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Abstract: The Kirchhoff analogy between the oscillation of a pendulum (in the time domain) and
the static bending of an elastic beam (in the spatial domain) is applied to the stability analysis of an
inverted pendulum on a vibrating foundation (the Kapitza pendulum). The inverted pendulum is
stabilized if the frequency and amplitude of the vibrating foundation exceed certain critical values.
The system is analogous to static bending a wavy (patterned) beam subjected to a tensile load with
appropriate boundary conditions. We analyze the buckling stability of such a wavy beam, which
is governed by the Mathieu equation. Micro/nanopatterned structures and surfaces have various
applications including the control of adhesion, friction, wettability, and surface-pattern-induced
phase control.
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1. Introduction

In this paper, we combine three classical theories used in different areas of the ap-
plied mechanics, namely, (i) the buckling stability of an elastic rod under the axial load,
(ii) the Kirchhoff analogy between the dynamics of a rigid body and the deformation of an
elastic rod, and (iii) dynamic stability of an inverted pendulum on a vibrating foundation,
to develop a theory of stabilization of beams and surfaces with periodically changing
properties.

The buckling stability of a thin elastic beam or rod under compressive axial loading
force is a classical problem, solved in 1757 by Leonhard Euler, who established the value
of the critical load, P = π2EI/L2, where EI is the stiffness, and L is the length of the
beam with pivoted ends [1,2]. The problem becomes slightly more complicated if the
shear deformation, non-uniform cross-sections, or “following loads” (loads, which change
their magnitude and/or direction with the deformation of the beam) are considered. For
example, it is less known that, mathematically, a beam can also become unstable under
tensile axial loading if shear deformation is taken into account (the Timoshenko beam
model), although physically the critical tensile force may be very high and, thus, beyond
the limits of the elastic behavior of the beam [1]. Generalizations of the buckling stability
problem lead to the so-called elastic theory of large elastic deformations and bifurcations [3].
The buckling stability was studied for Ziegler beams [4] and multi-layered composite beams
and plates [5].

The analogy between the dynamics of a rigid body including the vibration of a pendu-
lum and the deformation of an elastic beam or rod was developed by Gustav Kirchhoff in
1859. The analogy was a result of intensive studies of the equation governing the shape
of the elastic beam in the 18th and 19th centuries, when it was discovered that the same
equation governed a number of natural phenomena including, for example, the shape
of a liquid surface under the capillary action, which was studied by Laplace (1807) and
others [6].
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Surfaces and structures with a periodic pattern are of interest for many applications,
in particular, because a surface micro/nanopattern can often affect phase stability and
equilibrium [7–12]. These situations include surface-pattern-induced super-hydrophobicity
and texture-induced phase control. On the other hand, small fast vibrations can also
affect phase stability and equilibrium. This includes effective “freezing” of liquid droplets
on a vibrating liquid surface, vibro-jamming of valves in a vibrating vessel, melting of
granular material, changing of a rigid material into soft, and other similar effects where the
nonlinearity or hysteresis of the vibration is involved [8].

The generic model for the stabilizing effect of vibrations is the stabilization of an
inverted pendulum on a vibrating foundation, the Kapitza [12] pendulum, with a mass
m, length l, and natural frequency of the pendulum, Ω =

√
g/l. The foundation vibrates

with the frequency ω >> Ω, and the amplitude, a << l. The upside-down position of
the pendulum is normally an unstable equilibrium; however, when the frequency of
the foundation exceeds the critical value, ω >

√
2gl/a, the equilibrium becomes stable.

This result can be achieved mathematically either by stability analysis of the Mathieu
equation [13,14], or by a more general method referred to as the method of the separation
of motions [15].

The stability of the Mathieu equation is studied using so-called Ince–Strutt diagrams,
whereas the separation of motions implies that the equation of motion of the pendulum on
a vibrating foundation

l
..
ϕ− sin ϕ

(
g + aω2 cos ωt

)
= 0 (1)

is approximated by the equation for averaged motion, which describes a regular pendulum
subjected to the stabilizing force

..
ϕ− g

l
sin ϕ =

a2ω2

4l2 sin 2ϕ (2)

If deflections are small, ϕ << 1, the stabilizing force at the right-hand part of Equation (2)
may be viewed as an effective spring force, kϕ, with the spring constant k = (aω/l)2/2,
which keeps the pendulum in equilibrium when this effective spring constant is greater
than k > g/l (or aω >

√
2gl)) [10].

A similar approach can be applied to the stability analysis of many mechanical and
physical systems including dual or multiple pendula, elastic rods on a vibrating foundation,
vibro-levitation of droplets, and various non-linear fluid flow effects involving hysteresis.
In all of these situations, fast small vibrations are substituted by an effective force, which
can change either stability or phase state [10].

Micropatterns, such as periodic profiles, can affect the dynamic stability of a mechan-
ical system [16]. However, a combination of the Kapitza pendulum approach with the
Kirchhoff analogy between the vibration of a pendulum and the deformation of an elastic
rod has not been considered in the literature. In this paper, we consider a specific type of
buckling of a beam with a periodic (wavy) cross-section and without shear subjected to
tensile loading.

2. Materials and Methods

Kirchhoff’s analogy is based on the similarity of the equations for the static bending
shape of an elastic beam and the dynamics of motion of a rigid body [17,18]. Consider
an elastically deformed beam, whose slope profile is given by the function y = y(x) with
the elastic modulus E and the moment of inertia of the cross-section I. At any point of
the profile, the slope is defined as dy

ds = sin ψ, where s is the distance along the beam. In
accordance with the Euler–Bernoulli slender elastic beam theory, the bending moment is
related to the slope as

M = −EI
dψ

ds
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On the other hand, the bending moment caused by the axial load F is related to the
displacement as M = Fy. Consequently, the slope ψ as a function of the distance s along
the beam with the stiffness of EI subjected to the static axial load F is given by

d2ψ

ds2 +
F

EI
sin ψ = 0 (3)

which is similar to the equation describing the oscillation of a pendulum

d2 ϕ

dt2 +
g
l

sin ϕ = 0 (4)

The spatial variable s in Equation (3) corresponds to time variable t in Equation (4).
While the bending of a beam is a boundary value problem and the motion of a pendulum
is an initial value problem, there is an analogy between these phenomena [11].

In light of Kirchhoff’s analogy, the tensile load of a beam is similar to the upside-down
position of a pendulum, while the periodic variation of the beam’s cross-section area is
analogous to the vibration of the pendulum’s foundation.

If the elastic properties of the beam are changed in a spatially periodic manner
with an amplitude h << 1 and a wavenumber Ω such that EI = EI0(1 + hΩ cos Ωs) ≈
EI0/(1− hΩ cos Ωs) and for small values of the slope ψ, the beam equation is given by

dM
ds

=
d(EI)

ds
dψ

ds
+ EI

d2ψ

ds2 = −EI0hΩ2 sin Ωs
dψ

ds
+ EI0(1 + hΩ cos Ωs)

d2ψ

ds2 (5)

or
d2ψ

ds2 = hΩ2 sin Ωs
dψ

ds
+

1
EI0

(1− hΩ cos Ωs)
dM
ds

(6)

For a large wavenumber the term with hΩ2 can be ignored, and then using F sin ψ ≈ Fψ,
Equation (6) yields the Mathieu equation

d2z
dκ2 − (δ + ε cos 2κ)z = 0 (7)

with dimensionless parameters κ = Ωs
2 , z(κ) = ψ(s), δ = 4F

EI0Ω2 , ε = − 4Fh
EI0Ω . The tensile

load corresponds to negative values of δ [19].

3. Results and Discussion

The stable solutions for a tensile-loaded beam lie in the shaded region (δ,ε) bound by
the stability curves as shown in the Ince–Strutt diagram (Figure 1). The stability curves for
Equation (7) can be obtained using Lindstedt–Poincaré perturbation method in the form
of a series approximation [19]. Thus, the two curves defining the stability region of our
interest are given by

δ = − 1
8 ε2 + . . . ,

δ = 1− 1
2 ε− 1

32 ε2 (8)

Therefore, the stability condition obtained from the first curve is given by ε2 > 8|δ| or
h2 > 2EI0/F.

As an example, consider a beam profile z(κ) with stiffness EI = 10 Nm2 under a tensile
load F = −300 N. For h = 0.289 m, and Ω = 693 m−1, δ = −0.00025, ε = 0.05, which lie in the
shaded stable region of the Ince–Strutt diagram. The corresponding solution to Equation (5)
for boundary conditions z(0) = 0,

(
dz
dκ

)
κ=0

= 0.1 is shown in Figure 2a. In this case, the
slope of the beam is a sinusoidal function. For the values of δ = −0.00035, ε = 0.05, which
lie outside the shaded region, the solution to Equation (7) is shown in Figure 2b. In this
case, the slope of the beam is an exponential function, implying buckled state.
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Figure 1. Ince–Strutt stability diagram for the Mathieu equation. The shaded region represents the
domain of stable solutions for a tensile-loaded beam.
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Figure 2. Solutions to the Mathieu equation for a tensile loaded beam with boundary conditions z = 0
at κ = 0 and dz/dκ = 0 at κ = 0. (a) Stable solution for δ = −0.00025, ε = 0.05, and (b) unstable solution
for δ = −0.00035, ε = 0.05.

The compressive load of a beam corresponds to the regular pendulum (Figure 3a). The
physical system corresponding to the inverted pendulum on a vibrating foundation according
to Kirchhoff’s analogy is the following. Consider a beam subjected to the tensile load F. If the
beam deviates from its straight shape, we will apply a “following” bending moment F∆y at the
free end of the beam to maintain the balance of the moment of force, where ∆y is the deflection
at the end of the beam. The profile of such a beam is unstable in the sense that it can deviate
from the straight-line shape so that the beam is even capable to form a ring (Figure 3b). The
shape of the beam is governed by Equation (7). Deviation from the straight shape corresponds
to the inverted pendulum departing from the unstable upside-down equilibrium, passing
through the regular equilibrium, and, eventually, (if no dissipation of energy is involved)
approaching the unstable upside-down equilibrium again.

If the waviness of the beam is introduced and its amplitude and wavelength exceed
the critical value, the solution of Equation (7) is stable and the deviation from the straight
shape is impossible. Thus, the effect of the waviness is similar to the force V, analogously
to the fictitious effective spring force (or moment) τ substituting for the vibration of the
foundation of an inverted pendulum (Figure 3c).

As far as the interpretation of this predicted effect, one can suggest that the value of
the Euler’s critical load for buckling may be affected by a periodic variation of the rods’
profile (and, consequently, of the cross-sectional moment of inertia and bending stiffness,
EI, of the rod). Testing this conclusion remains a matter of experimental verification;
however, Kirchhoff’s analogy provides an elegant and unexpected result, which advances
our understanding of micro/nanopatterned surfaces.
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Figure 3. The deflection of a beam due to (a) compressive load F (corresponding to the stable
equilibrium of a regular pendulum), and (b) tensile load F (corresponding to the unstable equilibrium
of an inverted pendulum). (c) The waviness of the beam would stabilize the equilibrium similarly to
the vibrations stabilizing an inverted pendulum (reproduced with permission from [11]).

4. Conclusions

Combining the Kirchhoff analogy between the oscillation of a pendulum and the
static bending of an elastic beam with the stability analysis of an inverted pendulum on
a vibrating foundation (the Kapitza pendulum) yields interesting results on the buckling
stability of a wavy beam. The static bending of the rod is governed by the same equations
in the spatial domain as the vibration of the pendulum in the temporal domain. Moreover,
applying a periodic surface profile to the rod corresponds to periodic vibrations of the
foundation of the pendulum. While the vibration can stabilize an inverted pendulum, the
micropattern is expected to affect the buckling stability of the beam.

Micropatterned structures and surfaces have various applications including the control
of adhesion, friction, wettability, and surface-pattern-induced phase control. Understanding
their effect on structural stability is important for various theoretical considerations and
practical applications. The classical examples are friction control with laser surface texturing
and wetting control with super-hydrophobicity. Using surface patterning for structural
stability improvement may be of interest, for example, in microelectromechanical systems
and similar novel applications.
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tions, analysis, and figure preparation: R.R. All authors have read and agreed to the published version
of the manuscript.
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