mAP50 Indicator on the Box Plot

In Figure 5, the box plot shows the distribution of performance in terms of mAP50
for the RetinaNet, Faster R-CNN, and YOLOv8 models, with the dispersion represented
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by the Interquartile Range (IQR). The YOLOv8m and YOLOv8s models stand out for
their high performance and minimal dispersion, reflected in IQRs of 0.00014 and 0.000165,
indicating great consistency in their predictions. On the other hand, the Faster R-CNN
101 and 50 models, with IQRs of 0.00142625 and 0.006719, show greater variability in their
results. The RetinaNet 101 and 50 models present the lowest performance and a broader
dispersion, with IQRs of 0.0099085 and 0.004745.

Figure 5. Box plot of mean average precision (mAP50) of the deep learning models.

4.4. Model Results for the mAP50-95 Indicator on the Box Plot

In Figure 6, the box plot presents the distribution of performance in terms of mAP50-95
for the RetinaNet, Faster R-CNN, and YOLOv8 models, with dispersion measured by the
Interquartile Range (IQR).

Figure 6. Box plot of mean average precision (mAP50-95) of the deep learning models.
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The YOLOv8m and YOLOv8s models stand out once again, showing the highest re-
sults and the lowest dispersion, with IQRs of 0.00026 and 0.0005025, respectively, reflecting
high consistency in their performance. The Faster R-CNN 101 and 50 models show lower
results compared to YOLOv8 and greater variability, with IQRs of 0.0028417 and 0.00269775,
respectively. The RetinaNet 101 and 50 models present the lowest medians and the highest
dispersion among the evaluated models, with IQRs of 0.0098295 for RetinaNet 101 and
0.003743 for RetinaNet 50. These results confirm the superiority of YOLOv8 not only in
terms of accuracy but also in consistency, outperforming the Faster R-CNN and RetinaNet
models in the mAP50-95 metric.

4.5. Model Comparison

Table 3 shows the results of the YOLO, Faster, and RetinaNet models, for both the
mAP50 and mAP50-95 metrics.

Table 3. Comparison of the performance of models YOLOv8, Faster R-CNN, and RetinaNet on the
validation and test set.

Set Metric Config YOLOv8m YOLOv8s
Faster

R-CNN
101

Faster
R-CNN

50

RetinaNet
101

RetinaNet
50

Validation Set

mAP50

Min ↑ 0.94908 0.94642 0.70764 0.71145 0.67431 0.66907
Max ↑ 0.94960 0.94685 0.72343 0.72217 0.69367 0.68317

Median ↑ 0.94943 0.94656 0.72044 0.71628 0.68663 0.67432
Mean ↑ 0.94941 0.94660 0.71950 0.71662 0.68499 0.67460
IQR ↓ 0.00014 0.00017 0.00143 0.00672 0.00991 0.00475

mAP50-95

Min ↑ 0.77443 0.77001 0.44847 0.45016 0.39926 0.38647
Max ↑ 0.77533 0.77070 0.46274 0.45571 0.41604 0.41020

Median ↑ 0.77485 0.77030 0.45975 0.45217 0.40858 0.39963
Mean ↑ 0.77486 0.77035 0.45874 0.45238 0.40840 0.39980
IQR ↓ 0.00026 0.00050 0.00284 0.00270 0.00983 0.00374

Test Set

mAP50

Min ↑ 0.98052 0.97302 0.74823 0.70900 0.65702 0.67012
Max ↑ 0.98273 0.97396 0.77196 0.74358 0.74416 0.71648

Median ↑ 0.98127 0.97321 0.75698 0.73403 0.72824 0.71083
Mean ↑ 0.98142 0.97328 0.75822 0.73230 0.72033 0.70649
IQR ↓ 0.00027 0.00027 0.00764 0.01577 0.00845 0.00843

mAP50-95

Min ↑ 0.95183 0.89984 0.47001 0.46071 0.35718 0.23806
Max ↑ 0.96060 0.90068 0.51599 0.49783 0.44312 0.42318

Median ↑ 0.95319 0.90021 0.49278 0.48431 0.41572 0.37883
Mean ↑ 0.95365 0.90023 0.49370 0.48224 0.40890 0.37242
IQR ↓ 0.00171 0.00029 0.01553 0.00940 0.04628 0.05260

The results in Table 3 demonstrate that the YOLOv8m model not only achieves the best
performance in the validation set with an mAP50 of 0.9496 and an mAP50-95 of 0.77533,
but also outperforms the other models in the test set. Specifically, YOLOv8m achieves the
highest values for mAP50 (0.98273) and mAP50-95 (0.96060) across all configurations. In
contrast, YOLOv8s shows slightly lower performance, while Faster R-CNN 101, Faster
R-CNN 50, RetinaNet 101, and RetinaNet 50 exhibit significantly reduced mAP values. The
interquartile range (IQR) for YOLOv8m remains the lowest across both he validation and
test sets, indicating a more stable and consistent performance. These results reinforce the
efficiency and accuracy of the YOLOv8m model for olive fruit detection tasks compared to
the other evaluated models.

In Table 4, the training time and average inference time for each analyzed model are
presented, highlighting the efficiency of YOLOv8s compared to the other models. The study
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emphasizes that YOLOv8s not only delivers outstanding performance in fruit identification
and counting but is also highly efficient in terms of speed, even though the task to be solved
does not require real-time inference.

Table 4. Training and inference time

Model Average Training Time (Hrs) Average Inference Time (ms)

YOLOv8m 8.640 13.22
YOLOv8s 5.014 07.18

Faster R-CNN 101 4.896 87.04
Faster R-CNN 50 2.221 43.60

RetinaNet 101 2.640 52.29
RetinaNet 50 2.200 42.51

The results in Table 4 indicate that YOLOv8m takes longer to train due to its complexity,
but with YOLOv8s, it manages to reduce training to approximately 5 h, which justifies its
use in the detection and counting of olive fruits. The processing of the models utilized
YOLOv8m and YOLOv8s, with YOLOv8m being more accurate (Table 3) and YOLOv8s
being faster in inference (Table 4). However, for field applications, such as drones or mobile
systems, lighter models like YOLOv8n are recommended. These are designed for hardware
with low-performance GPUs due to constraints related to energy, cost, and portability.

Table 5 presents the RMSE results of the number of predictions from the models (using
a confidence threshold of 0.5) applied to the 447 images, which were grouped into batches
of 8 images per tree, generating 55 results corresponding to 55 trees. The results of the
models were compared with the sum of the manual labels. The R2 value for YOLOv8m,
which is 0.944, indicates the precision and quality of the model’s predictions, reflecting a
high correlation between the predictions and the actual values.

Table 5. RMSE and R2 of deep learning models

Model RMSE R2

YOLOv8m 402.46 0.94
YOLOv8s 452.98 0.93

Faster R-CNN 101 1758.15 −0.06
Faster R-CNN 50 1435.63 0.29

RetinaNet 101 3417.34 −3.02
RetinaNet 50 1942.45 −0.30

Figure 7 shows the relationship between the number of labeled fruits on olive trees
and the predictions with a confidence value of 0.5 from the six deep learning models. Each
graph indicates how the predictions of each model fit the real values through the blue
reference line (perfect prediction), showing a scatter pattern where the YOLOv8m and
YOLOv8s models demonstrate a closer fit to the reference line and come closer to the actual
number of fruits labeled per tree.
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Figure 7. The relationship of the actual number of olive fruits vs. the predictions of six deep learning
models.

As can be seen from the results in Table 5, the YOLOv8m model shows the lowest
RMSE value for confidence thresholds (0.4, 0.5, 0.6), presenting the smallest prediction
error. Regarding the average inference time, the YOLOv8s model shows the shortest time
of 7.183 ms.

The results described above show the effectiveness of the models studied. Addition-
ally, we have performed a qualitative analysis of the most important errors made by the
model by categorizing the probable causes into (a) multiple fruits, (b) lighting conditions,
(c) differentiation between green olives and olive leaves, and (d) fruits located at the edges
of the image. Representative visual samples are shown in Figure 8.

(a) Multiple fruits (b) Lighting conditions (c) Differentiation between
green olives and olive

leaves

(d) Fruits on the edges of
the image

Figure 8. Representativevisual examples of errors where the model failed.

The results of the normality test indicate a normal distribution of the data. In Table 6,
the results of the ANOVA statistical test for the mAP50 and mAP50-95 metrics across
the models are presented. The analysis shows that the performance differences in terms
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of mAP50 and mAP50-95 between some models are statistically significant (p < 0.05),
validating the superiority of YOLOv8 under specific conditions. Table 6 shows the results
of the ANOVA statistical test for the mAP 50 indicator of the models.

Table 6. Statistical test results of ANOVA (mAP50 and mAP50-95).

Sum of
Squares gl Root Mean

Square F Sig.

mAP50

Between
groups 0.842 5 0.168 10,640.937 0.000

Within groups 0.001 54 0.000
Total 0.843 59

mAP50-95

Between
groups 1.594 5 0.319 19,747.337 0.000

Within groups 0.001 54 0.000
Total 1.595 59

Figure 9 shows a cropped image from the validation set and the inference with a
confidence threshold of 0.25 from the YOLOv8m model.

Figure 10 shows the result of applying the best model, YOLOv8m, to a full image of
an olive tree using the sliced inference technique with SAHI.

Figure 9. Inferenceof the best YOLOv8m model on a crop image.
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Figure 10. Inference of the best YOLOv8m model on a tree image.

5. Discussion
5.1. mAP50 Indicator

The data obtained for the mAP50 indicator (Figure 3) show that the best model was
YOLOv8m (94.960), followed by YOLOv8s (94.685), Faster R-CNN 101 (72.343), Faster
R-CNN 50 (72.217), RetinaNet 101 (69.367), and RetinaNet 50 (68.317) in the detection
of Sevillana olive varieties. These results contrast with those obtained by Zhu et al. [28],
who studied the detection of four olive varieties (Frantoio, Ezhi8, Leccino, and Picholine),
achieving mAP50 indicators for YOLOv3 (90.87, 92.95, 91.24, and 93.67) and Faster R-CNN
(93.56, 94.51, 93.05, and 94.81). In their research, the best performance was achieved by
Faster R-CNN, with an mAP50 of 94.81 in the Picholine variety, and they also proposed the
Olive-EfficientDet model. However, it is important to consider that the YOLO version used
by Zhu et al. [28] is earlier than the one used in this study.

Studies by Yang et al. [39] for the detection of tomato fruits compared mAP50 mea-
surements by applying YOLOv8 (91.9), YOLOv7 (91.6), YOLOv5 (91.2), and Faster R-CNN,
which performed lower at (80.8). It is evident that the YOLOv8 model achieved better
results than Faster R-CNN, similar to the performance of the model demonstrated in the
present research, as well as showing that the YOLO model improves across its different
versions. Additionally, in the work of Wu et al. [10], various YOLO versions were compared
for walnut detection, and the mAP50 values for YOLOv5, YOLOv7, and YOLOv8 ranged
from 95.9 to 96.9. Similarly, Lin et al. [5] in their citrus fruit research obtained mAP50
values using YOLOv8s (77.6) and Faster R-CNN (77.3), where both models showed similar
performance with no significant differences in their results.

Regarding the results of the research conducted by Kim et al. [9] for plum detection,
mAP50 values can be observed in the Faster R-CNN 101 models (73.63) and RetinaNet 101
(70.34), where Faster R-CNN obtained better results than those shown in our work (72.217),
possibly due to the characteristics of the fruits studied.

5.2. mAP50-95 Indicator

The results obtained in this study show that for the mAP50-95 indicator, the best model
was YOLOv8m (77.533), followed by YOLOv8s (77.070), Faster R-CNN 101 (46.274), Faster
R-CNN 50 (45.571), RetinaNet 101 (41.604), and RetinaNet 50 (41.020). Similarly, other
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investigations such as Aljaafreh et al. [52], conducted for the detection of olive fruits from
digital videos using deep neural networks, reported mAP50-95 values with YOLO models
in two different versions, YOLOv5x (77.08) and YOLOv5s (74.13), obtaining comparable
results. On the other hand, the research by Lin et al. [5] focused on detecting citrus fruits,
achieving mAP50-95 values for the YOLOv8s models (57.0) and Faster R-CNN (47.2). In
contrast to the results of this study on olive fruits, the YOLOv8s model shows a lower
mAP50-95 index, while Faster R-CNN presents similar values.

5.3. Olive Fruit Count

The study by Bellocchio et al. [19], focusing on counting fruits (olives, almonds, and
apples), developed an architecture that learns to count without specific task labels (object
bounding boxes). The results show that this approach achieves performance values for the
unsupervised model with RMSE of 2.44 ± 0.06, and for the supervised model, RMSE values
of 2.03±0.07, which are analogous to the results of this study.

For the olive counting, the number of fruits detected by the models was compared
with the number of manually labeled olives in each image set of a tree (see Table 5). In the
inferences, a confidence threshold of 0.5 was used; the YOLOv8m model demonstrated the
best performance in olive counting, achieving the lowest RMSE values (402.46) and the
highest R2 values (0.94).

According to the results presented in Table 3, it is evident that YOLOv8m offers better
performance compared to YOLOv8s, which can be attributed to its deeper architecture [42].

From the results obtained in out study, it is evident that the YOLOv8 model stands
out for its balance between speed and precision, being ideal for real-time applications,
as evidenced in our results in Tables 3 and 4; YOLOv8 outperforms Faster R-CNN and
RetinaNet due to its optimized architecture (FPN and PAN), which enhances the detection of
small objects with speed and efficiency [5,42]. YOLOv8m stands out for its balance between
accuracy and speed, making it ideal for detecting olive fruits under field conditions and
the best choice for this study.

In future work, testing lightweight architectures such as YOLOv8n is planned to eval-
uate their performance compared to the larger models trained in this study. Nonetheless, it
was observed that the YOLOv8s model offers better average inference times, as evidenced
in Table 4. This is due to the fact that YOLOv8s, with its fewer layers and parameters,
provides a balance between accuracy and speed.

6. Conclusions
The results demonstrated that the YOLOv8 models outperformed Faster-RCNN and

RetinaNet in metrics such as mAP50, mAP50-95, RMSE, and R2, for both fruit detection and
olive fruit counting. YOLOv8m achieved the best results in mAP50 (94.960) and mAP50-95
(77.533). Additionally, for counting, YOLOv8m also stood out with the lowest RMSE values
(402.46) and the highest R2 (0.94). These results indicate that YOLOv8 not only excels in
terms of accuracy (mAP50) but also exhibits lower variability, making it a more reliable
and consistent option for detection compared to the other evaluated models.

It is concluded that the YOLOv8 model is the most suitable image processing model
for detecting Sevillana-type olive fruits according to the results of this research. However,
it is important to consider that factors such as camera positioning, shot distance, lighting,
shadows, the type of device used, and other uncontrolled variables can affect the effec-
tiveness of the deep learning models evaluated. All of these aspects should be taken into
account to optimize performance in future applications.

The new dataset could be used in future work to address the limitations of trained
models, along with the deployment of models on edge devices. However, it is worth men-
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tioning that there are inexpensive devices on the market that support real-time YOLOv8s
model inference, although this is not necessary for counting olives.
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