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Abstract: Rigid particle models (PMs) that explicitly consider the influence of the aggregate
structure and its physical interaction mechanisms have been used to predict cracking
phenomena in concrete. PMs have also been applied to reinforced concrete fracture, but
the known studies have adopted simplified reinforcement and reinforcement/particle
interaction models. In this work, a novel 3D explicit discrete element formulation of
reinforcement bars discretized through several rigid cylindrical segments is proposed,
allowing the 3D reinforced particle model (3D-RPM) to be applied to reinforced concrete
fracture studies, namely for shear failure. The 3D-RPM is evaluated using known three-
point and four-point bending tests on reinforced concrete beams without stirrups and on
known shear transfer tests due to dowel action. The 3D-RPM model is shown to reproduce
the crack propagation, and the load displacement response observed experimentally for
different steel contents under three-point bending, for different beam sizes, under four-
point bending, and for different bar diameters, under shear. The validation examples
highlight the importance of including a nonlinear reinforcement/particle interaction model.
As shown, an elastic model contact leads to higher vertical loads in three-point and four-
point bending tests for the same set of contact properties and, in the shear tests, leads
to an overestimation of the maximum shear strength and to an increase in the model
initial stiffness.

Keywords: reinforced concrete; fracture; discrete element; particle model; mesoscale;
reinforcement model; reinforcement/particle interaction; shear transfer; dowel action

1. Introduction

The assessment of reinforced concrete structures requires numerical tools that can
represent the formation, propagation and localization of cracks, the concrete/reinforcement
interactions and their effect on the overall behavior. It is difficult to characterize this
complex behavior using a continuum displacement formulation, as a suitable stress—strain
law may not exist, or the constitutive law may be excessively complex, especially under
shear loading [1].

Detailed rigid particle models (PMs) based on the discrete element method (DEM)
have been shown to be an interesting alternative for fracture assessment given that the
development of failure surfaces and their interaction occurs naturally as the structure is
initially idealized as a discontinuous media. By considering the material grain structure
and the physical mechanisms of grain interaction, PMs include in a direct way the material
randomness and internal length. PMs based on the DEM were initially applied to rock
fracture [2-6] and later extended to other quasi-brittle materials such as concrete [7-13],
reinforced concrete [14,15], old masonry walls [16-19] and asphalt mixtures [20-22].
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Several enhancements have been proposed in both 2D and 3D to address some of the
limitations of the initial PM formulation for fracture studies [2], namely more complex
particle shapes closer to the real grains [4,5,10,11,23], heterogeneity [6,8,17,19], adopting
contact models that allow moment transmission [11], increasing particle contact interaction
range [3,7,9,11], considering the real material internal structure through microcomputed
tomography [10,24-26], adopting complex contact constitutive models including softening
branches or strain rate effects [9,11-15], adopting viscoelastic contact models [20,22], includ-
ing particle deformability [5,23,27] and adopting hybrid discrete element/finite modeling
approaches [18,21].

When compared with meshless-based particle models based on a continuum approach,
such as smoothed particle hydrodynamics (SPH) [28,29], the material point method [30,31],
the extended finite element method [32] and the peridynamics approach [1,33], which
allow discontinuities to occur and propagate, DEM-based PMs have the advantage of
considering in a direct way the heterogeneous internal structure of concrete and the particle
geometry, which is important to model the aggregate interlock mechanism present in
reinforced concrete.

To model reinforced concrete structures, it is necessary to consider the reinforcement
model and to account for the reinforcement/concrete interaction mechanisms. Three
different approaches to represent reinforcement bars, depending on the type of problem
being assessed, are usually adopted in continuum-based finite element (FEM) models [34]:
(i) a discrete representation, usually adopting 1D bars that are connected to the concrete
through linkage elements (springs) that may have bond/slip laws in the axial direction;
(ii) a distributed representation, where the reinforcement bars are smeared over the concrete
elements, a perfect bond is assumed and a composite stiffness matrix is usually built; and
(iii) an embedded representation, where the reinforcement bars are directly modeled with
their axial stiffness and a perfect bond is assumed.

In DEM, reinforcement bars are first modeled in 2D as a special contact between two
discrete entities, using the same procedure as adopted for the traditional block-to-block
contact [35]. A similar procedure has been adopted in the 3D numerical modeling of
reinforced concrete tension stiffening tests [36]. For 2D DEM-based PMs, reinforcement has
been considered by adopting in the particles that are intersected by the reinforcement bar an
additional contact that adopts similar principles to the single contact point usually adopted
in PMs [37]. In [15], a 2D reinforcement model that discretizes the reinforcements bars with
1D rigid lines and adopts a 1D reinforcement line/particle interaction through axial and
shear springs was proposed and later applied to old masonry strengthening analysis [19].
In 3D DEM-based PMs, the most straightforward way to include the reinforcement is to
discretize the reinforcement bars using lines of spherical particles of the same diameter as
the reinforcement bar diameter [14,38], with mechanical contact properties that match the
reinforcement properties. This approach may lead to a higher number of particles to be
adopted given the particle size (reinforcement diameter), and the reinforcement/ particle
interaction inherits an artificial boundary roughness.

In similar mesoscale models based either on the Lattice model [39], on the Rigid Body
Spring Model (RBSM) [40] or on the Lattice Discrete Particle Model [41], steel reinforcement
is usually represented by two different approaches: (i) one-dimensional bar elements, Euler
or Timoshenko beams, that interact with the concrete particles via a spring interface that
may include nonlinear bond/slip laws [42-46]; (ii) the reinforcement bar is represented
using a finer particle discretization of the steel reinforcement geometry [47,48], adopting
different material properties for the particles representing the reinforcement bars and for
the particles representing concrete, and the reinforcement/concrete interface is handled as
a usual particle/particle interaction.
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Three-dimensional PMs’” applications to reinforced concrete fracture studies have
adopted simplified representations of the reinforcement and of the reinforcement/particle
interaction models [14,37,38]. At mesoscale studies, specially under shear loading condi-
tions, the representation of the reinforcement with an array of spherical particles that have
an associated artificial roughness [14,38], or with a 1D reinforcement line that interacts
with particles through interfaces [37], needs to be improved. To tackle this issue, a novel
3D reinforcement/particle model (RPM) based on the 2D model [15] is proposed for re-
inforced concrete fracture studies. In the proposed 3D-RPM, the reinforcement bars are
discretized with cylindrical rigid elements that interact at the end nodes. Each cylindrical
rigid bar element is sub-discretized with spherical particles along its length, which are
rigidly associated with the rigid cylindrical bar. The spherical particles are only used for
contact interaction purposes. With the proposed modeling approach, the reinforcement
bar model and the reinforcement bar discretization required for contact purposes with
the surrounding concrete are made independent. The artificial roughness associated with
sub-discretizing a cylindrical rigid element with spherical particles for contact interaction
purposes is smoothed by removing from the reinforcement/particle contact unit normal
the vector component parallel to the rigid element axial direction.

The 3D-RPM is validated using known three-point and four-point bending tests on
reinforced concrete beams and on known shear transfer tests due to dowel action. As
shown, the 3D-RPM can reproduce the crack formation, propagation and localization
and the load displacement response observed experimentally in the different tests, for
different steel contents (three-point and dowel tests), and for different beam sizes and ratios
(four-point tests). The numerical studies presented also show the relevance of adopting
a modeling approach that allows for bond/slip and where the mechanical reinforcement
behavior is made independent of the contact interaction.

2. Three-Dimensional Reinforced Particle Model (3D-RPM) Formulation
2.1. Particle Model (PM) Based on the Discrete Element Method

In a 3D-PM based on the discrete element method (DEM), the structure is represented
as an assemblage of particles that interact with the neighboring particles at the contact
points or interfaces. Given computational restrictions, the particles are usually assumed to
be rigid and to have a spherical shape [2].

In a 3D-PM DEM-based model, it is assumed that during a single timestep, the
disturbances can only propagate from a particle to its immediate neighbors, following a
soft contact approach where the overlap of the particles is accepted. This overlap is not a
real overlap, but it intends to model, in an indirect way, the deformation of the interacting
particles at the contact point. The motion of a single particle is governed by the resultant
moments and forces acting upon it. Newton’s second law of motion is integrated twice
to define the particle displacements and rotations. In a 3D-PM DEM, a centred-difference
scheme is usually adopted leading to the following expressions for the particle velocities at
time t + At/2:

Fi(t) + Fi(t

xlg+At/2 _ x;‘—At/Z_'_ i() i ( >At 1)
d

wllj+At/2 _ ‘Uf_At/z n M;(t) J; M (t)At %)

where F;(t) and M;(t) are the total applied force and momentum applied at instant ¢, F4(t)
and Mfl(t) are the damping force and momentum applied at instant ¢, m and I correspond
f+At/ 2 f+At/ 2 are the velocities at time ¢ + At/ 2,
are the velocities at time t — At/2.

to the mass and inertia of the particle, x and w

and xf‘At/z and wf_At/z
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The uniaxial tests here presented were carried out under displacement control, adopt-
ing a constant plate velocity that assures quasi-static loading conditions. A local non-viscous
damping approach with a damping value of 0.70 was adopted [49]. The three-point and
four-point bending tests follow an adaptive dynamic relaxation viscous damping (ADR)
approach under, respectively, displacement and load control, allowing larger loading steps
to be adopted and faster convergence rates [15]. In the shear transfer due to dowel action
tests, a similar procedure to that adopted in the uniaxial tests was adopted.

2.1.1. Voronoi-Generalized PM (VGCM-3D)

The adopted particle interaction follows a 3D Voronoi-generalized contact model
(VGCM-3D) [11]. The Laguerre—Voronoi tessellation of the gravity centres of the interacting
spherical particles is adopted to set the contact surface and the contact location of the two
interacting particles, given the common Voronoi facet, as shown in Figure 1. Compared
with complex polyhedral-based PMs [23,36], a PM that adopts a VGCM-3D keeps the
simplicity of spherical particle interaction [2], reducing the need for a substantial increase
in computational effort.

(a) (b)

Figure 1. VGCM-3D contact model: Voronoi facet vertexes and its gravity centre are used to set

contact geometry and local contact points: (a) (t, n) plane and (b) (s, t) plane, Voronoi cell neigboring
particles are represented in red with a reduced radius.

For a given local contact point, with a local normal (ky ]) and shear stiffness (ky ]), the
local normal and shear forces increments are obtained following an incremental linear law:

AR = il axUN = il (i at)m, ®)

AP = DA = (i - axlNIny) @)

i

[.5]

where AxU"N] is the normal contact displacement increment, Ax;”"" is the contact shear

displacement increment, Jkl[-] ] is the contact displacement increment, and #; is the contact

unit normal. The approach adopted in [2] is followed, so the normal components (forces
and displacements) are stored as scalars, and the shear components are stored as vectors.
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The VGCM-3D contact stiffness is set given the adopted Young’s modulus of the
equivalent continuum material (E) and given a constant that relates the normal and the
shear stiffness spring value («):

E
kil = 74l ©)
W =akf (6)

[J]

where A¢” is the local point j-associated contact area, and d is the distance between the
particles centre of gravity. The local-contact-point-associated area is defined by the total
sum of one-third of the triangular areas associated with the given local contact point, see
Figure 1. The local contact strength values are defined based on the maximum contact
tensile stress (0y.t), the maximum contact cohesion stress (7), and the local contact point
area (Ay ]):

Fiylnux = On.t Ay] (7)

Cithx = 7 A ®)

Given the contact maximum cohesion strength, the maximum shear contact force at
the local point is given as follows:

Fs[.]rLax: Cyz]ax + Ff[l”yC )
where . is the contact friction coefficient.

2.1.2. Model Generation

In the adopted model generation, the aggregate content comprising one or more
particle diameter dimension ranges is inserted from the highest to the smallest particle
diameter range. A spherical shape is initially adopted. The spherical particles that represent
the mortar are subsequently introduced adopting a porosity value of 0.1 and a uniform
distribution, featuring diameters usually lower than the minimum diameter adopted to
represent the aggregate content [11]. After a compact spherical particle assembly is formed,
the centres of gravity of the spherical particles are triangularized based on a weighted
Delaunay algorithm. The dual Laguerre—Voronoi diagrams are defined considering the
constructed weighted Delaunay tetrahedra. A VGCM-3D contact between two neighboring
particles is established given the associated Laguerre—Voronoi facet.

Figure 2 shows the adopted PM generation procedure regarding the uniaxial tests that
are used to calibrate the contact properties for the three-point bending case study. For the
aggregate, two sieve sizes were adopted, the largest sieve size with an aggregate content of
24% of the volume for particle diameters between 8.0 mm and 12.7 mm, and the smallest
sieve size for particle diameters between 6.0 and 8.0 mm for an aggregate content of 20% of
total volume. The particles representing the mortar were subsequently introduced adopting
a porosity value of 0.1 and a uniform distribution, featuring diameters ranging between
5.6 and 6.4 mm [11]. Due to the computational costs associated with PMs, a particle size
distribution larger than the actual concrete aggregate and mortar sizes was usually adopted.
Additional DEM-based concrete model generation approaches can be found in [50].
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@

(b)

Figure 2. PM generation steps for concrete: (a) Particles with 8.0 to 12.7 mm diameter representing the
largest aggregate sieve size (black); (b) compact assembly with particles with 5.6 to 6.4 mm diameter
representing the mortar (red) and particles with 6.0 to 8.0 mm representing the smallest aggregate
sieve size (grey); (c) Laguerre—Voronoi cells of the aggregate particles with 8.0 to 12.7 mm diameter
representing the largest adopted sieve size.

2.1.3. Vectorial Bilinear Weakening Model (BL)

A vectorial bilinear softening contact damage model (BL) is adopted in the normal
and shear directions [11,15] (Figure 3). The damage value in each contact direction, tensile—
normal and shear, is updated given the maximum contact displacement registered in that
direction, and the contact damage is given by the sum of the tensile damage and the
shear damage.

A A
Fr[zl] C[l]
Ul br ..
Fnt.max ‘ Cmax '\«
! \
I\ N
v /i 7\ S LN,
0.25 Fnt.max *********** D
N . » g ! i \ ~
Ul LU0 00 LU N
Xny Xno xnfl xnf xr[l” XsyXso xsfl xsf x&’]
/
// x1[{1]‘1= 2 Gf.n (ij /Fr[{gmax) fo]l =2 Gf.s (AE‘” /CrLll]ax)
ul_ Ul Ul Ul
x,”l(], =0.75 (x,[{}l - x,L{J],) + x,[g, X50=0.75 (x5, — Xg) + X5y
x,Ll’} =5 (x,q}l - x,Lﬂ,) + x,[ﬂ, xE’f] =5 (xsuf]l - xg’}],) + xsu}],
(@) (b)

Figure 3. Bilinear vectorial softening contact model (BL): (a) Normal-tensile direction and (b) shear
direction (FSU I cll + Fr[l]]]lc).

The BL contact model has been shown to be a reliable choice for PM fracture studies,
offering several advantages in detailed 3D PM DEM-based models [11]. Compared with
more sophisticated contact models [41], the BL contact model simplifies the calibration
process by reducing the number of contact strength parameters and has lower associated
computational costs, without comprising the predicted concrete macroscopic response for
different loading scenarios [11].

2.2. Proposed Reinforcement Model

In this work, a new procedure is proposed that discretizes each reinforcement bar
using several rigid cylindrical segments that interact with each other at the reinforcement
bar ends, where the reinforcement elastic and strength properties are lumped. The novel
explicit formulation for the reinforcement model here presented follows similar principles
to that adopted in a 2D RPM [15]. A similar reinforcement 2D model can also be found
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in [51] within the RBSM framework, which is the first formulation that models 2D bars
using rigid bodies connected by springs, for in- and out-of-plane frame vibration analysis
and beam plastic collapse.

The contact interaction between two rigid cylindrical elements at a given interaction
location is presented in Figure 4. As in the 3D-PM, each cylindrical rigid bar element has
six degrees of freedom of displacement/rotation and force/moment at its centre of gravity.

Figure 4. Reinforcement model: Lumped properties at the interaction node given two rigid
cylindrical elements.

The location of the interaction node (x([;c]) where the elastic and strength properties
are lumped, is given by the coordinate averages of the end nodes of each rigid cylinder
adopted in the discretization of the reinforcement element:

xi =05 (x4 2P (10)

A BI] .
Z[ ] 1[ ]1sthe

location of the beginning node I of rigid cylindrical element B. For a given rigid cylindrical

where x." " is the location of the end node | of rigid cylindrical element A, and x

element, the locations of the beginning node and of the end node are defined given the
rigid cylindrical element length (L[4]) and the axial direction (a Z[A] ):

A _ dan LA

1 1 2 1 (11)

xi i 2

a1 _ lan  E 1)

The axial direction at the contact location (al[-c]) is given by averaging the axial direc-
tions of the interacting cylindrical rigid discrete elements under analysis:

(€]
1

(]

al¥ — 05 (al- —l—a[B]) (13)

i
At the interaction location, the elastic properties are concentrated into an axial stiffness
ks, a shear stiffness ks, a bending stiffness k;, and a torsional stiffness k; that are given

as follows: EA I - Ef
k”:T;kS:f;kb:f;kt:T

(14)
where L is the length associated with the interaction location given by L = 0.5 (L[A] + LIB] ) ,

A is the cross-sectional area of the rigid cylindrical element given by A = ”TDZ, D is the
rigid cylindrical element diameter, I is the moment of inertia of the cross-section given
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by I = ”6—24, J is the polar moment of inertia of the cross-section of a circular section of
diameter D given by | = ”3—24, E is the Young’s modulus of the reinforcement bar, and G is
the shear modulus of the reinforcement bar.

At the contact location, the axial and shear contact force increments are obtained

following an incremental linear law:
AFI = —k, (3;88)a; = —koAx17) (15)

AFF = K, (JkiAt—Ax[”]a,-) = —kAxl (16)

3
1
ment increment, and x; is the contact displacement increment. Similarly, the contact location

where Ax!¥ is the contact displacement axial increment, Ax;" is the contact shear displace-

torsional increment and bending increment are also obtained following an incremental law:
AMI = —k, (é,-At)a,» = —k,A0lY (17)

1)
1

AMl = g, (éiAt—AB[t]ai) N (18)

In the numerical examples presented in Section 3, a trilinear stress—strain diagram was
adopted at the interaction node, see Figure 5.

A

: n¢4

Famax = Oamax 4

| i o

‘ M =0 —
Eg ; b.max amax ™ ¢

6_1 Y 6_1 €a

Figure 5. Reinforcement constitutive model of a reinforcement bar with diameter ¢ follows a trilinear
stress—strain diagram: in the numerical examples here presented a value of g = 1.25 and a value of
v = 5.50 were adopted.

2.3. Proposed Reinforcement/Particle Interaction Model

One possibility for handling the reinforcement bar/concrete interaction would be to
adopt a cylindrical/spherical particle detection/interaction scheme. Instead, in this work,
each cylindrical rigid bar element is sub-discretized with spherical particles along its length,
that are rigidly associated with the rigid cylindrical bar, Figure 6.

With the adopted contact interaction scheme, it is possible to adopt for the interaction
between the rigid cylindrical particles (reinforcement bars) and the rigid spherical particles
(concrete) the simplified spherical particle/spherical particle interaction model as defined
in Section 2.1. For the reinforcement/concrete interaction, only one local contact point
is adopted. With the adopted approach, the reinforcement bar discretization with rigid
cylindrical elements that control the reinforcement bar’s mechanical behavior is made
independent of the particle discretization adopted for contact purposes.
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(a)

(b) (©)

Figure 6. Discretization of rigid cylindrical elements with spherical particles: (a) Rigid cylindrical
element; (b) sub-discretization of the cylindrical rigid element with spherical particles for interaction
reasons with minimum particle overlap; (c) sub-discretization of the cylindrical rigid element with
spherical particles for interaction reasons with a 0.50 radius overlap.

The unit normal of the concrete spherical particle/rigid element spherical particle
contact is corrected considering the axial direction of the cylindrical rigid element to which
the rigid element spherical particle belongs. In this way, the roughness associated with
sub-discretizing a cylindrical rigid element with spherical particles is smoothed, avoiding
the numerical influence of artificial particle interlocks.

The elastic and strength properties of the reinforcement cylindrical rigid ele-
ment/concrete spherical particle contacts are defined using the same methodology adopted
for the particle/particle contacts, see Section 2.1. Similarly, a BL contact model is adopted
for reinforcement/concrete interactions. The adopted algorithm also ensures that a given
concrete particle can only have one single contact point with a rigid cylindrical element
sub-discretized with spherical particles.

3. Validation Examples
3.1. Methodology

The 3D-RPM with reinforcement and reinforcement/ particle interaction capabilities is
validated using a three-point bending reinforced concrete beam model [52] and a four-point
bending reinforced concrete beam model [53]. A known shear transfer test due to dowel
action only was also assessed [54].

The three-point and shear-point experimental tests that were taken as a reference [52,53]
were chosen because they are well-known studies of reinforced concrete beams with only
longitudinal reinforcement, that make it simpler to validate the 3D-RPM, but also introduce a
required complexity, given that it handles different steel contents and beam geometries. The
shear test taken as reference [54] was chosen because it is a well-known study that addressed
shear transfer in concrete panels by first assessing aggregate interlock and dowel action on
its own, and later assessed both phenomena contributions in reinforced concrete cracked
panels [55].

In all numerical examples presented, the VGCM-3D contact elastic and strength
parameters were calibrated using similar geometries to those adopted in the experimental
studies that were taken as a reference, following a trial-and-error procedure, which relies on
the user experience. It is important to mention that there are contact calibration approaches
that can ease the calibration process and reduce the user expertise requirements, such as
those based on design of experiment method (DOE), on machine learning methods (ML),
or on evolutionary approaches (GA) [56-58].

Given the adopted particle size, it was decided not to represent the concrete hetero-
geneity; for this reason, the same contact properties were adopted independently of the
particle type (aggregate/mortar).
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3.2. Three-Point Bending Test

The 3D-RPM with reinforcement and reinforcement/ particle interaction capabilities
was applied in the assessment of a three-point bending test geometry that was adopted in
the analysis of minimum reinforcement area in high-strength concrete [52]. Only the small-
est beam size from the experimental study carried out in [52] was numerically assessed,
Figure 7.

.
100

(mm)

Figure 7. Three-point bending test geometry: smallest beam size studied experimentally in [52].

The concrete, made of crushed aggregate with a maximum diameter size of 12.7 mm,
had an average maximum compressive stress of 91.2 MPa, obtained using cubic specimens
measuring 160 mm, and a modulus of elasticity of 34.2 GPa. A Poisson’s coefficient of 0.18
and a maximum tensile strength of 4.6 MPa were assumed for contact calibration purposes.

As pointed out in Section 2.1.2, two sieve sizes were adopted, the largest sieve size
representing particles with diameters ranging between 8.0 mm to 12.7 mm had an aggregate
content of 24% of the total volume, and the smallest sieve size representing particles with
diameters ranging between 6.0 and 8.0 mm had an aggregate content of 20% of the total
volume. A uniform distribution with particle diameters ranging between 5.6 and 6.4 mm
was adopted to represent the mortar. The best-fit values of the contact elastic and strength
properties were obtained through a trial-and-error calibration process on 160 mm cubic
specimens, using uniaxial compression and tensile tests, see Table 1.

Table 1. Three-point bending test: 3D-RPM best-fit contact properties .

Elastic Strength
E M On.t T G]{ n Gf_ s
(MPa) (MPa) (MPa) He (N/'mm)  (N/mm)
52.88 0.25 6.50 32.40 0.3 0.0082 6.084

! Macroscopic numerical predictions: Maximum tensile strength (4.6 MPa), Maximum Compression strength
(90.6 MPa), Elastic modulus (34.2 GPa) and Poisson’s coefficient (0.18).

In all numerical examples, the reinforcement bars with a cross-sectional area equal
to that adopted in the experimental studies were discretized with 32 mm long cylindrical
rigid elements. For interaction reasons, a 0.50 radius overlap was adopted for the sub-
discretization of the cylindrical rigid elements with spherical particles. A Young’s modulus
of 200 GPa was assumed for the steel bars. As in the experimental study [52], the distance
from the reinforcement bars to the lower beam face was set equal to one-tenth of the beam
depth. In the numerical examples, the steel content and reinforcement bar sizes considered
(14, 295, 298, 2910) were similar to those adopted in the experimental studies [52].
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As a reference, the three-point bending tests with a 5 mm reinforcement diameter
had around 11,495 particles representing the aggregates and 46,495 particles represent-
ing the mortar, corresponding to a total of approximately 385,000 VGCM-3D contacts
(~2,320,000 local contacts). The reinforcement/particle interaction was represented by ap-
proximately 5300 single-contact-point VGCM-3D contacts.

Regarding the reinforcement/ particle interaction, three different numerical approaches
were adopted: (i) an elastic model (EL); (ii) a BL model with the same strength properties
as those adopted for the concrete contacts (NL); and (iii) a BL model with a 50% reduction
in the contact strength properties adopted for concrete (NLR).

Figure 8 shows the NLR approach for each steel content and adopted reinforcement
bar size, the predicted numerical final deformation magnified 20 times, and the predicted
final crack patterns. In all numerical tests, cracking first occurred at the bottom zone close
to the zone of maximum bending moment (beam midspan). Later, the cracked surface
developed towards the upper plate where the vertical load was applied. As shown in
Figure 8, for higher reinforcement steel ratios, secondary diagonal cracking also occurs for
higher loading values. Higher reinforcement steel ratios allow the load to be transmitted
from the upper plate at midspan to the lower supporting plates through an arch effect; the
higher the steel ratio, the higher is the number of diagonal cracks that can be formed.

(b)

© : (d)

Figure 8. Three-oint bending test. Amplified displacement field (20x) and final contact failure
distribution for different reinforcement steel ratios: NLR reinforcement/particle model (a) 194
(07 = 637 MPa); (b) 2®5 (07 = 569 MPa); (c) 208 (07 = 441 MPa) (d); 2®10 (0;, = 456 MPa).

Figure 9 shows the vertical load-midspan displacement numerical predictions for the
different adopted reinforcement steel content: without steel (WS); 1d4; 2d5; 28; and 2P10.
For each reinforcement steel content, the numerical results obtained with each adopted
reinforcement/particle interaction approach are compared: (i) elastic model (EL); (ii) BL
model with the same strength properties as those adopted for the concrete contacts (NL);
and (iii) BL model with a 50% reduction in the contact strength properties adopted for
concrete contacts (NLR). Also presented are the experimental curves [52] that were obtained
for each tested reinforcement content (Exp (1990)).
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Figure 9. Three-point bending test—Vertical load—-midspan displacement diagrams for different rein-
forcement steel ratios, including the experimental diagrams Exp (1990) adopted from [43]: (a) Without
steel (WS); (b) 1®4; (c) 2P5; (d) 2P8; (e) 2010; (f) All numerical (NLR) including the contact
damage evolution.

For the case without reinforcement, Figure 9a, the numerical prediction (WS) is shown
to have a good agreement with the experimental response (WS-Exp), the numerical response
being slightly more brittle than that observed experimentally. If a more refined PM was
adopted and the concrete heterogeneity represented, it would be possible to numerically
predict a more ductile post-peak behavior.

When compared with the elastic reinforcement/ particle contact model (EL), the pre-
dictions obtained with a BL contact model (NL and NLR) are in better agreement with the
experimental tests, for all the assessed reinforcement scenarios (Figure 9b—e). As shown, a
BL contact model with a 50% strength reduction (NLR) predicted the best agreement with
the known experimental results for all the steel reinforcement contents (Figure 9b-e).

Figure 9f shows the 3D-RPM predictions with a 50% strength reduction for the rein-
forcement steel contents under assessment (NLR). The numerical tests clearly indicate that
the transition from a brittle to a more ductile response occurs for a level of reinforcement
corresponding to 25, similarly to that obtained in the experimental studies [52].

3.3. Four-Point Bending Test

A four-point bending configuration, as shown in Figure 10, was also assessed using the
proposed 3D-RPM. The test geometry was adopted to study the size effect on diagonal shear
failure of reinforced concrete beams without stirrups [53]. The micro-concrete, composed
of aggregates with a maximum size of 4.8 mm, exhibited an average compressive strength
of 46.8 MPa, as measured on cylindrical specimens with a diameter of 76 mm and a height
of 152 mm. A Poisson’s coefficient of 0.18, a Young’s modulus of 36.2 GPa, and a maximum
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tensile strength of 3.2 MPa were assumed for contact calibration purposes. Like in the
experimental setup, the numerically tested geometries had a constant thickness of 38.1 mm.
In the numerical models, a 77 value of 790.0 MPa was adopted, which is within the range
of yield strengths reported, 690.0 MPa to 890.0 MPa [53].

1.25d

Figure 10. Four-point bending test geometry studied experimentally in [53].

In the PM, the aggregate was represented with a single sieve size that had an aggregate
content of 35% of the volume representing particles with diameters ranging between 5.0 mm
and 7.2 mm. A uniform distribution with particle diameters ranging between 4.6 and
5.2 mm was adopted to represent the mortar. The best-fit values of the contact properties
were obtained through a trial-and-error calibration process on 76 mm X 76 mm x 152 mm
specimens, using uniaxial compression and tensile tests, Table 2. Also presented are the
best-fit contact properties that give the best maximum load predictions when adopting an
elastic model for the reinforcement/particle interaction (EL).

Table 2. Four-point bending test: 3D-RPM best-fit contact properties !.

Elastic Strength
Approach E N Ot T G Grs
(MPa) (MPa)  (MPa) e (N/mm) (N/mm)
NL 4.55 13.3 0.5 0.0035 0.8835
EL 5510 0.25 3.90 138 05 00026 09511

! Macroscopic numerical predictions: Maximum tensile strength (NL: 3.2 MPa; EL: 2.75 MPa), Maximum Com-
pression strength (46.8 MPa), Elastic modulus (36.2 GPa), and Poisson’s coefficient (0.18).

Two different beam sizes were numerically tested, the smallest size adopted in the ex-
perimental study (d = 40.64 mm) and an intermediate size (d = 60.96 mm) that corresponds
to an intermediate size between the smallest size (d = 40.64 mm) and the following size
adopted in the experimental study taken as reference (d = 81.28 mm) [53].

The adopted reinforcement bars were discretized with 10.16 mm long cylindrical
rigid elements. For the intermediate beam size that was only tested numerically, the
beam geometry and the steel reinforcement were defined given the average values of the
experimental tests (d = 40.64 mm and d = 81.28 mm). The cross-sectional areas are equal to
those adopted in the experimental studies (d = 40.64 mm: 2¢6.19 and d = 60.96 mm: 2$8.34).
For interaction reasons, a 0.50 radius overlap was adopted for the sub-discretization of the
cylindrical rigid elements with spherical particles. A Young’s modulus of 200 GPa was
assumed for the reinforcement steel bars.

As a reference, the shear-point bending tests with the highest numerically adopted
beam depth (d = 60.96 mm) had around 3198 particles representing the aggregates
and 13,894 particles representing the mortar, corresponding to a total of approximately
105,500 VGCM-3D contacts (/633,000 local contacts). The reinforcement/particle inter-
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action was represented by approximately 2550 single-contact-point VGCM-3D contacts.
Regarding the reinforcement/particle interaction, two different numerical approaches were
adopted: a BL model with the same strength properties as adopted for the concrete contacts
(NL), and an elastic contact model (EL) with slightly different contact strength properties
that were required to be adjusted to match the maximum load predictions.

Figure 11 shows the predicted crack pattern evolution and the final displacement
(magnified 10 times), for the smallest beam size numerically tested (d = 40.64 mm), when
an NL reinforcement/particle model is adopted. As shown, several tensile cracks occur at
the lower face in the zone of maximum bending moment (central part midspan in between
the upper plates). Following this, some of the cracks grow from the lower face towards the
upper plates, initially in a vertical direction and later with a diagonal curved shape. At
higher loads, additional diagonal cracks due to tensile loading occur. Up to the maximum
load, there is some symmetry in the final cracking patterns, but at a later stage, a diagonal
failure tends to localize in one of the sides, see also Figure 11f.

(e) (f)

Figure 11. Four-point bending test: Contact failure distribution evolution and magnified displace-

ment for the smallest beam geometry adopting an NL reinforcement/particle interaction model
(@) P = 0.32 X Prax; (b) P =0.55 X Prax; (€) P = 0.64 X Pray; (d) P = 0.84 X Prax; (€) P = 1.0 X Prax;
(f) displacement magnified 10 times.

Figure 12 shows the predicted crack pattern evolution and the final displacement (mag-
nified 10 times), for the largest beam size numerically tested (d = 60.96 mm), when an EL re-
inforcement/particle model is adopted; a similar crack propagation and localization occurs.

Table 3 presents, for each beam numerically assessed (40.64 mm and 60.96 mm), the
maximum load numerical predictions for the reinforcement/particle interaction when
adopting a BL model with the same strength properties as adopted for the concrete contacts
(PNum-NL) and when adopting a reinforcement/ particle interaction elastic model (Pnym-EL)-
Also presented are the range of maximum loads obtained experimentally (Pgxp) [44]. As
shown in Table 3, the 3D-RPM model’s maximum load predictions for each beam size are
in good agreement with the maximum values obtained experimentally for both EL and NL
reinforcement/particle contact models.

Table 3. Maximum vertical load: 3D-RPM best-fit contact properties and experimental results [44].

Beam Size (mm) Pexp (KN) PNum.NL (KN) PNum-EL (kN)

40.64 5.92-6.49 6.20 6.20
60.96 8.45-8.83 8.50 8.50




Appl. Mech. 2025, 6, 2

15 of 24

(e) (f)

Figure 12. Four-point bending test: Contact failure distribution evolution and magnified displacement
for the d = 60.96 mm beam geometry adopting an EL reinforcement/particle interaction model
(@) P =029 X Prax; (b) P = 0.59 X Prax; (€) P = 0.65 X Prnax; (d) P = 0.88 X Pray; (€) P = 1.0 X Prax;
(f) displacement magnified 10 times.

Figure 13a,b show for each numerically assessed beam size (40.64 mm and 60.96 mm)
the maximum load versus beam size predicted diagrams and the total damage evolution
for, respectively, the reinforcement/particle NL contact model (NL) and for the reinforce-
ment/particle EL contact model (EL). The numerical predictions of load displacement and
total contact damage evolution are very similar for both reinforcement/particle models (NL
and EL) for both beam sizes (40.64 mm and 60.96 mm). For both geometries and contact
model approaches, the total contact damage at peak value is of the order of 30%, indicating
that extensive cracking occurs in the reinforced concrete beams at peak load as also shown
in Figures 11e and 12e.

100 ¢ 40.64 mm (EL) - 80.0 100 60.96 mm (EL) 80.0
70.0 £0.96 NL 70.0
80 F ---40.64mm (NL) 600 & 8.0 (~ — —60.96 mm ( ’) z 600 &
) s )
Z L _ 50.0 & Zz L . 50.0 %
é 6.0 - g é 6.0 y g
= 400 & = , 400 S
8 40 | s S 40 +F -
S , -~ - 300 € S + p 300 g
/ o= 200 & / == | 200
20 y . 20 == T o
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Mid span displacement (mm)

(a)

Mid span displacement (mm)

(b)

Figure 13. Four-point bending test vertical load—midspan displacement diagrams for different beam
sizes: (a) Smallest beam size (40.64 mm); (b) largest beam size (60.96 mm).

3.4. Shear Transfer Due to Dowel Action Test

The proposed 3D-RPM has also been used for the analysis of shear transfer tests in
reinforced concrete panels due to dowel action [54]. In the dowel tests with the plate geom-
etry presented in Figure 14, the aggregate interlock effects were mitigated by constructing
a smooth low-friction crack passing through the center of the specimen and adopting a
two-stage casting procedure [54]. The mean concrete cube strength measured in 100 mm
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cubes varied between 27.6 MPa and 37.6 MPa. A Poisson’s coefficient of 0.18, a Young
modulus of 30.0 GPa, a maximum tensile strength of 3.5 MPa and a maximum compressive
strength of 32.50 MPa were assumed for contact calibration purposes. In the numerical
models, a oy of 400 MPa was adopted, which is within the range of the yield strengths
reported in the experimental studies that were carried out in reinforced concrete panels by
the same authors in a follow-up study that assessed shear transfer in reinforced concrete

panels [55].
lP
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Figure 14. Shear transfer due to dowel action test geometry: studied experimentally in [54].

In the PM, the aggregate was represented with two sieve sizes, a larger one that had
an aggregate content of 25% of the volume representing particles with diameters ranging
between 10.0 mm and 12.0 mm, and a smaller one that had an aggregate content of 30% of
the volume representing particles with diameters ranging between 8.0 mm and 10.0 mm. A
uniform distribution with particle diameters ranging between 7.0 and 9.0 mm was adopted
to represent the mortar. The best-fit values of the contact properties were obtained through
a trial-and-error calibration process on 100 mm cubes, using uniaxial compression and
tensile tests, Table 4. In the 3D-RPM, the smooth joint effect was modeled by imposing to
the VGCM3D contacts in the smooth joint vicinity a constant horizontal unit normal and
a zero shear stiffness spring value, only allowing normal contact forces to be transmitted
through the smooth joint.

Table 4. Shear transfer due to dowel action test: 3D-RPM best-fit contact properties !.

Elastic Strength
E M On.t T Gf.n Gf.s
(MPa) (MPa) (MPa) He (N/mm)  (N/mm)
48.15 0.20 5.40 10.95 0.2 0.0092 1411

1 Macroscopic numerical predictions: Maximum tensile strength (3.5 MPa), Maximum Compression strength
(32.5 MPa), Elastic modulus (30.0 GPa) and Poisson’s coefficient (0.18).

The reinforcement steel bars were discretized with cylindrical rigid elements with a
length of 2.25 mm. Like in the previous examples, for interaction reasons, a 0.50 radius
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overlap was adopted for the sub-discretization of the cylindrical rigid elements with
spherical particles. The shear tests due to dowel action with a 16 mm reinforcement
diameter had approximately 4100 particles representing the aggregates and 46,495 particles
representing the mortar, corresponding to a total of 320,700 VGCM-3D contacts, which,
in turn, corresponded to a total of 1,924,200 local contacts. The reinforcement/particle
interaction was represented by around 2400 single-contact-point VGCM-3D contacts.

Regarding the reinforcement/particle interaction, two different reinforcement/particle
models were adopted: an elastic contact model (EL) and BL model with the same strength
properties as adopted for the concrete inter-particle contacts (NL). Additionally. for the
NL reinforcement/particle interaction model, the influence of the adopted ¢ for the steel
strength was also assessed by adopting a lower o7 value of 380 MPa (NL-51) and a higher
o1 value of 420 MPa (NL-S2). The reinforcement steel bar level of discretization was also
assessed for the NL reinforcement/ particle model by also evaluating a 3D-RPM that adopts
cylindrical rigid element discretization with a length of 15.0 mm (NLd).

The predicted numerical shear displacement/shear stress diagrams for a reinforcement
steel bar diameter of 12 mm (®12) and for a reinforcement steel bar diameter of 16 mm
(P16) are presented in Figure 15, for the EL contact model (EL), for the NL contact model
(NL), for the NL contact model with a lower ¢y value (NL-S1), for the NL contact model
with a higher 07 value (NL-52), and for the NL contact model that adopts cylindrical rigid
elements discretization with a length of 15.00 mm (NLd). Also shown are the experimental
curves [45]. As shown in Figure 15, a reasonable agreement is obtained between the 3D-
RPM predictions and the experimental results for the two reinforcement bar diameters
evaluated. For both reinforcements, it is shown that an elastic reinforcement/particle
model, 12 (EL) and ®16 (EL), leads to an increase in the model initial stiffness and in the
predicted maximum shear strength.

Figure 15a,d also show that the reinforcement discretization, ®12 (NLd) and $16
(NLd), influences the numerical predictions, namely for stiffer reinforcements with larger
diameter, where the predicted numerical response switches from a ductile response to a
more brittle response, 16 (NLd) in Figure 15d. This shows the relevance of adopting a re-
inforcement/particle interaction model that independently handles the contact interaction
and the bar mechanical behavior. In zones where a very high reinforcement deformation is
expected, such as a plane joint, it is important to adopt a reinforcement bar discretization
length much lower than the adopted minimum particle radius. For both adopted reinforce-
ment diameters, the predicted maximum shear stress is almost proportional to the adopted
steel bar 7 value (Figure 15b,e).

Figure 15¢,f show, for both reinforcement diameters and for the NL reinforce-
ment/particle model, 12 (NL) and ®16 (NL), the total damage evolution (dashed line)
and the reinforcement/particle contact damage evolution (dashed-point line). For both
reinforcement diameters, the damage at the reinforcement/particle contacts occurs al-
most from the onset of loading, and closer to the shear yield plateau, the contact damage
at the reinforcement/particle contacts tends to stabilize (10% for ®12 and 12% for $16).
Figure 15d,f also show that a higher contact damage is associated with a larger bar diameter,
similar to what occurred in the experimental tests [54], and that at the shear yield maximum
strength plateau, the damage evolution also tends to stabilize. The total damage results
also indicate that the damage is localized with only 2.6% total damage predicted with the
®16 (NL) model.
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Figure 15. Shear transfer due to dowel action test: Shear stress—shear displacement diagrams for
different reinforcement steel diameters, including the experimental diagrams Exp (1984) adopted
from [45]: (a) ®12—Reinforcement/particle interaction model; (b) ®12—Steel reinforcement
strength influence; (c) @12—NL damage evolution (dashed line—total damage; dashed point line—
reinforcement/particle damage); (d) $16—Reinforcement/particle interaction model; (e) ®16—Steel
reinforcement strength influence; (f) ®16—NL damage evolution (dashed line—total damage, dashed
point line—reinforcement/particle damage).

Table 5 presents the maximum theoretical shear dowel strength (F powel.theory) and
the corresponding maximum theoretical shear stress (T theory) [54], given the adopted
numerical concrete macroscopic properties, Table 3, and the adopted values of the trilinear
steel reinforcement model, 07 and ¢, and the predicted numerical values with an NL
reinforcement/ particle interaction model (7 ), Y12 (NL) and 16 (NL). As shown, the
numerical predicted maximum shear strength, for each reinforcement size, is within the
range of the maximum theoretical shear strength values.

Table 5. Maximum dowel strength: Theoretical and numerical values L

( 0} ) F Dowel.theory (MPa) T Theory (MPa) T NL (MPa)
mm 01 (%) 01 (%]

12.0 21.34 23.86 1.42 1.59 141
16-0 37.95 42.42 2.53 2.83 2.59

1} Dowel.theory = 1.3 ¢? 03'5 0%% [54] where o is the concrete compressive strength measured in cubes, and oy is the
yield stress of the reinforcing steel.

Figure 16 shows the predicted numerical final deformation, magnified 10 times, and
the predicted final crack patterns for the ®16 model and for the NL reinforcement/particle
interaction model. As shown, cracking occurs in the vicinity of the reinforcement bars due
to compression leading to a splitting failure that grows towards the supported faces and
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towards the specimen interior; a similar phenomenon was recorded in the experimental
tests [54].

i
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Figure 16. Shear transfer due to dowel action test: Amplified displacement field (10x) and final
contact failure distribution for ®16 reinforcement NL model. (a) Amplified deformation—full model;
(b) amplified deformation—inner model with 16 mm thickness; (c) contact failure—full model with
radius reduction (d); contact failure—inner model with 16 mm thickness.

Figure 16b also shows that the proposed reinforcement model discretized with rigid
cylinders connected with springs at the end nodes can consider the reinforcement bar
flexure, direct shear and kinking, which are known to be the most relevant factors in the
contribution of the reinforcement steel to the shear strength.

4. Discussion

A novel 3D reinforced PM is proposed to model reinforced concrete fracture where
(i) the concrete structure (aggregate/mortar) is approximately given by polyhedral shaped
particles; (ii) the reinforcement bars are discretized with several rigid cylindrical segments
that interact with each other at the reinforcement bar ends where the elastic and strength
properties of the reinforcements are lumped; (iii) the cylindrical rigid elements are sub-
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discretized with spherical particles along their length to ease the contact interaction process,
adopting a simplified spherical particle/spherical particle interaction model.

Compared with the usual 3D PM approach that discretizes the reinforcement bars
using lines of spherical particles of diameter equal to the bar diameter [14,38] or with a 1D
reinforcement line that interacts with particles through interfaces [37], the proposed novel
3D reinforced PM approach allows the following:

e  The elimination of the outer artificial roughness associated with the spherical particle
discretization by removing the cylindrical rigid element axial direction from the
reinforcement/ particle contact unit normal. This outer roughness is more complex to
eliminate if a line of spheres is adopted to model concrete [14,38].

e  Additional flexibility in the reinforcement bar discretization; finer discretizations lower
than the reinforcement bar diameter can be adopted if large deformations are expected
or larger discretization than the bar diameter can be adopted if lower deformation
gradients are expected, with computational gains, giving an additional flexibility that
is not possible if an array of particles is adopted to represent the reinforcement [14,38].

e Bond/slip behavior to be considered by taking into account, at the reinforce-
ment/ particle interface, the proper state of stress, including the confinement stress,
which cannot be accomplished in a straightforward manner if a 1D line reinforce-
ment bar that interacts with particles through interfaces is adopted to represent the
reinforcement and the reinforcement/particle interaction [37].

The 3D-RPM crack pattern predictions in the three-point bending test are similar to
those observed experimentally [32,59,60]. With a 2D-RPM [15], the predicted crack pattern
is much more localized even for higher reinforcement contents; the crack pattern predicted
with the novel 3D-RPM for higher reinforcement contents is in much better agreement with
the crack pattern observed experimentally under three-point bending, where additional
cracking and diagonal cracking are observed [32,59-61]. In the three-point bending test, it
is shown that the reinforcement/particle interaction BL model with a 50% reduction in the
contact strength properties adopted for concrete contacts (NLR) leads to a better agreement
with the known experimental results for different steel contents [52].

In the four-point bending test, the predicted crack patterns and failure modes are in
good agreement with those observed in experimental tests for the same beam sizes [53], in
2D numerical studies [15] and in similar experimental tests of beams with only longitudinal
reinforcement [33,62]. The results show the relevance of adopting a 3D-RPM that includes
bond/slip at the reinforcement/particle interfaces. In the four-point bending test, to
have similar predictions, it is necessary to reduce the macroscopic tensile strength (15%
reduction) when adopting an elastic reinforcement/particle model. The presented results
also show that for this type of geometry, loading and support conditions, the discretizaton
adopted for the reinforcement bars can use a length higher than the reinforcement bar
diameter, reducing the modeling requirements, when compared with PMs that adopt an
array of spherical particles [14,38].

Regarding the shear transfer due to dowel action tests, the results presented show that
the proposed reinforcement model discretized with rigid cylinders connected with springs
at the end nodes can consider the reinforcement bar flexure, direct shear and kinking,
which are known to be the most relevant factors in the contribution of the reinforcement
steel to the shear strength. The results presented show that the proposed 3D-RPM can
be used as a local model to study and evaluate the effect of passive anchors as a possible
reinforcement solution for small gravity dam stability [63] and to study the effect of the
dowel bar load transfer efficiency in jointed plain concrete pavements [64]. Note that with
a 2D-RPM [15] or with a 3D PM that adopts a 1D line reinforcement bar that interacts with
particles through interfaces [37], it is not straightforward to model the dowel effect.
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5. Conclusions and Further Developments

The results presented show that the 3D-RPM can be applied to fracture analysis
of reinforced concrete geometries at the mesoscale to further understand the fracture
process and to validate new reinforcement materials. The validation examples presented in
Section 3, based on three-point and four-point bending tests on reinforced concrete beams
and shear transfer tests due to dowel action, show the following:

e  That with the proposed 3D-RPM, it is possible to calibrate the contact properties in sim-
ple tests (uniaxial compression and uniaxial tension) to numerically predict responses
close to those observed experimentally in reinforced concrete specimens, for different
steel contents, structural geometries and sizes and boundary and loading conditions.

e  The relevance of adopting a reinforcement/particle contact model that considers
bond/slip behavior. An elastic model contact leads to higher vertical loads in three-
point and four-point bending tests for the same set of contact properties. In the shear
transfer due to dowel action tests, an elastic reinforcement/particle model leads to
an overestimation of the maximum shear strength and to an increase in the model
initial stiffness.

Further work is underway to better calibrate the reinforcement/particle interaction
contact properties with known tension stiffening experimental results and to adopt the
3D-RPM as a local model within a hybrid discrete element/finite element model to assess
passive anchors as a reinforcement solution for small gravity dam stability analysis.
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