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Abstract: The hydrogen embrittlement (HE) phenomenon occurring in drawn pearlitic steel wires
sometimes results in dangerous delayed fracture and has been an important issue for a long time. HE
is very sensitive to the amount of plastic deformation applied in the drawing process. Hydrogen (H)
atom diffusion is affected by ambient thermal and mechanical conditions such as stress, pressure,
and temperature. In addition, the influence of stress gradient (SG) on atomic diffusion is supposed
to be crucial but is still unclear. Metallic materials undergoing plastic deformation naturally have
SG, such as residual stresses, especially in inhomogeneous regions (e.g., surface or grain boundary).
In this study, we performed molecular dynamics (MD) simulation using EAM potentials for Fe
and H atoms and investigated the behavior of H atoms diffusing in pure iron (α-Fe) with the SG
condition. Two types of SG conditions were investigated: an overall gradient established by a bending
deformation of the specimen and an atomic-scale local gradient caused by the grain boundary (GB)
structure. A bi-crystal model with H atoms and a GB structure was subjected to bending deformation.
For a moderate flexure, bending stress is distributed linearly along the thickness of the specimen.
The diffusion coefficient of H atoms in the bulk region increased with an increase in the SG value. In
addition, it was clearly observed that the direction of diffusion was affected by the existence of the
SG. It was found that diffusivity of the H atom is promoted by the reduction in its cohesive energy.
From these MD results, we recognize an exponential relationship between the amount of H atom
diffusion and the intensity of the SG in nano-sized bending deformation.

Keywords: molecular dynamics; numerical analysis; iron and steel; hydrogen embrittlement;
diffusion; embedded atom method; strain gradient; bending deformation; grain boundary

1. Introduction

In recent years, to manage many environmental issues, fuel-efficient vehicles have
been pursued, and lightweight metallic materials with high strength are extensively sought
in industries. Metal forming using the technology of plasticity has been a good solution
to provide materials with good mechanical properties for industrial use. Examples are
found in the rolling of high-tensile steel sheets for automobiles, the drawing (squeezing)
of pearlitic steel wires for suspension bridges, the automobile tire code, and so on. In
plastic processing, as the material is continuously provided a plastic strain, it generally
gains higher strength. However, as seen in drawn pearlitic steel wires, the material is brittle
and frequently breaks, resulting in so-called delayed fracture, which is quite dangerous
and must be avoided in the materials in service. The feature of delayed fracture in steel
has been extensively studied and is thought to be possibly caused by “hydrogen (H atom)
diffusion” inside the material. Thus, the hydrogen embrittlement (HE) of steel has been well
recognized [1,2]. There have been many theories concerning HE. One theory notes that the
existence of H atoms promotes nucleation and glide of dislocations, and plastic deformation
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is eventually enhanced there (hydrogen-enhanced localized plasticity: HELP) [3]. Another
theory posits that H atoms chemically reduce the interatomic interaction around them, and
the formation energy of a fractured surface becomes lower (hydrogen-enhanced decohesion:
HEDE) [4]. In spite of the progress of these theories of HE, an experimental approach to
capture the dynamic motion of H atoms is still difficult, and therefore any unified view of
HE has not yet been reached.

When observing the fracture behavior in high-strength steel due to HE, grain bound-
aries (GBs) often play an important role in making a fracture path, i.e., many GB fractures
are confirmed in HE. As the composition of manganese (Mn) increases, the strength of
steel, including the H atoms, largely decreases [5], and its fracture surface becomes more
smooth. In that case, the large amount of defects is confirmed by thermal desorption
analysis (TDA), which means that H atoms near the GB region are strongly correlated
with plastic deformation [6]. As for the deformation mode, H atoms are experimentally
visualized using the “hydrogen micro-print” (HMT) technique [7]. In such experiments,
when a pearlitic steel wire is forcibly bended, it is confirmed that the segregation of H
atoms into GBs is enhanced by the bending stress there.

The behavior of H atoms depending on deformation modes is important, and it can
be studied by atomistic simulations with quantitative evaluation as well as qualitative
insight. Atomistic simulation has been applied in many previous studies concerning H
atoms in metallic materials. They focus on various topics, e.g., the amount of H atoms
that are trapped in the GB region and their effect on cohesive energies [8] and the relation-
ship between the GB structure and the diffusion constant of H atoms [9]. These studies
have applied molecular dynamics (MD) simulations in cases where the time evolution
of individual atoms and atomic systems can clearly and directly be obtained by just a
numerical calculation.

Generally speaking, it is well known that the diffusivity of H atoms in metal is greatly
affected by ambient pressure and possibly stress fields and temperature. A metallic material
that has experienced some plastic working often contains a very high level of residual stress.
The residual stress in the outer region of the material, which is nearly in contact with the roll
or draw die, exhibits a tensile nature, while the stress near the center region is compressive
so as to balance the total stress of the material [10,11]. This means that after severe plastic
processing, materials inevitably include a gradient of residual stress, like bended state. The
more plastic deformation introduced into a material, the larger the stress gradient (SG)
observed in it. In newly developed process techniques for severe plastic deformation, the
resulting material usually shows high sensitivity to the existence of H atoms. Thus, the
correlation between the SG provided during plastic deformation and the diffusivity of
H atoms is certain and should be well recognized. Generally speaking, for the diffusion
phenomenon in metals, the diffusion coefficient increases as the hydrostatic stress (isotropic
component of the stress tensor) increases in an expanding (positive) direction. This tendency
has already been discussed for H atoms, where the diffusion coefficient is higher on the
tensile side than on the compression side [9]. However, to the authors’ knowledge, there
are few reports on the diffusion behavior of H atoms under the existence of SG. Crucial
mechanisms of H atom diffusion that are related to the amount and directionality of atomic
movement still remain unknown so far, both in experiments and simulations. Therefore, in
this study, we examined this topic using the atomistic simulation method in order to reveal
the mechanism.

In this study, we analyzed the diffusion behavior of H atoms near the GB of pure iron
(α-Fe) crystals using the MD method. The reason why we focused on the vicinity of the GB
region is that HE is remarkably generated there due to a local stress concentration. In MD
modeling, several intensities of SG are applied to the bi-crystal specimen of α-Fe in relation
to bending deformation of the overall region. This is because drawn steel wires often show
a wide distribution of residual stress from the center to the surface region, and the situation
is very similar to the free bending deformation of the specimen [11]. In this study, bending
deformation was adequately realized by a preliminary deformation calculation. In the
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bended specimen, the diffusion coefficient of H atoms and its directionality in the bulk
region were examined in detail. Finally, we tried to formulate a mathematical relationship
between the intensity of SG and the diffusion coefficient of H atoms.

2. Theory and Methods
2.1. MD Theory and Calculation

In molecular dynamics (MD), Newtonian equations of the motion for each H atom,
including interatomic interaction potential energy, are numerically solved, and the dynamic
behavior and properties of the total atomic system are evaluated. The interatomic potential
function used here is an embedded atom method (EAM) formulation that has relative high
accuracy needed for H atoms as well as the iron (Fe) crystalline structure. In addition to
the Fe-Fe interaction function, which was derived by Mendelev et al. [12], Fe-H and H-H
interactions were formulated by Ramasubramaniam et al. [13].

The EAM potential by Mendelev et al. [12] was determined not only by fitting to a
perfect α-Fe crystal but also by considering the energetics of self-interstitial atoms; therefore,
it will accurately express the energy, especially when defects are included. In the EAM
potential function proposed by Ramasubramaniam et al. [13], potential parameters were
determined using first principle (ab initio) calculation so as to match the Fe-Fe energy
expressed by Mendelev et al. Ramasubramaniam et al. checked the effect of H atom as
impurity using a larger calculation cell than that for an ordinary ab initio calculation. Thus,
the properties of H atoms in the vicinity of the defect can be reproduced with high accuracy
by this potential function, which is expected to be suitable for the purpose of this research.

The accuracy of the interatomic potential used here was first verified. As shown
in Figure 1, one H atom is located near the center of a cubic α-Fe single crystal model,
which is surrounded by free surfaces in all directions and has a cell length of a = a0 × 10
= 2.867 nm (where the lattice constant a0 of α-Fe is supposed to be 0.287 nm). First, an
MD calculation of the structural relaxation was conducted with a constant-temperature
statistical ensemble. Figure 2 shows the time average of the radial distribution function
(RDF) for the averaged distance between Fe-Fe and Fe-H (orange and blue solid lines are
for Fe-Fe and Fe-H, respectively). From their first peak, the stable distances between Fe-Fe
and Fe-H are approximately 0.246 and 0.170 nm. Table 1 shows the error of the present
MD value compared with theoretical and ab initio calculated values. The error of the MD
value is −0.806% for the Fe-Fe distance, but it is 6.25% for the Fe-H distance, which is
relatively large. However, they are better than ab initio calculations (−4.84% between Fe
and Fe). Therefore, this interatomic potential gives a reasonable calculated value regarding
the behavior of H atoms.
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This model has a bcc structure for α-Fe. A hydrogen atom is placed exactly at the center.



Appl. Mech. 2024, 5 734
Appl. Mech. 2024, 5, FOR PEER REVIEW 4 
 

 

 

Figure 2. Diagrams of radial distribution function (RDF). The orange line represents 
RDF between Fe and Fe. The blue line represents RDF between Fe and H. 

Table 1. Comparison of interatomic distances in α-Fe crystals using MD, ab initio, and theoretical 
calculations. 

Method 
The Nearest Neighbor Interatomic Distance [nm] (Error [%]) 

Distance Between Fe and Fe Atoms Distance Between Fe and H Atoms 
Molecular dynamics calculation (a) 0.246 (−0.806) 0.170 (6.25) 

Ab initio calculation (b),(c) 0.236 (−4.84) 0.158 (−1.25) 
Theoretical value (d) 0.248 0.160 

(a) This work, (b) Mendelev et al. [12], (c) Ramasubramaniam et al. [13], (d) calculated from lattice con-
stant (𝑎 = 0.287 nm) and ordinary theory of interstitial [14,15]. 

2.2. MD Modeling 
The calculation model used in MD calculation is shown in Figure 3, where the orange 

and blue spheres indicate the position of the Fe and H atoms, respectively, and the pink 
spheres show the atoms with velocity constraints. Periodic boundary condition is applied 
only in the z direction. Because α-Fe crystal is assumed, Fe atoms are arranged in body 
centered cubic (bcc) lattices so that the 𝑥𝑦  plane corresponds to the (001)  plane, as 
shown in Figure 4. Initial positions of H atoms are tetrahedral sites (hereafter abbreviated 
as T-sites), which are selected at random from all T-sites (as many as needed). They are 
represented by a red solid circle in Figure 4. 

 
Figure 3. Calculation model for MD analysis. Fe atoms are arranged in the bcc structure of α-Fe. 
Atoms with velocity constraints are used to accomplish the four-point bending test as a pre-calcula-
tion. A symmetrical tilt grain boundary (STGB) is located at the center of the specimen, and the GB 

Figure 2. Diagrams of radial distribution function (RDF). The orange line represents RDF between Fe
and Fe. The blue line represents RDF between Fe and H.

Table 1. Comparison of interatomic distances in α-Fe crystals using MD, ab initio, and
theoretical calculations.

Method
The Nearest Neighbor Interatomic Distance [nm] (Error [%])

Distance Between Fe and Fe Atoms Distance Between Fe and H Atoms

Molecular dynamics calculation (a) 0.246 (−0.806) 0.170 (6.25)

Ab initio calculation (b),(c) 0.236 (−4.84) 0.158 (−1.25)

Theoretical value (d) 0.248 0.160
(a) This work, (b) Mendelev et al. [12], (c) Ramasubramaniam et al. [13], (d) calculated from lattice constant
(a0 = 0.287 nm) and ordinary theory of interstitial [14,15].

2.2. MD Modeling

The calculation model used in MD calculation is shown in Figure 3, where the orange
and blue spheres indicate the position of the Fe and H atoms, respectively, and the pink
spheres show the atoms with velocity constraints. Periodic boundary condition is applied
only in the z direction. Because α-Fe crystal is assumed, Fe atoms are arranged in body
centered cubic (bcc) lattices so that the xy plane corresponds to the (001) plane, as shown in
Figure 4. Initial positions of H atoms are tetrahedral sites (hereafter abbreviated as T-sites),
which are selected at random from all T-sites (as many as needed). They are represented by
a red solid circle in Figure 4.

The four-point bending test is adopted here. In this material testing configuration,
the maximum bending moment occurs in the wide region between two loading points by
indenters. Therefore, near the center of the specimen, the bending stress measured along
the thickness should exhibit a linear distribution of normal stress with a stress gradient
(SG) according to the linear elastic theory. The initial positions of the H atoms stated
above are restricted inside the red rectangular frame in Figure 3, where they are subjected
to almost maximum bending moment and are less affected by local stress concentration
produced in the vicinity of the two indenters. Additionally, one grain boundary (GB) gets
created at the center of the specimen along the x direction. Two crystals separated by the
GB plane are rotated oppositely by the same angle around the z axis. The reason why
the model includes the GB structure is that both diffusive and non-diffusive H atoms are
supposed to exist preferentially in the vicinity of the intergranular boundary. Although
mechanical properties strongly depend on the type of GB structure and its energy, the GB
structure used here is a well-defined symmetrical tilt boundary, which is specified by a
parameter: Σ = 5 (the misorientation angle is θ = 36.5 deg.). This GB can be constructed
by relatively small periodic units along the boundary and is therefore supposed to be
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energetically the most stable [16]. Two orthogonal crystal orientations, [310] and
[
310

]
,

correspond to the x and y directions in Figure 3, respectively. In order to scrutinize the
effect of GB, we should compare this bi-crystal model including GB with a single-crystal
model. However, unfortunately, when we preliminarily performed the bending simulation
of the single crystal model, uniform distribution of SG along the thickness was broken by a
strong curvature of the specimen due to the concentrated deformation around the contact
with indenters. Technically speaking, by including the GB structure as a kind of buffer of
inelastic distortion of the perfect lattice, such unwanted mechanical concentration could
be eliminated.
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Figure 3. Calculation model for MD analysis. Fe atoms are arranged in the bcc structure of α-Fe.
Atoms with velocity constraints are used to accomplish the four-point bending test as a pre-calculation.
A symmetrical tilt grain boundary (STGB) is located at the center of the specimen, and the GB plane
is parallel to the y-axis. The STGB used here is an energetically stable one called Σ =5, where the
misorientation angle is θ = 36.9 degrees.
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The calculation conditions are summarized in Table 2. The number of H atoms inserted
in the lattice is NH = 10, which seems low, while the number of Fe atoms is NFe = 51,095.
However, the concentration of H atoms in the present MD model is much larger than
the experimental estimation, CH = 5.602 × 10−8 at.%, which is estimated in iron at room
temperature via an empirical formula of Kubashewski [17]. The concentration of H atoms
near a lattice defect, such as the GB structure, should be elevated, as in the present MD
model, though it is still unclear in practice. In any case, if we assume that most H atoms
are located near the lattice defect, a concentration of H atoms in the MD model larger than
the experimental value will be quite acceptable.
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Table 2. Calculation conditions.

Property Value

Lattice Constant of α-Fe a0 [nm] 0.287

The number of atoms [−]
Iron (Fe): NFe 51,095

Hydrogen (H): NH 10

Hydrogen content CH [at.%] 0.196 × 10−3

Cell size in x, y, z [nm] 45.00, 12.00, 1.433

Misorientation angle of GB θ [deg.] 36.9

Temperature T [K] 300.0

Stress gradient (SG) [GPa/nm] 0.000, 0.222, 0.552, 0.935

Figure 5 shows the calculation flow. First, a calculation of the structural relaxation at
constant temperature is performed with no applied deformation. Then, in order to form
SG, a preliminary calculation with deformation by four-point bending is performed. After
that, maintaining the deformed state, the diffusivity of H atoms is evaluated as the main
calculation. In the preliminary deformation of the four-point bending, two indenters (the
constrained atoms colored in pink beneath the MD specimen in Figure 3) are provided with
constant velocity in the y direction, vy, and the constrained atoms at the two ends in the x
direction (the constrained atoms colored in pink above the MD specimen in Figure 3) are
completely fixed in the space, i.e., vy = 0; bending deformation then takes place on the xy
plane. The calculated temperature T is assumed to be in the standard state, and the velocity
scaling method is utilized in all calculations to keep a constant temperature of T = 300 K.
The SG values after applying bending deformation can be theoretically estimated as shown
in the last row of Table 2 (using the elementary bending theory of a straight beam). The SG
values obtained by MD calculation will be explained and discussed in the next section.
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Figure 5. MD calculation flow used in this study.

2.3. Stress Gradient (SG) Obtained by Bending

In the calculation of bending deformation, both of the indenters move with a constant
speed at vy = 0.0, 5.0, 10, and 20 m/s each for the duration of 90 ps, and the displacements
δymax occur at the maximum value of 0.00 (the case without SG) and 0.45, 0.90, 1.80 nm
(the cases with SG), respectively. Hereafter, those four conditions will be called “case
1” (δymax =0.00), “case 2” (δymax = 0.45 nm), “case 3” (δymax = 0.90 nm) and “case 4”
(δymax = 1.80 nm), respectively. For reference, the experimental value of actual SG comes
in the range of around 109 Pa/m, which was estimated from the measurement of residual
stress distribution in a drawn steel wire [11]. The SG values obtained in the present
MD calculation were in the range of around 1018 Pa/m and were much larger than the
experimental values. It is understood that the MD specimen is free from defects and is
almost a single crystal, so the elastic range will be much larger than an actual polycrystalline
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material. However, in “case 4”, which was applied the largest bending, it was observed
that mobile dislocations inevitably occurred in the specimen from the contact region to the
indenter. It should be noted that if bending deformation exceeds the level as realized in
“case 4”, the condition for the elasticity mechanism is no longer satisfied and a different
plasticity-dominated mechanism has to be considered regarding the effect of SG.

The distribution of normal stress σx (bending stress) obtained in the four cases is
shown in Figure 6. These distributions are produced from atomic stresses of limited atoms
located along the measuring plane that shifted in the x direction by −0.5 nm from the GB
plane. Basically, the stress and y position have a linear correlation. However, as shown in
Figure 6b,c for “case 3” and “case 4”, the increase in compressive stress is saturated in the
outer region (minus y position and minus σx stress) of the specimen. This is supposedly
due to dislocation emissions or strong constraints near the indenters. Therefore, either outer
region y > −2.3 nm in “case 3” or y > −2.0 nm in “case 4” should be technically excluded
in estimating the SG values. The individual plots of each atom in Figure 6 show large
deviations from the mean stress value. This is naturally caused by the thermal fluctuation of
atomic positions and forces at a finite temperature. Nevertheless, the averaged stress values
(solid lines in each figure) show a mainly linear relationship with regard to the direction
toward the thickness (in the y direction). It also seems that the averaged stresses match
the theoretical bending stresses (those estimated by linear elasticity). Table 3 summarizes
the calculated values of SG. The resulting state of those specimens with bending will be
effectively put to use in the next procedure of this study, in which calculation models will
be accompanied by a deformation field of linear SG.
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oms (atomic stresses) along the plane at 𝑥 = −0.5 nm, which is just on the left of the GB (𝑥 =0) in 

Figure 6. Stress distributions in three conditions of bending simulation. Normal stresses σx of atoms
(atomic stresses) along the plane at x = −0.5 nm, which is just on the left of the GB (x = 0) in Figure 3,
are shown. In evaluating the gradient, regions with saturation of stress (found in the compressive
region in cases 2 and 3) are omitted. (a) Case 2. (b) Case 3. (c) Case 4.
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Table 3. Stress gradients (SG) values obtained by bending simulation.

Calc. Case Maximum Displacement of Indenter
δymax [nm]

Stress Gradient
∂σ/∂y [GPa/nm]

1 0.000 0.000
2 0.450 0.222
3 0.900 0.552
4 1.80 0.935

3. Results and Discussion
3.1. Diffusion Behavior of H Atoms

The trajectories of H atoms under the stress state with SG are shown in Figure 7. Here,
orange-colored plots show Fe atoms, while blue-colored plots and lines show H atoms and
their trajectories (other indications are as follows: pink-colored plots show the atoms with
velocity constraint, a red-colored broken line represents the GB plane, and the green-colored
solid line represents the position of the free surface). As indicated by the black arrows,
the moving direction of each H atom in the bulk region has some directionality (which
may be called diffusion direction). The diffusion direction of H atoms for “case 1” shows
no common feature, whereas in “case 3” and “case 4”, it can be observed that many H
atoms are moving toward the positive y direction. In “case 4”, the region of Fe atoms more
condensed near the end of the figure presents mobile dislocations.
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Figure 7. Two-dimensional (on xy plane) trajectories of all atoms. Orange plots represent the position
of the Fe atom, and blue ones represent that of the H atom. (a) Case 1 (δymax = 0.00 nm). (b) Case 2
(δymax = 0.45 nm). (c) Case 3 (δymax = 0.90 nm). (d) Case 4 (δymax = 1.80 nm).

Table 4 shows the diffusion coefficients DH and DFe of H and Fe atoms obtained under
each condition, compared with the experimental values DH,exp [18] and DFe,exp [19]. Here,
DFe,exp is the self-diffusion coefficient of α-Fe at 766 K. The diffusion coefficient Di of the



Appl. Mech. 2024, 5 739

objective element i (Fe or H) is estimated from its mean square displacement (MSD) during
MD calculation using the Einstein equation shown in Equation (1).

Di =
1
Ni

∑Ni
j

{
rj(t)− rj(0)

}2

6t
(1)

where Ni is the number of i-type atoms, t is the duration of diffusion measurement
(t = 0.5 ns here), and rj (t) is the coordinate of atom j at time t. From Table 4, DH
tends to increase as the value of SG increases. DH is approximately 40 times larger than DFe
for “case 1”, 375 times for “case 2”, 575 times for “case 3”, and 540 times for “case 4”, that is,
the diffusivity of the H atom becomes significantly larger as SG increases, unlike DFe. This
means that the diffusion behavior is largely different between H and Fe atoms. It can also
be seen that the calculated diffusion coefficient DH is much smaller than the experimental
value DH,exp. In the experiment by Hagi, non-trapped H atoms were found to be responsi-
ble for the observed diffusion coefficient [18]. However, in MD calculations, as confirmed
in Figure 7, H atoms tend to stagnate in the GB region, and so DH becomes low value. As
the GB structure works as a strong trap site of H atoms and their atoms are bonded with
stronger energy than other trap sites such as vacancies and precipitates [20], it is reasonable
that H atoms stay there for a long time. The concentration of H atoms to a strong binding
site (e.g., lattice defects such as dislocation or GB) has already been discussed [21]. For
instance, using Mclean’s equation described in [21], we can estimate a theoretical value
that is hundreds of times larger than the present averaged value, CH = 0.196 × 10−3. The
present MD results reflect this tendency of concentration qualitatively well.

Table 4. Averaged diffusion coefficient of hydrogen atoms.

Calc.
Case

Maximum Bending
Stress σmax [GPa]

Diffusion Coefficient of H
Atoms DH [m2/s]

Diffusion Coefficient of
Fe Atoms DFe [m2/s]

1 0.000 3.898 × 10−10 9.590 × 10−12

2 1.810 5.202 × 10−10 1.385 × 10−12

3 2.698 7.925 × 10−10 1.378 × 10−12

4 5.158 16.44 × 10−10 3.048 × 10−12

- Experimental value DH,exp = 95.48 × 10−10 (a) DFe,exp = 5.41 × 10−23 (b)

(a) Hagi [18], (b) Iijima, et al. [19].

These results indicate that directional diffusion of H atoms occurs due to the variation
of strain or stress provided by bending. It also means that the amount of diffusion increases
due to the reduction in the cohesive energy around the H atom. These factors will be
discussed in detail in Sections 3.2 and 3.3, respectively. Because it is supposed that diffusion
of H atoms near the surface region is not largely influenced by SG, it is omitted here.
Therefore, we will focus on the behavior of H atoms in the bulk near the GB region in
this study.

3.2. Influence of SG on Diffusion Directions

Figure 8 shows the relationship between diffusion coefficients in the x and y directions,
i.e., DH(x) and DH(y), where the broken line serves as a reference when DH(x) and DH(y)
are equal. In “case 1”, DH(x) and DH(y) show very close values. On the other hand, in
“case 3” and “case 4”, where the SG is relatively intense, DH(y) dominates DH(x), that is,
the diffusivity of H atoms has a certain anisotropy so that it increases in the direction in
which bending stress changes (y-axis direction here).
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3.3. Influence of SG on the Amount of Diffusion 
Figure 10 shows the relationship between the cohesive energy 𝐸ୡ୭୦  of H atoms 
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Figure 8. Correlation of components of DH (diffusion coefficient of H atoms) in the x and y directions.

Figure 9 shows the time transition of the y position of each H atom located in the bulk
region. Broken lines represent their positions as the MD calculation starts, while solid lines
are those at final time. The moving direction of the H atom is indicated by a horizontal
arrow. For “case 3” and “case 4” with larger SG, it is confirmed that a lot of H atoms move
to the positive y direction, i.e., toward the tensile side. Because of the bending deformation,
the lattice structure of the α-Fe crystal is distorted so as to gain free volume for tensile area
but to reduce it for compressive area; consequently, H atoms diffuse more likely toward the
tensile side.
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3.3. Influence of SG on the Amount of Diffusion

Figure 10 shows the relationship between the cohesive energy Ecoh of H atoms calcu-
lated by Equation (2) and the SG value, which is denoted by ∂σ/∂y.

Ecoh = EH − Ebulk, (2)

where EH and Ebulk are averaged potential energies of Fe atoms just around the objective H
atom and in the whole crystal. Averaging for EH is performed within a spherical region
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with a radius r from the H atom, where r is chosen as the arithmetic mean of the first and
second nearest interatomic distances r1, r2 as to the T-site, i.e., r = (r1 + r2)/2 = 0.209 nm.
While cohesive energy is strictly defined as the energy difference between the whole system
with and without the H atom, the cohesive energy discussed here is an approximation of
the local vicinity of the targeted H atom. However, such evaluation using Equation (2)
will provide us with a good insight about diffusion behavior. As shown in Figure 10, the
cohesive energy of H atoms tends to decrease as SG becomes larger. This means that the
SG reduces the energy barrier required for diffusive movement of H atoms.
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and the stress gradient.

As usually explained in textbooks [22,23], the diffusion coefficient of jumping atoms
is largely enhanced by the increase in the activation volume around it. Intuitively, in
the tensile region, the activation volume will increase and the diffusivity will increase.
The dependency of Ecoh on the SG exhibited in Figure 10 should be taken into account
considering the effect of the activation volume and the stress state itself.

3.4. Relationship Between SG and the Diffusion Coefficient

As found in the textbook of diffusion [22,23] and explained above, in general, the
diffusion coefficient of atoms enormously depends on the local volumetric environment,
that is, the stress or strain state inside the material as well as ambient pressure [24]. On the
other hand, it has been pointed out that the hydrostatic stress hardly influences H atom
diffusion because these atoms need a negligible migration volume for diffusion barriers.
However, it has also been indicated that hydrostatic stress evidently alters the binding free
energy of H atoms to the vacancy or defect and thus changes the escape rate [25]. There
have been lots of investigations regarding the dependency of H atom diffusion in the Fe
system. The direct approach by MD simulation can capture the dependency of stress as
well as atomic mechanisms [26]. Discussion of our atomistic results presented here can also
be organized based on analysis of local stress state and its formulation, where a function of
diffusivity is made simply in terms of stress or pressure. In fact, experimental results have
clearly shown the dependence on pressure (e.g., the case of self-diffusion of gold [22]). On
the other hand, the interesting point of our model is that it has nano-sized (very local) stress
concentrations accompanying strong SG. Keeping in mind the fact that there have been
lots of formulations of atomic diffusion using the stress or pressure state, at this point, we
would like to first look at how much such microscopic and strong SG affects the diffusivity
of H atoms.

Figure 11 shows the relationship between the averaged diffusion coefficient of H
atoms and the SG supplied by bending. The graph employs a logarithmic scale just on the
horizontal axis for the value of SG (i.e., semi-logarithmic representation). It is confirmed
that there is a linear relationship, so the diffusion coefficient increases exponentially with
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regard to the SG value. Using an exponential-type least squares method, the mathematical
expression may be obtained as Equation (3).

DH = A exp
(

B
∂σ

∂y

)
, (3)

where A and B are parameters, and for the present results, they are A = 3.385× 10−10 m2/s
and B = 1.633 × 10−18 m/Pa, respectively. The approximation by Equation (3) is shown as
a dashed line in Figure 11, and it matches the calculated value very well. Some coincidence
can be found between Equation (3) and Arrhenius’s relationship, which is expressed by
an exponential function. A general Arrhenius’s expression for atomic diffusion as thermal
activation process is

D = D0 exp
(
− Ea

kBT

)
, (4)

where D, D0, and Ea are the diffusion coefficient, frequency factor, and activation en-
ergy, and kB and T are Boltzmann constant and temperature. Furthermore, D0 will be
decomposed as in Equation (5) [22]:

D0 = g f v0 a2
0 exp

(
∆S
kB

)
, (5)

where g and f are called the geometric factor and the correlation factor, ν0 is the trial
frequency that physically means thermal oscillation, a0 is a lattice constant, and ∆S is an
entropy of diffusion. The change in lattice constant directly affects D0 as in Equation (5)
and therefore D as in Equation (4). As described above in this paper, intuitively, it is due to
the change in activation volume for diffusion. However, if, for simplicity, a0 is assumed to
be constant and therefore the stress does not affect the value, then another factor, i.e., SG,
will play a role. To confirm this, we would like to extract SG as a key factor in changing
diffusivity after temperature, which must be the main factor.
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The exponential argument of Equation (3) does not depend on the temperature, so
it ought to be included in the prefactor D0 in Equation (5). Therefore, parameter A in
Equation (3) will change according to the temperature and the applied mechanical defor-
mation. However, parameter B inside the exponential argument of Equation (3) must be
constant (it can be validated from Figure 11), so the variable of SG, ∂σ/∂y, is depend on the
diffusion entropy ∆S. In the present MD results, as the SG increases, diffusion of H atoms
occurs not in a uniform fashion but with the direction from compressive to tensile fields.
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As the SG or strain gradient becomes strong in the crystal, there exist compressive and
tensile (with respect to mean stress field) regions at the same time. Therefore, such a stress
field promotes the diffusion of impurity atoms in a more directional manner. At present,
in our MD study, it is true that ∆S has not been well understood and not been directly
evaluated. However, the results clearly suggest that ∆S will increase with the increase in
non-uniformity (directionality) in a deformed state (i.e., bending) and stress (i.e., SG), and
such a situation increases the H atom diffusion.

Thus, we have performed the formulation of hydrogen diffusion in terms of SG. The
system temperature and stress distribution almost completely govern the diffusion of
hydrogen atoms in iron. Our results confirm that this dependency can also be applied
to atomistic (very tiny-scale) stress concentration by bending of the specimen and by the
structure of GBs in it. SG is surely included in such a heavily deformed structure, and it
may play an important role for hydrogen to diffuse there.

4. Conclusions

Using MD simulation, the diffusion behavior of H atoms in α-Fe bi-crystals and
its response to the applied stress gradient (SG) provided by bending deformation were
investigated, and the following findings were obtained.

1. Directionality for diffusion of H atoms occurs as the value of SG increases.
2. The amount of diffusion of H atoms increases as the SG increases. The diffusion occurs

in the direction from compressive to tensile stress field. This is caused by the slight
distortion of the crystal lattice by bending deformation, where the moving route of H
atoms toward the tensile side is generally expanded.

3. The approximated cohesive energy around H atoms becomes smaller as the SG
increases. This means that the energy barrier for an H atom to escape from the trap
site (T-site) will be reduced by the SG, and the diffusion becomes energetically easier.

4. The MD simulations show that there is a certain relationship between the diffusion
coefficient of the H atom, DH, and the stress gradient, ∂σ/∂y, as expressed by the
following equation (A and B are parameters):

DH = A exp
(

B
∂σ

∂y

)
Because parameter B in the exponent argument is almost a constant value in constant

temperature, it is inferred that the SG is expected to be correlated to entropy of diffusion.
However, in reality, system temperature and stress distribution almost completely

govern the diffusional behavior of hydrogen atoms. In addition, we clarified that the
atomistic stress concentration by bending of the specimen and by the structure of grain
boundaries also play a certain role.
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