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Abstract: Structural integrity is a crucial aspect of engineering components, particularly in the field of
additive manufacturing (AM). Surface roughness is a vital parameter that significantly influences the
structural integrity of additively manufactured parts. This research work focuses on the prediction
of the surface roughness of additive-manufactured polylactic acid (PLA) specimens using eight
different supervised machine learning regression-based algorithms. For the first time, explainable AI
techniques are employed to enhance the interpretability of the machine learning models. The nine
algorithms used in this study are Support Vector Regression, Random Forest, XGBoost, AdaBoost,
CatBoost, Decision Tree, the Extra Tree Regressor, the Explainable Boosting Model (EBM), and the
Gradient Boosting Regressor. This study analyzes the performance of these algorithms to predict
the surface roughness of PLA specimens, while also investigating the impacts of individual input
parameters through explainable AI methods. The experimental results indicate that the XGBoost
algorithm outperforms the other algorithms with the highest coefficient of determination value of
0.9634. This value demonstrates that the XGBoost algorithm provides the most accurate predictions
for surface roughness compared with other algorithms. This study also provides a comparative
analysis of the performance of all the algorithms used in this study, along with insights derived from
explainable AI techniques.

Keywords: additive manufacturing; explainable artificial intelligence; machine learning; supervised
learning; surface roughness; structural integrity

1. Introduction

Machine learning is a subset of artificial intelligence that involves the development of
algorithms that enable computer systems to learn from data and improve their performance
over time. In other words, machine learning algorithms are designed to identify patterns
in data and use these patterns to make predictions or decisions. Machine learning can
be classified into three main categories, i.e., supervised learning, unsupervised learning,
and reinforcement learning [1–4]. Supervised learning involves the use of labeled data to
train machine learning models. In this type of learning, the machine learning algorithm
is provided with input and output data pairs and uses this information to learn how
to make accurate predictions on new data [5–7]. Unsupervised learning involves the
use of unlabeled data to train machine learning models. In this type of learning, the
machine learning algorithm is provided with input data only and must identify patterns or
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relationships in the data without any guidance [8–10]. Reinforcement learning involves
the use of a reward system to train machine learning models. In this type of learning, the
machine learning algorithm is rewarded for making correct predictions or taking the correct
action, which encourages the algorithm to improve its performance over time [11–13].

Additive manufacturing (AM) is a rapidly growing field that involves the production
of complex parts and components using 3D printing technology [14–17]. Machine learning
(ML) has emerged as a valuable tool in AM for optimizing various aspects of the process,
including design, fabrication, and post-processing. Machine learning algorithms can be
used to optimize the designs of parts and components in additive manufacturing. ML
algorithms can analyze large amounts of data and identify patterns that can be used
to create more efficient designs that reduce material usage, improve performance, and
reduce production costs. This information can be used to optimize the process parameters
and improve the quality and consistency of the printed parts [18–20]. Machine learning
algorithms can also be used for quality control in additive manufacturing. ML algorithms
can analyze images of printed parts and identify defects or anomalies that may affect
their performance.

Surface roughness is an important parameter that affects the functional and aesthetic
properties of additively manufactured components. Surface roughness can impact the
performance, reliability, and durability of the components, as well as their appearance and
feel. Surface roughness is an important parameter that affects the structural integrity of
additively manufactured (AM) specimens in several ways. Structural integrity refers to
the ability of a component to maintain its designed function and structural performance
without failure under the service conditions to which it is subjected. Surface roughness,
which is the unevenness or irregularities present on the surface of a component, can
have a considerable impact on structural integrity. High surface roughness can increase
friction and wear, leading to the component’s reduced performance and decreased lifespan.
Conversely, low surface roughness can improve lubrication and reduce wear, leading to
the component’s improved performance and increased lifespan. Surface roughness can
also affect the reliability of additively manufactured components [21–24]. High surface
roughness can create stress concentration points that can lead to cracks and fractures, while
low surface roughness can reduce stress concentration and improve the reliability of the
component. Surface roughness can also impact the functionality of additively manufactured
components. For example, components with low surface roughness may be easier to clean
or may be less likely to accumulate dirt and debris, leading to improved functionality
and hygiene.

Li et al. [25] employed a data-driven predictive modeling approach to forecast surface
roughness in additive manufacturing. The study employed several machine learning algo-
rithms, including Random Forest, AdaBoost, Classification and Regression Trees (CART),
Support Vector Regression (SVR), Ridge Regression (RR), and a Random Vector Functional
Link (RVFL) network. Wu et al. [26] proposed a novel data-driven approach for surface
roughness prediction in Fused Deposition Modeling (FDM). The study aimed to develop an
accurate and reliable predictive model that can assist in controlling the quality of the final
FDM products. So et al. [27] developed a methodology to enhance the quality of additive
manufacturing (AM) products based on data analysis. The study utilized various data
analysis techniques, including data pre-processing and Deep Neural Networks (DNNs),
combined with sensor data to predict surface roughness. Ulkir et al. [28] conducted a study
to determine the optimal combination of input parameters that could predict and minimize
surface roughness in Fused Deposition Modeling (FDM) samples produced with a 3D
printer. The study utilized a combination of a Cascade-Forward Neural Network (CFNN)
and a genetic algorithm to optimize the prediction model.

In the present work, nine supervised machine learning regression-based algorithms are
implemented to predict the surface roughness of additively manufactured PLA specimens,
with the novel integration of explainable AI techniques to enhance the interpretability and
understanding of the model predictions.
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2. Materials and Methods

To ensure consistency in the model, the ASTM E8 standard geometry was adopted
as the reference with a uniform 50% reduction in dimensions to reduce the print size and
minimize material usage and time. The response surface methodology (RSM) design of the
experiment was employed to generate 30 different trial conditions (refer to Figure 1), each
with 3 input parameter levels. Other factors such as material color and color percentage
were neglected as these factors have a negligible effect on surface roughness [29]. The CAD
model (refer to Figure 2) was sliced using Ultimaker Cura software to generate G-code.
A Creality 3D FDM printer (refer to Figure 3) was used to carry out the experimental
investigation. Each print was assigned a unique set of settings varying in layer height,
infill density, infill pattern, bed temperature, and nozzle temperature to fabricate polylactic
acid (PLA) specimens. An input parameter datasheet was created, and the differences in
length between each model and the original CAD file were measured using a digital vernier
caliper. Using a Mitutoyo SJ-10, surface roughness tester measurements were taken at four
locations, and their average was considered.
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The obtained experimental data were converted into a CSV file and were further im-
ported into a Google Colab platform for deploying supervised machine learning regression-
based algorithms developed using Python programming. Figure 4 shows the implemented
framework in the present work. The Pandas library was used for data manipulation and
analysis. It provides data structures for efficiently storing and accessing large datasets.
Pandas is widely used in machine learning for tasks such as data pre-processing, cleaning,
and transformation. It allows the handling of missing values, merging and grouping of
datasets, and filtering and sorting of data. NumPy is used extensively in machine learning.
It provides support for large multi-dimensional arrays and matrices, along with a collection
of high-level mathematical functions. NumPy is useful in machine learning for tasks such
as linear algebra, numerical computing, and scientific computing. The Seaborn library was
used for data visualization. It provides a high-level interface for creating attractive and
informative statistical graphics. Seaborn is useful in machine learning for visualizing data
distributions, detecting patterns, and exploring relationships between variables. Matplotlib
is another Python library used for data visualization. It is a comprehensive library that
provides a wide range of graphical tools for creating high-quality visualizations. Matplotlib
is useful in machine learning for tasks such as data visualization, model evaluation, and
result presentation.

In machine learning, a critical aspect of building a model is evaluating its performance.
To do this, data scientists divide the dataset into two parts: training data and testing data.
Typically, 80% of the dataset is used for training, while the remaining 20% is used for testing.
The primary reason for using an 80/20 split is to reduce overfitting, which occurs when a
model is too complex and fits the training data too closely. By using a smaller portion of the
dataset for testing, data scientists can ensure that the model generalizes well to new data.

In the present work, mean absolute error (MAE), mean square error (MSE), and coeffi-
cient of determination (R2) were the metric features used for measuring the performance of
the machine learning models.
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3. Results

Table 1 shows the obtained results for surface roughness according to the combination
of different input parameters.

Table 1. Experimental results.

Layer
Height
(mm)

Wall
Thickness
(mm)

Infill
Density
(%)

Infill
Pattern

Nozzle
Tempera-
ture
(◦C)

Bed Tem-
perature
(◦C)

Print
Speed
(mm/sec)

Fan Speed
(%)

Surface
Roughness
( µm)

0.1 1 50 Honeycomb 200 60 120 0 6.12275

0.1 4 40 grid 205 65 120 25 6.35675

0.1 3 50 Honeycomb 210 70 120 50 5.957

0.1 4 90 Grid 215 75 120 75 5.92025

0.1 1 30 Honeycomb 220 80 120 100 6.08775

0.15 3 80 Honeycomb 200 60 60 0 6.0684

0.15 4 50 Grid 205 65 60 25 9.27525

0.15 10 30 Honeycomb 210 70 60 50 7.479

0.15 6 40 Grid 215 75 60 75 7.557

0.15 1 10 Honeycomb 220 80 60 100 8.48675

0.2 5 60 Honeycomb 200 60 40 0 8.4695

0.2 4 20 Grid 205 65 40 25 8.8785

0.2 5 60 Honeycomb 210 70 40 50 9.415
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Table 1. Cont.

Layer
Height
(mm)

Wall
Thickness
(mm)

Infill
Density
(%)

Infill
Pattern

Nozzle
Tempera-
ture
(◦C)

Bed Tem-
perature
(◦C)

Print
Speed
(mm/sec)

Fan Speed
(%)

Surface
Roughness
( µm)

0.2 7 40 Grid 215 75 40 75 9.71375

0.2 3 60 Honeycomb 220 80 40 100 10.59625

0.1 1 50 Triangles 200 60 120 0 6.04925

0.1 4 40 Cubic 205 65 120 25 9.262

0.1 3 50 Triangles 210 70 120 50 6.127

0.1 4 90 Cubic 215 75 120 75 5.99675

0.1 1 30 Triangles 220 80 120 100 6.1485

0.15 3 80 Triangles 200 60 60 0 8.2585

0.15 4 50 Cubic 205 65 60 25 8.347

0.15 10 30 Triangles 210 70 60 50 8.2385

0.15 6 40 Cubic 215 75 60 75 8.23125

0.15 1 10 Triangles 220 80 60 100 8.35125

0.2 5 60 Triangles 200 60 40 0 9.072

0.2 4 20 Cubic 205 65 40 25 9.23825

0.2 5 60 Triangles 210 70 40 50 9.18225

0.2 7 40 Cubic 215 75 40 75 9.299

0.2 3 60 Triangles 220 80 40 100 9.382

3.1. Supervised Machine Learning Algorithms

Figure 5 shows the obtained correlation heat map matrix in the present work. A
correlation matrix heatmap is an essential tool in machine learning because it helps to
identify the strength and direction of the relationship between different variables. It
provides a quick visual representation of how different variables are related to each other.
This information is critical in feature selection, as highly correlated variables can lead
to overfitting, and it is important to remove redundant variables to improve a model’s
performance. The correlation matrix heatmap is color-coded, with the intensity of the color
representing the strength of the correlation. A positive correlation is represented as a shade
of red, while a negative correlation is represented as a shade of blue. The darker the shade,
the stronger the correlation. A neutral correlation is represented as a shade of white or
gray. Variables that are highly correlated with each other appear as dark squares on the
heatmap. These variables can lead to overfitting and should be removed. Variables that
have little or no correlation with each other appear as light squares on the heatmap. A
positive correlation between two variables is represented as a shade of red. If the variables
have a strong positive correlation, it means that they move in the same direction. A negative
correlation between two variables is represented as a shade of blue. If variables have a
strong negative correlation, it means that they move in opposite directions.

3.1.1. Decision Tree Algorithm

Decision Tree Regression is a prominent non-parametric machine learning approach
that establishes a relationship between input features (X) and a continuous target variable
(Y) by iteratively partitioning the input space into distinct subsets. The primary objective of
this partitioning process is to minimize the impurity within each node [30,31]. Commonly
employed criteria for measuring impurity include mean squared error (MSE), mean ab-
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solute error (MAE), and coefficient of determination (R2). The impurity of a node can be
computed using Equation (1) for the MSE.

MSE =
∑(yi − ŷ)2

N
(1)

where N denotes the number of samples in the node, yi represents the actual target value
for the i-th sample, and ŷ is the average target value of the samples in the node.
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Commencing from the root node, the input space is iteratively divided into subsets
by identifying the optimal split that minimizes the selected impurity criterion. This proce-
dure persists until a stopping condition is achieved, such as reaching a maximum depth,
attaining a minimum number of samples in a leaf node, or meeting an impurity threshold.
Subsequent to partitioning, the average target value of the samples in each leaf node serves
as the prediction for the corresponding region of the input space. This results in a piecewise
constant function that models the relationship between X and Y.

Figure 6 shows the feature importance plot obtained in the present work. A feature
importance plot is a visual tool used in machine learning to determine the importance of
each feature in a dataset. It helps in identifying which features are most relevant to the
target variable and which can be eliminated. A feature importance plot can also help in
identifying irrelevant features that do not contribute to a model’s accuracy. These features
can be eliminated during feature selection to improve the model’s performance. It is
observed that layer height has the highest influence on the output parameter, i.e., surface
roughness, while the wall thickness, bed temperature, and fan speed parameters have
negligible effects on surface roughness.
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Figure 7 shows the obtained Decision Tree plot. Decision Tree plots are crucial in
machine learning as they provide a visual representation of the decision-making process
used by a model. These plots show the hierarchy of decision rules used to classify or predict
outcomes and help in interpreting the model’s behavior. The information obtained from a
Decision Tree plot can help in understanding the important features that contribute to the
model’s accuracy and identify areas where the model can be improved. Additionally, Deci-
sion Tree plots can aid in explaining the model’s predictions to non-technical stakeholders,
making it an essential tool for both model developers and end-users. Therefore, Decision
Tree plots are an important component of the machine learning toolkit and can provide
valuable insights into the underlying decision-making process of a model.
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Figure 8 shows the plot obtained between the predicted values and the original values
from the implemented machine learning algorithms. Table 2 shows the comparison of the
performance of the implemented supervised machine learning regression-based algorithms
on the basis of metric features such as MSE, MAE, and R2 value.

Table 2. Evaluating the performance of supervised machine learning algorithms to predict sur-
face roughness.

Algorithm MSE MAE R2 Value
Support Vector Regression 0.269872 0.460177 0.822964

Decision Tree 0.498258 0.568042 0.673144

Random Forest 0.123575 0.295479 0.918935

XGBoost 0.055762 0.199178 0.963421

CatBoost 0.561542 0.657891 0.631630

AdaBoost 0.161093 0.329904 0.894323

Extra Tree Regressor 0.142213 0.304175 0.906709

Gradient Boosting Regressor 0.144944 0.317427 0.904917

Explainable Boosting Model (EBM) 0.343811 0.554507 0.750395
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3.1.2. Support Vector Regression

Support Vector Regression (SVR) is an advanced machine learning technique employed
for regression tasks, focusing on modeling the relationship between input features and
a continuous target variable. The principal aim of SVR is to discover a function f(x) that
approximates the target variable, y, within a predefined margin of tolerance (ε) [32]. By
formulating an ε-insensitive loss function, SVR demonstrates robustness against noise and
outliers present in the data. Mathematically, the objective is to minimize the objective
function shown in Equation (2).

L(w, b) =
1
2
‖w‖2 + C × Σ(ξi + ξ*i) (2)

subjected to the following constraints:

yi − f(xi) ≤ ε + ξi,

f(xi) − yi≤ ε + ξi,

ξ, ξi ≥ 0,

where xi and yi represent the input features and target values, respectively, w denotes the
weight vector, b corresponds to the bias term, ξi and ξi are the slack variables for the upper
and lower bounds, respectively, and C is the regularization parameter that balances the
trade-off between minimizing model complexity (‖w‖2) and permitting a certain level of
error (ξi + ξi) within the ε-margin.

The plot shown in Figure 8 illustrates the original data points as a vibrant scatter plot
and the SVR model’s predictions as a red line. By minimizing the objective function and
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adhering to the constraints, the SVR model effectively captures the underlying relationship
between the input features and the continuous target variable.

3.1.3. Random Forest

Random Forest is a powerful ensemble learning method employed in regression and
classification tasks. It amalgamates multiple Decision Trees to produce more accurate
and stable predictions. The core principle behind Random Forest is the exploitation of
collective wisdom by averaging predictions from numerous weak learners (Decision Trees)
to construct a more reliable and precise model [33].

In the Random Forest algorithm, each Decision Tree is built utilizing a random subset
of the training data, sampled with replacement (bootstrap sampling). Additionally, at
each node, a random subset of features is considered for partitioning. This randomization
process in both data and feature selection mitigates correlation among individual trees and
augments the diversity within the ensemble.

For regression tasks, the Random Forest model’s prediction is computed as the mean
of the predictions from all the constituent trees in the ensemble as shown in Equation (3).

f(x) = ∑ fi(x)
N

(3)

where fi (x) represents the prediction of the i-th Decision Tree for input x, and N denotes
the total number of trees in the ensemble.

During the training phase, each Decision Tree grows independently to its maximum
depth or until a stopping criterion is fulfilled, such as reaching a minimum number of
samples in a leaf node. Commonly employed impurity measures for regression tasks
include mean squared error (MSE) and mean absolute error (MAE). Pruning is unnecessary
in the context of Random Forests, as the averaging process inherently counteracts overfitting
that might transpire in individual trees.

The performance of a Random Forest model can be evaluated using out-of-bag (OOB)
error estimation. As each tree is trained on a random data subset, approximately one-third
of the samples remain unused for training (out-of-bag samples). These samples can be
leveraged to estimate the model’s performance on unseen data, eliminating the need for
cross-validation.

3.1.4. XGBoost

XGBoost, an acronym for eXtreme gradient boosting, is a sophisticated ensemble
learning method employed in both regression and classification tasks. It represents an
optimized and scalable variant of gradient boosting, an approach that assembles a robust
model by fitting weak learners sequentially (commonly Decision Trees) to minimize a
differentiable loss function [34].

The fundamental concept underlying gradient boosting involves fitting each weak
learner to the negative gradient of the loss function relative to the predictions of preceding
learners. This iterative process refines the model by successively reducing residual errors.
The final model is constituted by a weighted sum of the predictions from all weak learners,
as shown in Equation (4).

f(x) = Σ αi · fi (x) (4)

where fi (x) denotes the prediction of the i-th weak learner for input x, and αi signifies the
weight attributed to that learner.

During the training phase, the weights (αi) are determined by minimizing the loss
function. For differentiable loss functions, this procedure can be viewed as gradient descent
within the function space. In every iteration, the algorithm fits a weak learner to the negative
gradient of the loss function in relation to the current model’s predictions, subsequently
updating the model by incorporating this new learner with an optimal weight.
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3.1.5. CatBoost

CatBoost, derived from “Category” and “Boosting,” is a state-of-the-art ensemble
learning technique devised to manage categorical variables in regression and classification
tasks. It constitutes a highly optimized implementation of gradient boosting that assembles
a robust model by fitting weak learners (typically Decision Trees) sequentially to minimize
a differentiable loss function [35].

The fundamental concept underlying gradient boosting involves fitting each weak
learner to the negative gradient of the loss function concerning the predictions of previous
learners. Through this iterative process, the model is refined by successively reducing
residual errors.

A key feature of CatBoost is its capacity to efficiently handle categorical variables
through an innovative encoding scheme, termed “ordered boosting.” This method com-
putes the target mean for each categorical feature level based on historical data, minimizing
the risk of target leakage. Mathematically, the encoding for the i-th level of a categorical
variable is expressed as Equation (5).

µi =
∑ yj

ni
(5)

where yj denotes the target values corresponding to the i-th level of the categorical variable,
and ni signifies the number of occurrences of the i-th level in the data.

3.1.6. AdaBoost

AdaBoost, an abbreviation for adaptive boosting, is a prominent ensemble learning
approach employed in both regression and classification tasks. It functions by iteratively fitting
weak learners (commonly decision stumps or shallow Decision Trees) to the training data
while dynamically adjusting the weights of instances to prioritize misclassified samples [36].

The fundamental concept underlying AdaBoost involves assigning equal initial weights
to each instance in the training data. During each iteration, the algorithm fits a weak learner
to the weighted data, concentrating on minimizing the weighted error.

Following each iteration, the instance weights are updated to emphasize misclassified
samples, guiding the subsequent weak learner to focus on more challenging instances.

Mathematically, the weight update rule is expressed as Equation (6).

wj = wj·e(αi·I(yj 6=fi(xj))) (6)

where wj denotes the weight of the j-th instance, yj corresponds to its true label, xj refers to
the input feature vector, I() is an indicator function that assumes a value of one when the
condition within the parenthesis is true and zero otherwise.

3.1.7. Extra Tree Regressor

The Extra Tree Regressor, an abbreviation for Extremely Randomized Trees Regres-
sor, is an ensemble learning technique utilized for regression tasks. It is an extension of
the Random Forest algorithm, focusing on the construction of Decision Trees with addi-
tional randomization during the tree-building process. This randomization helps create
more diverse and independent trees, reducing the overall model variance and improving
generalization performance [37].

The core principle of the Extra Trees Regressor involves constructing multiple Decision
Trees using a random subset of features and samples from the training data. While the
Random Forest algorithm selects the optimal split points based on a criterion such as
the mean squared error (MSE) or the Gini impurity, the Extra Trees Regressor introduces
extra randomization by choosing split points randomly for each feature within a randomly
selected subset. This process is applied to each node in the tree during its construction.
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3.1.8. Gradient Boosting Regressor

The Gradient Boosting Regressor is a powerful ensemble learning technique employed
for regression tasks. It builds a robust model by iteratively fitting weak learners (typically
shallow Decision Trees) to the training data, with each learner focusing on reducing the
residual errors of the preceding learners. This method is founded on the principles of
gradient boosting, which involves optimizing a differentiable loss function through the
iterative refinement of the model [38]. The core concept of the Gradient Boosting Regressor
is to fit each weak learner to the negative gradient of the loss function concerning the
predictions of the previous learners. This iterative process refines the model by successively
reducing residual errors.

3.1.9. Explainable Boosting Model

The Explainable Boosting Model (EBM) is a machine learning algorithm that combines
multiple one-dimensional models to generate an interpretable and accurate final model. To
achieve interpretability, the EBM trains several simple models for each feature and then
combines them to produce an additive model. The model is built iteratively by adjusting
the weights of each model based on prediction errors [39]. This process enables the EBM to
provide a clear understanding of each feature’s effect on the target variable. The model’s
interpretability is demonstrated in its ability to provide both global and local interpretations
of the predictions. The global interpretation highlights the overall effect of each feature,
while the local interpretation sheds light on how each feature affects a particular data
point. The EBM is adaptable to various datasets and offers a powerful and transparent
approach to machine learning that is useful for many applications. In summary, the EBM is
a highly interpretable machine learning algorithm that delivers accurate predictions while
providing a granular understanding of the model’s behavior, making it an attractive choice
for tasks that require both accuracy and transparency.

Figure 9 shows the plot obtained between the predicted values and the original
values from the implemented machine learning algorithms. Table 2 shows the comparison
of the performances of the implemented supervised machine learning regression-based
algorithms on the basis of metric features such as MSE, MAE, and R2 value represented in
Equations (7)–(9).

MSE =
∑(yi − ŷi)

2

N
(7)

MAE =
∑|yi − ŷi|

N
(8)

R2 = 1− ∑(yi − ŷi)
2

∑
(

yi −
−
y
)2 (9)

where N is the number of samples, yi is the true value of the i-th sample,
−
y is the mean of

the true values, and ŷi is the predicted value of the i-th sample.

3.2. Explainable Artificial Intelligence (XAI) Approach

Explainable AI (XAI) aims to provide human-understandable explanations for the
decisions made by machine learning models. In our case, we have a set of input parameters
that influence the surface roughness of additively manufactured specimens. XAI can be
applied to make the relationship between these input parameters and surface roughness
more transparent and interpretable.
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Figure 9. Predicted vs. actual surface roughness values plots obtained for (a) Support Vector
Regression, (b) Decision Tree, (c) Random Forest, (d) XGBoost, (e) CatBoost, (f) AdaBoost, (g) Extra
Tree Regressor, (h) Gradient Boosting Regressor, and (i) Explainable Boosting Model (EBM).

The partial dependence plot created using SHAP values, as shown in Figure 10,
provides valuable insights into the relationship between a specific input feature and the
model’s predictions [40]. This plot can be used to analyze the effect of the chosen feature on
the predicted output while accounting for the average influence of all the other features. By
interpreting this plot, researchers can gain a deeper understanding of the model’s behavior
and make informed decisions.

The waterfall plot shown in Figure 11 is a visual representation that helps to under-
stand the step-by-step contributions of individual features to the model’s prediction for a
specific instance. This plot is useful for interpreting the model’s behavior and attributing
importance to each feature in a clear, ordered manner.

Figure 12 demonstrates the process of fitting an Explainable Boosting Machine (EBM)
model to the data and using SHAP values to create a partial dependence plot for the
input features. The EBM is a type of Generalized Additive Model (GAM) that provides
interpretable results through additive combinations of simple models.
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Figure 13 shows a waterfall plot using SHAP values obtained from the Explainable
Boosting Machine (EBM) model.
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The main difference between the two waterfall plots lies in the model they are based
on. The first waterfall plot is created using the SHAP values obtained from the XGBoost
model, while the second waterfall plot is created using the SHAP values obtained from the
Explainable Boosting Machine (EBM) model.

XGBoost and the EBM are both powerful ensemble learning techniques that provide
accurate predictions. While XGBoost builds complex models by iteratively fitting weak
learners, typically Decision Trees, the EBM combines simple models additively to provide
more interpretable results. The EBM is specifically designed to be more interpretable
than other boosting methods, including XGBoost. While XGBoost can provide feature
importance scores, the EBM offers a more granular understanding of each feature’s effect
on the target variable. XGBoost is known for its speed, scalability, and high predictive
performance, whereas EBM provides a good trade-off between accuracy and interpretabil-
ity. The model complexity and interpretability of XGBoost and EBM are the primary
differences between them. The choice between them depends on the specific requirements
of the task at hand, and both models have their strengths and weaknesses.

The beeswarm plot obtained from the XGB model, as shown in Figure 14, is a powerful
visualization tool that displays the SHAP values for all features and instances in the dataset.
It helps to understand the overall impact of each feature on the model’s predictions and
offers insights into the distribution of feature contributions across all instances.
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Figure 14. Beeswarm plot obtained from XGB model.

The heatmap plot obtained from the XGB model, as shown in Figure 15, is a visu-
alization tool that displays SHAP values for all features and a subset of instances in the
dataset as a heatmap. It helps to understand the impact of each feature on the model’s
predictions and offers insights into the distribution of feature contributions across the
selected instances.
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4. Discussion

From the obtained results, it is observed that the XGBoost algorithm outperforms
the other machine learning algorithms by resulting in the highest R2 value. XGBoost is a
highly effective machine learning algorithm due to its scalability, regularization techniques,
speed, handling of missing data, feature importance, and flexibility. It is optimized for
parallel processing on multi-core CPUs, allowing it to handle large datasets with millions of
examples and features efficiently. XGBoost uses both L1 and L2 regularization techniques to
prevent overfitting and improve the model’s generalization performance, and it can handle
missing data effectively using gradient-based sampling. XGBoost provides a measure of
feature importance, allowing for the identification of significant features in the dataset, and
it is flexible, handling both regression and classification tasks. These features make XGBoost
a popular choice for many machine learning tasks, and it is often used as a benchmark for
other algorithms.

Explainable AI (XAI) is of paramount importance in the present research work for
several reasons. In the context of predicting surface roughness for additively manufactured
specimens, employing XAI techniques can enhance the understanding, trust, and effec-
tiveness of the developed models, which, in turn, can lead to better decision making and
improved outcomes of the model’s predictions. This interpretability enables researchers
to gain insights into the relationships between input features and the target variable (sur-
face roughness), leading to a better understanding of the underlying physical processes
involved in additive manufacturing. By providing clear explanations of how a model
makes predictions, XAI enhances the trust that stakeholders have in the model. This is
crucial in engineering applications, such as additive manufacturing, where the quality
and performance of produced components are vital. Trustworthy models can facilitate
the adoption of AI-driven solutions in the industry and help ensure that the developed
models are used effectively. XAI techniques can aid in validating the developed models
by revealing the contributions of each feature and detecting any biases or inconsistencies.
By examining the importance of the features and potential interaction effects, researchers
can evaluate the models and identify any areas that require further improvement, ul-
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timately leading to more accurate and reliable predictions. XAI enables researchers to
communicate their findings more effectively, both within the research community and
to industry stakeholders. Clear, interpretable visualizations, such as partial dependence
plots, beeswarm plots, and heatmap plots, can convey complex relationships and model
behaviors in an accessible manner. This facilitates better collaboration and understanding
among researchers, engineers, and decision-makers involved in the additive manufacturing
process. In some industries, including additive manufacturing, regulatory compliance may
require explanations for AI-driven decisions. XAI techniques can provide the necessary
transparency and interpretability to meet these regulatory requirements, ensuring that AI
solutions can be successfully implemented in real-world applications.

5. Conclusions

In conclusion, this research work presented a comprehensive analysis of the predic-
tion of surface roughness in additively manufactured polylactic acid (PLA) specimens
using eight different supervised machine learning regression-based algorithms. The re-
sults demonstrate the superiority of the XGBoost algorithm, with the highest coefficient
of determination value of 0.9634, indicating its ability to accurately predict surface rough-
ness. Additionally, this study pioneers the use of explainable AI techniques to enhance
the interpretability of machine learning models, offering valuable insights into feature
importance, interaction effects, and model behavior. The comparative analysis of the algo-
rithms, combined with the explanations provided via explainable AI, contributes to a better
understanding of the relationship between surface roughness and structural integrity in
additive manufacturing.
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