Study on Establish a Brittle Fracture Prediction Considering Different Crack Opening Modes Using Mixed-Mode Ratio
Abstract
:1. Introduction
2. Fracture Tests
2.1. Specimens and Experimental Variables
2.2. Material Properties
2.3. Testing Procedures
2.4. Test Results
3. Failure Moment Prediction
3.1. Elastic–Plastic Analysis of the Test Results
3.2. TSM Approach
3.3. Weibull Stress Approach
3.4. Prediction Results
4. Effect of the Crack Opening Modes
4.1. Mixed-Mode Ratio Methodology
4.2. Elastic Analysis of the Stress Intensity Factor
4.3. Relationship between Mixed-Modes and Fracture Toughness
5. Conclusions
- The TSM and Weibull stress approaches generated similar predictions. Further, both methods can be used for the prediction of brittle fractures. The prediction results obtained through both methods were similar.
- We calculated the mixed-mode ratio RI using the stress intensity factor at the initial stage of deformation. Up to θ = 0.01 rad, the results obtained through the elastic and the elastic–plastic analyses were similar, and RI followed a linear trend.
- RI demonstrated differences in the crack opening modes owing to deformations in crack tips, regardless of the crack tip radii. Based on RI, crack opening mode differences resulting from crack location and shape can be appropriately classified. The relationship between fracture prediction and RI suggests that different crack opening modes affect the brittle fractures of building structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Federal Emergency Management Agency (FEMA). Internal guidelines: Evaluation, repair, modification, and design of welded steel moment-frame structures. In FEMA-267, Prepared by the SAC Joint Venture for FEMA; FEMA: Washington, DC, USA, 1995. [Google Scholar]
- Kinki, A.I.J. Reconnaissance Report on Damage to Steel Building Structures Observed from the 1995 Hyogoken-Nanbu Earthquake. Committee on Steel Building Structures. The Kinki Branch of the Architectural Institute of Japan. 1995. Available online: http://news-sv.aij.or.jp/kinki/activity/research/s_struct/tekkotu-e.pdf/ (accessed on 14 October 2021).
- Kinki, A.I.J. Full-Scale Test on Plastic Rotation Capacity of Steel Wide-Flange Beams Connected with Square Tube Steel Columns. Committee on Steel Building Structures. The Kinki Branch of the Architectural Institute of Japan. 1997. Available online: https://www.jstage.jst.go.jp/article/jssc1994/4/16/4_16_27/_article/-char/en (accessed on 14 October 2021). (In Japanese).
- British Standards Institution. Guidance on Methods for Assessing the Acceptability of Flaws in Metallic Structures, BS 7910. 1999. Available online: https://www.academia.edu/33758342/Guide_to_methods_for_assessing_the_acceptability_of_flaws_in_metallic_structures (accessed on 14 October 2021).
- WES2808. The Japan Welding Engineering Society: Method of Assessing Brittle Fracture in Steel Weldments Subjected to Large Cyclic and Dynamic Strain. 2003. Available online: http://www-it.jwes.or.jp/wes_ki/en/iwes.jsp?ct1=1&ct2=2 (accessed on 14 October 2021).
- Anderson, T.L.; Dodds, R.H., Jr. Specimen size requirements for fracture toughness testing in the ductile-brittle transition region. J. Test. Eval. 1991, 19, 123–134. [Google Scholar]
- Beremin, F.M. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall. Trans. A 1983, 14, 2277–2287. [Google Scholar] [CrossRef]
- Ritchie, R.O.; Knott, J.F.; Rice, J.R. On the relationship between critical tensile stress and fracture toughness in mild steel. J. Mech. Phys. Solids 1973, 21, 395–410. [Google Scholar] [CrossRef]
- Akahoshi, T.; Azuma, K.; Iwashita, T. Prediction of brittle fracture initiating at defects in the end of complete penetration groove welds. In Proceedings of the 25th International Ocean and Polar Engineering Conference, Kona, HI, USA, 21–26 June 2015; Volume 4, pp. 189–196. [Google Scholar]
- Iwashita, T.; Azuma, K. Prediction of brittle fracture in notched specimens under cyclic loading. J. Constr. Steel Res. 2019, 162, 105721. [Google Scholar] [CrossRef]
- Coro, A.; Macareno, L.M.; Aguirrebeitia, J.; López de Lacalle, L.N. A Methodology to Evaluate the Reliability Impact of the Replacement of Welded Components by Additive Manufacturing Spare Parts. Metals 2019, 9, 932. [Google Scholar] [CrossRef] [Green Version]
- Coro, A.; Abasolo, M.; Aguirrebeitia, J.; Lopez de Lacalle, L. Inspection scheduling based on reliability updating of gas turbine welded structures. Adv. Mech. Eng. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Li, Y.; Ou, Z. Ductile tearing assessment of high-strength steel X-joints under in-plane bending. Eng. Fail. Anal. 2013, 28, 176–191. [Google Scholar] [CrossRef]
- Shimizu, K.; Ohata, M.; Shoji, H.; Kato, T.; Tanigawa, H. Local Approach for Elastic-Plastic Fracture Assessment of Cracked Component under Mixed Mode Loading. In Proceedings of the 29th International Offshore and Polar Engineering Conference, Honolulu, HI, USA, 16–21 June 2019; ISOPE: Mountain View, CA, USA, 2019. [Google Scholar]
- Azuma, K.; Akahosh, T.; Iwashita, T. Prediction of brittle fracture from defects at groove face of complete joint penetration welded joints. Weld. World 2016, 60, 757–766. [Google Scholar]
- Minami, F.; Ohata, M.; Shimanuki, H.; Handa, T.; Igi, S.; Kurihara, M. Method of constraint loss correction of CTOD fracture toughness for fracture assessment of steel components. Eng. Fract. Mech. 2006, 73, 1996–2020. [Google Scholar] [CrossRef]
- Riesch-Oppermann, H.; Diegele, E. Elements of A Fracture Mechanics Concept for the Cleavage Fracture Behavior of RAFM Steels Using Local Fracture Criteria; FZKA Report; Forschungszentrum: Karlsruhe, Germany, 2002; Volume 6668. [Google Scholar]
Specimen | Defect Location | Defect Shape | Defect Depth (mm) | Defect Tip Radius (mm) |
---|---|---|---|---|
FTC-8C | Flange side | Through crack | 8 | — |
FSC-7C | Flange side | Surface crack | 7 | — |
FSC-14C | Flange side | Surface crack | 12 | — |
DTC-8W | Diaphragm side | Through crack | 8 | 0.15 |
DTC-12W | Diaphragm side | Through crack | 12 | 0.15 |
DSC-21W | Diaphragm side | Surface crack | 21 | 0.15 |
Specimen | Section | vE0 (J) | vEshelf (J) | vTE (°C) |
---|---|---|---|---|
FTC, FSC | Flange plate | 114.4 | 201.2 | −5.0 |
Diaphragm plate | 169.8 | 237.2 | −20.1 | |
HAZ | 195.1 | 218.6 | −39.5 | |
DEPO | 189.0 | 214.8 | −34.8 | |
DTC, DSC | Flange plate | 200.0 | 247.7 | −34.3 |
Diaphragm plate | 136.5 | 268.3 | −12.6 | |
HAZ | 136.5 | 300.0 | −58.6 | |
DEPO | 136.5 | 300.0 | −33.6 |
Specimen | Section | Yield Stress (MPa) | Tensile Strength (MPa) | Young’s Modulus (GPa) |
---|---|---|---|---|
FTC, FSC | Flange plate | 347 | 534 | 213 |
Diaphragm plate | 375 | 556 | 210 | |
Web plate | 375 | 536 | 206 | |
DTC, DSC | Flange plate | 388 | 566 | 218 |
Diaphragm plate | 377 | 580 | 210 | |
Web plate | 352 | 557 | 213 |
Specimen | Mf (kNm) | Mf/Mp | η |
---|---|---|---|
FTC-8C | 243.1 | 1.41 | 8.5 |
FSC-7C | 275.2 | 1.54 | 24.3 |
FSC-14C | 219.4 | 1.27 | 4.2 |
DTC-8W | 305.2 | 1.55 | 32.9 |
DTC-12W | 291.4 | 1.46 | 35.4 |
DSC-21W | 265.8 | 1.34 | 16.5 |
Specimen | Experiment | TSM Approach | Weibull Approach | ||||||
---|---|---|---|---|---|---|---|---|---|
Mf | Jc | appJc | TSMMpre | Mf/TSMMpre | m | σW,cr | WMpre | Mf/WMpre | |
(kNm) | (N/mm) | (N/mm) | (kNm) | (N/mm2) | (kNm) | ||||
FTC-8C | 243.1 | 152.46 | 400.7 | 249.5 | 0.97 | 32 | 1324 | 238.00 | 1.02 |
FSC-7C | 275.2 | 480.5 | 273.8 | 1.01 | 275.32 | 1.00 | |||
FSC-14C | 219.4 | 338.5 | 226.4 | 0.97 | 210.65 | 1.04 | |||
DTC-8W | 305.2 | 152.1 | 209.7 | 1.46 | 204.79 | 1.49 | |||
DTC-12W | 291.4 | 185.7 | 211.8 | 1.38 | 199.90 | 1.46 | |||
DSC-21W | 265.8 | 406.0 | 237.1 | 1.12 | 219.14 | 1.21 |
Specimen | Experimental Results | Mixed-Mode Ratio | ||||
---|---|---|---|---|---|---|
Mf | η | θ | KI | KII | RI | |
(kNm) | (rad) | (Pa·m1/2) | (Pa·m1/2) | |||
FTC-8C | 243.1 | 8 | 0.01 | 1497 | 2 | 1.00 |
FTC-8W | — | — | 1716 | 5 | 1.00 | |
FSC-7C | 275.2 | 24 | 1051 | 140 | 0.92 | |
FSC-7W | — | — | 962 | 36 | 0.98 | |
FSC-14C | 219.4 | 4 | 1385 | 132 | 0.94 | |
FSC-14W | — | — | 1315 | 121 | 0.94 | |
DTC-8W | 305.2 | 33 | 1542 | 251 | 0.90 | |
DTC-12W | 291.4 | 35 | 1777 | 373 | 0.87 | |
DSC-21W | 265.8 | 16 | 2046 | 634 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akahoshi, T.; Azuma, K.; Iwashita, T.; Itatani, T. Study on Establish a Brittle Fracture Prediction Considering Different Crack Opening Modes Using Mixed-Mode Ratio. Appl. Mech. 2021, 2, 849-862. https://doi.org/10.3390/applmech2040049
Akahoshi T, Azuma K, Iwashita T, Itatani T. Study on Establish a Brittle Fracture Prediction Considering Different Crack Opening Modes Using Mixed-Mode Ratio. Applied Mechanics. 2021; 2(4):849-862. https://doi.org/10.3390/applmech2040049
Chicago/Turabian StyleAkahoshi, Takuya, Koji Azuma, Tsutomu Iwashita, and Toshiomi Itatani. 2021. "Study on Establish a Brittle Fracture Prediction Considering Different Crack Opening Modes Using Mixed-Mode Ratio" Applied Mechanics 2, no. 4: 849-862. https://doi.org/10.3390/applmech2040049
APA StyleAkahoshi, T., Azuma, K., Iwashita, T., & Itatani, T. (2021). Study on Establish a Brittle Fracture Prediction Considering Different Crack Opening Modes Using Mixed-Mode Ratio. Applied Mechanics, 2(4), 849-862. https://doi.org/10.3390/applmech2040049