
Citation: Pimenov, A.; Vladimirov,

A.G. Temporal Solitons in an

Optically Injected Kerr Cavity with

Two Spectral Filters. Optics 2022, 3,

364–383. https://doi.org/10.3390/

opt3040032

Academic Editor: Thomas Seeger

Received: 29 August 2022

Accepted: 19 September 2022

Published: 23 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Temporal Solitons in an Optically Injected Kerr Cavity with
Two Spectral Filters
Alexander Pimenov † and Andrei G. Vladimirov *,†

Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany
* Correspondence: andrei.vladimirov@wias-berlin.de
† These authors contributed equally to this work.

Abstract: We propose and analyze a theoretical scheme of an injected Kerr cavity, where the chromatic
dispersion is induced by propagation of light through two Lorentzian spectral filters with different
widths and central frequencies. We show that this setup can be modeled by a second order delay
differential equation that can be considered as a generalization of the Ikeda map with included
spectral filtering, dispersion, and coherent injection terms. We demonstrate that this equation
can exhibit modulational instability and bright localized structures formation in the anomalous
dispersion regime.
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1. Introduction

Optical frequency combs generated from a continuous wave laser output in micro-
cavity Kerr resonators have revolutionized many fields of natural science and technology [1].
Of particular interest are the so-called soliton frequency combs [2–4] associated with the
formation in the time domain of the temporal cavity solitons—nonlinear localized structures
of light, which preserve their shape in the course of propagation [5]. Kerr cavity temporal
dissipative solitons were reported experimentally in micro-cavity resonators [2,6–8], and
in driven fiber cavities [9]. Spectral filtering is commonly used to improve the output
characteristics of multisection mode-locked lasers [10]. It was also demonstrated that
a small spectral filtering can suppress the oscillatory instability of Kerr cavity solitons
and stabilize their bound states by eliminating high frequency perturbations [11–14]. On
the other hand, unlike conventional Kerr cavities, where spectral filtering is only a small
perturbation, in Mamyshev oscillators a pair of spectral filters plays a crucial role in the
process of the short pulse generation [15,16]. The nonlinear dynamics of such two filter
systems is yet to be understood theoretically. In order to fill this gap we consider an
externally driven Kerr cavity with two spectral filters and demonstrate that the effective
dispersion created by the filters can lead to a temporal soliton generation even when the
material dispersion is negligibly small.

Time-delay models of optical systems like Ikeda map [17], Lang-Kobayashi equa-
tions [18], delay differential equation (DDE) mode-locked laser models [19–27], frequency
swept laser models [28,29], and others were successfully used to describe unidirectional
propagation of light through linear and nonlinear optical elements in a ring cavity. Unlike
simple complex Ginzburg-Landau (CGL)-type models of passive and active optical cavities
based on the mean field approximation, these models are valid for arbitrary large gain and
losses in the cavity. An important drawback of the time-delay models, however, is that
the inclusion of an arbitrary second order chromatic dispersion of the intracavity media
into these models is not a trivial task. Recently, it was shown that chromatic dispersion in
photonic crystal mode-locked laser [30] and a SOA-fiber laser with fiber delay line [31] can
be described using a distributed delay term, which arises from the transfer function of a
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detuned Lorentzian absorption line in frequency domain. Furthermore, under assumption
of weak dispersion one can replace the distributed time delay model with an extended DDE
model containing a single additional ordinary differential equation for the polarization
variable [32]. Using this extended DDE model, the conventional combined effects of chro-
matic dispersion and nonlinearity such as modulational instability (MI) in the anomalous
dispersion regime and bright localized structures formation were demonstrated [32]. Nev-
ertheless, these assumptions and approximations limit our ability to describe accurately
and characterize chromatic dispersion at all the frequencies that are important for dynamics
of optical devices using DDE models. Another approach is to investigate rigorously derived
DDEs where higher order dispersion arises naturally (e.g., coupled cavities [33]), however
quantification of its magnitude for a given DDE is not a trivial task.

In this paper, we consider an externally injected ring Kerr cavity with two linear
spectral filters introducing an effective chromatic dispersion and demonstrate the possibility
to model arbitrary second-order dispersion near a chosen frequency within the DDE
framework. We develop a second order DDE model of the system under consideration
and demonstrate the appearance of MI and the formation of bright localized structures
in this model in the anomalous dispersion regime. The system under consideration can
be realized experimentally to generate temporal cavity solitons and the corresponding
optical frequency combs [6,34]. We show that in a certain limit our model can be reduced
to a generalized version of the well-known Lugiato-Lefever equation [35], which is widely
used to describe optical microcomb generation [36–38], with an additional diffusion term.
These results can be applied to qualitatively analyze any optical set-up that can be modeled
using delay equations such as Fourier domain mode-locked [31], optically injected [32],
and multisection mode-locked semiconductor lasers as well as any other system, where
second-order chromatic dispersion is important (see references in [31]). We note also that
two spectral filters with different central frequencies are used in Mamyshev oscillators,
which employ active cavity to generate short optical pulses. Hence, this work not only
presents the simplest dispersive second-order DDE model that can describe complicated
phenomena like localized structures, but also could provide better understanding of the
effect of two filters in the cavity and a basis for the theoretical investigation of Mamyshev
oscillators [15,16].

2. Model Equations

We consider an optically injected passive nonlinear cavity with two linear Lorentzian
filters inside it (see Figure 1). For this system using the lumped element method described
in [19–21] we obtain the following set of delay differential equations

B′(t) + (γ1 − iω1)B(t) = γ1γ2

[√
κleiα|A(t−T)|2+iφ A(t− T) + η0eiω0t

]
, (1)

A′(t) + (γ2 − iω2)A(t) = B(t), (2)

where B and A represent electrical field envelopes after the first and the second filter,
respectively, T is the cavity round-trip time, κl is the intensity attenuation factor due to the
linear cavity losses, ϕ is the phase shift, α is the Kerr coefficient which, without the loss of
generality can be assumed to be positive, η0 and ω0 are the injection rate and frequency
offset, ω1 and ω2 are the central frequencies of the two filters, while γ1 and γ2 are their
bandwidths. The system (1) and (2) can be considered as an extension of the Ikeda map [17],
which takes into consideration the spectral filtering introduced by two Lorentzian filters.
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Figure 1. Schematic representation of the considered device.

2.1. Transfer Function of the Filter

The transfer function of the two filters shown in Figure 1 can be written in the standard
form [30,31]

F(ω) = e f (ω), (3)

where the complex function f (ω) can be expanded in power series near ω = 0

f (ω) = ∑
k

Dkωk, (4)

and =Dk represents the dispersion of the kth order. ( For example, for a single Lorentzian
absorption line we have f = −σL

Γ+i(ω+Ω)
[31], and second-order dispersion coefficient takes

the form =D2 = = d2 f
dω2 ≈ 2σL

Ω3 for 0 < Γ � |Ω|, and the sign of the coefficient coincides
with the sign of Ω.)

From Equations (1) and (2) one obtains that the two filter transfer function is

F(ω) =
γ1γ2

[γ1 + i(ω−ω1)][γ2 + i(ω−ω2)]
. (5)

Since in the frequency domain the transfer functions of two filters are multiplied, see
Equation (5), their ordering does not play any role. Therefore, without loss of generality
we can assume that γ1 ≥ γ2 and the reference frequency is chosen in such a way that the
maximum of the function |F(ω)| is at ω = 0, so that

[
d|F(ω)|

dω

]
ω=0

= 0. The latter condition
is equivalent to

δF = γ2
2ω1 + ω2

[
γ2

1 + ω1(ω1 + ω2)
]
= 0, (6)

which has two solutions ω2 = ω2± =
−γ2

1−ω2
1±
√

DF
2ω1

, DF = −4γ2
2ω2

1 + (γ2
1 + ω2

1)
2. One can

see that both ω2± can be obtained for any values of ω1 6= 0 and 0 < γ2 < γ1 due to DF > 0,
and, moreover,

|ω2
1 − γ2

1| ≤
√

DF ≤ γ2
1 + ω2

1.

Below we will assume that the condition ω2 = ω2+ is satisfied that corresponds to
a situation when the largest of the two maximums of |F(ω)| is located at zero frequency,
see Figure 2. In the left panel of this figure we fix γ1 = γ2 = 1 and demonstrate that for
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ω1 < 1 we have one global maximum, whereas for ω1 > 1 we can get two local maxima in
our combined filter of the same magnitude. In the second case, or for values of γ2 close
to γ1, this kind of filter can lead to complex dynamical behaviour in the system, similarly
to the case of the Mamyshev oscillator [15,16]. However, in this paper we are focused on
the impact of the filter on the frequency of injection, which is assumed to be near or at
the global maximum at zero frequency. In the right panel we can observe how the second
maximum is suppressed with γ2 decreasing from 1 to 1

8 . For ω2 = ω2+ we have

ω2ω1 < 0, |ω2| ≤ |ω1|,
∣∣∣∣dω2

dω1

∣∣∣∣ < 1,

and one can see that
d|ω2 −ω1|

d|ω1|
> 0,

i.e., the difference between the two frequencies grows with |ω1|, and since for any of
ω1 = ±ω∗1 we have ω2 = ∓ω∗2 , respectively, for any fixed 0 < γ2 < γ1 we can choose
|ω2 −ω1| and find corresponding value of ω1 (negative or positive) and ω2 = ω2+, which
means that we can have any possible combinations of two filters (narrow filter to the
left or to the right of the broad filter), disregarding frequency shift of the combined filter.
Moreover, these inequalities immediately imply that the largest maximum of |F(ω)| is at
ω = 0 for ω2 = ω2+ as claimed earlier, since more narrow Lorentzian filter with the width
γ2 has the central frequency ω2 closer to zero frequency. The other root (6) ω2 = ω2− can
correspond to a global maximum, a local maximum, or a local minimum, which do not
provide any additional useful alternatives, if we are interested to fix the maximum of the
combined filter |F(ω)| at zero frequency ω = 0.
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Figure 2. Absolute value of the transfer function F defined by Equation (5), where ω2 = ω2+

satisfies (6), γ1 = 1 and other parameters are varied: (left) γ2 = 1, ω1 = 1
2 (dashed), ω1 = 1 (solid),

ω1 = 2 (dotted); (right) ω1 = 3, γ2 = 1
8 (dashed), γ2 = 1

2 (solid), γ2 = 1 (dotted). The corresponding
values of ω2, β, σ are {− 1

2 ,−1,− 1
2}, {0, 0, 3

4} and { 4√
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√

2, 5√
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} (left); {−0.0047,−0.07677,− 1

3},

{2.66, 1.95, 4
3} and {8.58, 3.84, 5

√
2

3 } (right).

Since f (ω) = ln F(ω), in the power series expansion (4) we obtain the second-order
coefficient as

D2 =
ω2

1 − γ2
1 − 2iγ1ω1

2(γ2
1 + ω2

1)
2

+
ω2

2 − γ2
2 − 2iγ2ω2

2(γ2
2 + ω2

2)
2

.

One can check that D2 can be represented in the following way

D2 = ρ

(
−σ2 − 2

2
+ iβ

)
+

δF
[
δF − 2i

(
γ2

1γ2 + γ1γ2
2 + γ2ω2

1 + γ1ω2
2
)]

2
(
γ2

1 + ω2
1
)(

γ2
2 + ω2

2
)
(γ1γ2 −ω1ω2)

, (7)
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with

ρ =
γ1γ2 −ω1ω2(

γ2
1 + ω2

1
)(

γ2
2 + ω2

2
) , (8)

σ =

√
ρ
(
γ2

1γ2 + γ1γ2
2 + γ2ω2

1 + γ1ω2
2
)

γ1γ2 −ω1ω2
, (9)

β =
γ1ω2 + γ2ω1

γ1γ2 −ω1ω2
. (10)

It follows from the conditions (6), where ω2 = ω2+, and the relation γ1 ≥ γ2 that
the second term in the right hand side (RHS) of (7) vanishes, ρ > 0, and signβ = signω1.
Hence, the parameters β and σ2−2

2 represent the normalized second-order dispersion and
the diffusion near zero frequency, respectively, whereas the parameter

√
ρ can be considered

as a scaling coefficient.
One can see that under these conditions

d|β|
d|ω1|

>

√
D(
√

D + ω2
1 − γ2

1)

4γ1ω2
1(γ

2
1 + ω2

1)
> 0,

and since |ω2 −ω1| grows with |ω1|, second-order dispersion grows with the difference
between the frequencies. Moreover, using (6) to express ω2

2 one obtains

σ =
(γ2ω1 − γ1ω2)Sign ω1√

ω1ω2(ω1ω2 − γ1γ2)
,

dσ

dγ2
=
|ω1|(γ1γ2ω1 + (γ2

1 − 2ω2
1)ω2)(γ2

dω2
dγ2
−ω2)

2(ω1ω2(ω1ω2 − γ1γ2))3/2 ,

γ2
dω2

dγ2
−ω2 = ω2

γ2
1 + ω2

1

2
√

D
,

ω1(γ1γ2ω1 + (γ2
1 − 2ω2

1)ω2) < −
γ2

1(γ
2
1 + ω2

1)

2
,

hence due to ω1ω2 < 0 we see that dσ
dγ2

< 0, and σ decreases with γ2 increasing from
0 to γ1. Therefore, the lower bound on σ can be estimated assuming γ2 = γ1, where

ω2 =
−γ2

1−ω2
1+|ω

2
1−γ2

1 |
2ω1

and

σ ≥ σγ2=γ1 =


√

2
√

1 + β2, |ω1| ≥ γ1,

2 γ1
√

1+β2√
γ2

1+ω2
1

, |ω1| < γ1.
≥
√

2
√

1 + β2. (11)

2.2. Normalized DDE Model

By substituting Equation (2) into Equation (1), using Equation (6), and rescaling time
as t→ t/

√
ρ, we obtain the following normalized dimensionless second-order DDE

A′′(t)(1 + iβ) + σA′(t) + A(t) =
√

κeiα|A(t−T)|2+iϕ A(t− T) + ηeiω0t, (12)

σ >
√

2
√

1 + β2,

where losses and forcing take the form
√

κ = r
√

κl ≤ 1, η = rη0 with r = γ1γ2√
(γ2

1+ω2
1)(γ

2
2+ω2

2)
≤ 1,

and the phase shift is ϕ = φ + arg 1
γ2γ2−ω1ω2−i(γ1ω2+ω2γ1)

. Here, similarly to the previous

section one can see that dr
d|ω1|

< 0 for γ1 > γ2 and ω2 = ω2+, hence for fixed κl the
parameter κ decreases with increasing detuning between the two frequencies |ω2 − ω1|.
With the condition (11) on dimensionless parameters σ and β the equation is equivalent to
the system with two filters (1) and (2) for any κ < 1 with global maximum of the combined
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filter transfer function F(ω) (5) located at zero frequency ω = 0, |F(ω)| ≤ |F(0)| ≤ 1. We
note that for

√
2 ≤ σ ≤

√
2(1 + β2) the global maximum of F(ω) is at another frequency

and additional constraints on parameter κ are necessary, whereas for σ <
√

2 the diffusion
coefficient in (7) becomes negative, equivalence with (1) and (2) is lost and zero solution
A = 0 for η = 0 is unstable.

For β = 0 relation (7) gives zero dispersion coefficient and diffusion coefficient equal
to (σ2 − 2)/2, which agrees with previous analysis of a similar DDE [39] in case of σ >

√
2.

We note that the direct application of truncated expansion (4) in the RHS of DDE
models similar to (1) and (12) would lead to the appearance of the second derivative of the
delayed variable A′′(t− T) in and spurious instability [31]. In contrast, non-delayed second
order derivative A′′(t) in (12) appears without any expansions, and the term iβA′′(t) is
responsible for the second-order chromatic dispersion similarly to the CGL equations.
On the other hand, unlike the cubic CGL model, where the real coefficient by the second
derivative is responsible for the diffusion (or parabolic spectral filtering), the filtering
in (12) is performed by two Lorentzian filters, which are introduced by the presence of of
both the first and the second order derivatives. Therefore, the generality of this kind of
dispersion operator is still not directly comparable to the operators in CGL-type equations
or systems with distributed delay [31]. However, in contrast to the approximate DDEs [32],
the physical meaning of this filter is clear for any feasible parameters. For simplicity below
we consider the case of non-detuned injection, ω0 = 0.

2.3. Limit of Lugiato-Lefever Equation

Assuming large delay limit T = r/ε, where ε� 1 and r = 1 + a1ε + a2ε2 + . . . , taking
ω0 = 0, and rescaling the time variable t→ t/ε we can rewrite (12) in the form

ε2 A′′(t)(1 + iβ) + εσA′(t) + A(t) =
√

κeiα|A(t−r)|2+iϕ A(t− r) + η, (13)

Let the injection rate, the linear cavity losses and the phase shift be small,

η = ε3S, κ = 1− 2ε2k, ϕ = ε2θ. (14)

Then looking the solution in the form A(t) = εu(t, τ) + ε2v(t, τ) + . . . with τ = ε2t,
applying multiscale analysis [40,41], collecting the first order in ε, and using solvability
condition of the resulting equation we get the periodic boundary condition:

u(t, τ) = u(t− 1, τ). (15)

Next, in the second order in ε we obtain

v(t, τ)− v(t− 1, τ) = a1ut(t− 1, τ)− σut(t, τ),

which implies the periodicity of v, v(t− 1, τ) = v(t, τ) and the relation a1 = σ with the
periodicity condition (15). Finally collecting the third order terms in ε, using the relation
a2 = σ2, and applying solvability condition [40,41] we get the generalized Lugiato-Lefever
equation (LLE)

uτ = S− ku + iθu + iαu|u|2 +
(

σ2 − 2
2
− iβ

)
utt (16)

with the diffusion coefficient (σ2 − 2)/2 and the boundary condition (15). It is well known
that for β < 0 in Equation (16) corresponds to anomalous dispersion regime, and for
θ < 0 this equation can demonstrate the formation of bright dissipative solitons [35].
Dimensionless dispersion and diffusion coefficients in Equation (16) coincide with those
defined by Equation (7).
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3. Continuous Wave (CW) State

The CW state of the Equation (12) with ω0 = 0 takes the form A = A0eiψ, where the
real quantities A0 and ψ satisfy the system of the transcendental equations

A0

[
1−
√

κ cos
(

αA2
0 + ϕ

)]
= η cos ψ, (17)

A0
√

κ sin
(

αA2
0 + ϕ

)
= η sin ψ, (18)

which leads to a single transcendental equation for A2
0

A2
0

[
κ + 1− 2

√
κ cos

(
αA2

0 + ϕ
)]

= η2. (19)

Assuming ε� 1, A0 = εu0, ϕ = ε2θ, 0 < 1− κ∼2ε2k, and η = ε3S, this equation can
be approximated by a cubic equation for u2

0

S2 ≈ u2
0

[
k2 + (θ + αu2

0)
2
]
, (20)

which coincides with the equation for the uniform stationary solutions of the LLE (16).
Therefore, in this limit Equation (12) can have up to three coexisting CW states similarly
to LLE (see Figure 3, left), however out of this limit for strong injection there can be more
coexisting CW states, see right panel of Figure 3. Here, the upper CW state looses stability
via a modulational instability, and unstable CW states are shown by dotted red line.
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Figure 3. Intensity |A0|2 of CW states (17) and (18) obtained by varying parameter η (left). Here,
ω0 = 0, κ = 1− 10−4, σ =

√
2.5, α = 1, ϕ = −3× 10−4, which in the LLE limit (13) corresponds to

ε = 0.01. In the right panel we choose κ = exp(−2), ϕ = −2, which corresponds to ε = 1, where
solid lines correspond to stable CWs and dashed - to unstable.

Stability of CW Solution and MI

Here, we demonstrate how MI of an initially stable CW state can appear in the
anomalous dispersion regime in the limit of large delay T � 1. For that, we linearize the
Equation (12) near the CW state A(t) = (A0 + δAeλt)eiψ and calculate the determinant of
the Jacobian of the linearised system to obtain the following characteristic equation for the
eigenvalues λ describing the stability of the CW solution:

κY2 + λ{λ
[(

β2 + 1
)

λ2 + 2λσ + σ2 + 2
]
+ 2σ}+ 1+

2
√

κY{sin
(

αA2
0 + ϕ

)[
αA2

0

(
λ2 + λσ + 1

)
− βλ2

]
−

cos
(

αA2
0 + ϕ

)[
λ2
(

αA2
0β + 1

)
+ λσ + 1

]
} = 0.

(21)

where Y(λ) = exp(−λT). In the limit of large delay time T → ∞ the eigenvalues belonging
to the pseudo-continuous spectrum can be represented in the form λ = iµ + Λ

T +O(1/T2)
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with real µ [42]. Thus, in this limit the characteristic equation is a quadratic equation for Y
with the coefficients depending only on the imaginary part µ of the eigenvalue, and we
can obtain from (21) two branches of pseudo-continuous spectrum given by

Λ±(µ) = −< ln Y±(iµ). (22)

For a stable CW solution we have Λ±(µ) ≤ 0 and, in particular, Λ±(0) = −< ln Y±(0) ≤ 0,
where

Y±(0) =
1√
κ

[
cos
(

αA2
0 + ϕ

)
− αA2

0 sin
(

αA2
0 + ϕ

)
±
√

D
]
, (23)

D =
[
cos
(

αA2
0 + ϕ

)
− αA2

0 sin
(

αA2
0 + ϕ

)]2
− 1. (24)

Moreover, the second derivative of Λ±(µ) at µ = 0 takes the form

Λ′′±(0) = 2− σ2 ± 2β<B(α, ϕ, η, κ), (25)

B =
αA2

0 cos
(
αA2

0 + ϕ
)
+ sin

(
αA2

0 + ϕ
)

√
D

. (26)

One can see from (25) that for small β ≈ 0 and σ >
√

2 we have Λ′′±(0) < 0 for the
CW solutions on the upper branch of S-shaped bifurcation curve depicted in Figure 3
(see top-left panel of Figure 4). It is known that strong anomalous dispersion can lead to
the change of the curvature of one of the two branches Λ±(µ) of the pseudo-continuous
spectrum at µ = 0 (see Figure 4, bottom-left) [31]. Moreover, further increase of anomalous
dispersion can lead to a MI of a CW state (see Figure 4, bottom-right) [32]. On the other
hand, in the case of strong normal dispersion regime the sign change of the curvature of
the curve with smaller Λ±(0) does not lead to a MI, as it is seen from the top-right panel of
Figure 4.
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Figure 4. Curves of pseudocontinuous spectrum in the limit of large delay (21) of (12) of the CW with
the largest intensity (|A0| ≈ 0.0169 out of another two |A0| ≈ 0.0167 and |A0| ≈ 0.006) near the LLE
limit, η ≈ 1.707× 10−6, and varying β = 0 (top-left), β = 1/4 (top-right), β = −1/8 (bottom-left),
β = −1/4 (bottom-right). Other parameters are as in Figure 3.
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The stability condition of the CW state can be written in the form |Y±(iµ)| > 1 for all
the wavenumbers µ. In particular, at zero wavenumber µ = 0 we get

|Y±(0)| > 1. (27)

A CW solution satisfying this condition is stable with respect to perturbations at zero
wavenumber, but may be unstable with respect to MI at nonzero wavenumbers. A possible
(but not unique) way how such a MI can develop is related to the change of the sign from
negative to positive of one of the two quantities Λ′′±(0) corresponding to the greater of the
two values Λ′′±(0). Note, that both the quantities Λ′′±(0) are always negative at β = 0 due
to the inequality (11). It follows from Equation (26) that such a sign change can take place
only in the case when

D > 0 (28)

and, hence, Y±(0) must be real. Otherwise, B is purely imaginary and the last term in
the RHS of Equation (25) vanishes. It is shown in Appendix A that in the LLE limit (14)
we have Λ+(0) < Λ−(0) and for the CW state with the highest intensity we can have
Λ′′−(0) > 0 only in the anomalous dispersion regime β < 0 . Out of LLE limit we can have
positive Λ′′±(0) in case of β > 0 as well (see Appendix B for numerical treatment).

Note, that the development of MI on the stable upper part of the CW branch can be
correlated with the appearance of stable localized structures. In the next section we study
numerically how the dispersion coefficient β affects the existence range of these structures.
Remarkably, there are also scenarios out of the LLE limit where localized structures can be
observed for zero and small positive β.

We note that the condition Λ′′(0) > 0 precedes the appearance of MI of the CW for
stronger dispersion if Y±(0) is real-valued. If it is complex-valued, MI is still possible
for sufficiently strong dispersion (see Figure 5). In the LLE limit, one can derive an
approximate condition for MI development (see Appendix A), and demonstrate that for
typical parameters in this limit strong anomalous dispersion can lead to the instability.
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Figure 5. Curves of pseudocontinuous spectrum in the limit of large delay (21) of (12) of the CW
with the largest intensity (|A0| ≈ 0.0178 out of another two |A0| ≈ 0.0156 and |A0| ≈ 0.0065) near
the LLE limit with β = 1/2 (left) and β = 1/2 (right), and η ≈ 1.797× 10−6. Other parameters are as
in Figure 3.

4. Numerical Results

In this section, we perform numerical bifurcation analysis of Equation (12) using DDE-
BIFTOOL [43]. Let us start with the parameter set close to the LLE limit. We take σ =

√
2.5,

β = −0.5, which corresponds to two filters (5) with γ1 = γ2, ω1 = − 1+
√

5
2 γ1 ≈ −1.62γ1,

ω2 =
√

5−1
2 γ2 ≈ 0.62γ2. Let α = 1, ω0 = 0 and ϕ = ϕε, κ = κε, where

κε = exp(−2ε2), ϕε = −2ε2
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are chosen according to analysis of DDE (13) in the limit ε → 0. These values directly
correspond to the parameters of LLE (16) where localized structures are known to exist
(θ = ϕ/ε2 < −

√
3). We also pick a reference injection strength

ηε = ε3

√
8
√

3
3 +

4
3

(
− ϕε

ε2 −
√

3
)

, (29)

where three CW states are guaranteed to coexist for ε� 1, and vary η near ηε. The main
numerical difficulty in this limit is that the delay time T and the width of the localized
structures are proportional to the large quantity ε−1. Figure 6 was obtained with ε = 0.05,
which was the smallest value of ε used in our simulations and corresponded to κ ≈ 0.995.
Similarly to the LLE [44,45] the bifurcation diagram in the left panel of this figure shows a
typical S-shaped CW branch with stable lower part and modulationally unstable upper
part. The branch of unstable periodic solutions bifurcates from the unstable middle part
of the CW branch and it becomes stable after a fold bifurcation at η ≈ 0.00022. The stable
periodic solution has only a slight asymmetry in its time profile and resembles the temporal
dissipative solitons of the LLE, see right panel of Figure 6.
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Figure 6. Left panel: One-parameter bifurcation diagram of Equation (12) with ϕ = ϕε, κ = κε,
and ε = 0.05. CW (periodic) solutions are shown by thick (thin) lines. Solid lines represent stable
states and dashed lines represent unstable states. The parameter η is changed near ηε defined by
Equation (29). Right panel: Stable localized periodic solution for η ≈ 0.000223, where Tw∼1/ε is the
period of the solution controlled by the choice of delay time T. Other parameters are α = 1, σ =

√
2.5,

β = −0.5.

Thus, close to the limit ε→ 0 the normalized second-order DDE (12) demonstrates the
bifurcation structure similar to that of the LLE. Note, however, that the magnitude of the pa-
rameters σ, β and 1− κ in the normalized Equation (12) depends on the frequency detuning
of the linear filters with respect to each other in the original equivalent system (1) and (2),
and stronger detuning results for fixed σ in larger |β| as discussed in Section 2.1, and higher
losses 1 − κ at the same time as discussed in Section 2.2. Therefore, it is necessary to
investigate how larger values of ε corresponding to smaller values of the attenuation factor
κ (larger losses) affect the properties of the localized solutions. For example, for the con-
sidered parameters σ =

√
2.5 and β = −0.5 from Equations (1) and (2) and the condition

κl ≤ 1 one obtains κ ≤ 0.4 in (12), which is satisfied for ε ≥ 0.7.
For larger ε = 0.2, which corresponds to κ ≈ 0.92, the stable part of the periodic so-

lution branch is split into two parts separated by two fold bifurcation points, see left
panel of Figure 7. Both these parts correspond to very asymmetric localized pulses,
but the second part contains wider pulses then the first one, see right panel of Figure 7.
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Figures 8 and 9 show the branches of CW and periodic solutions with scaled intensity (In
these figures η is shifted, more precisely, η̃ = η − ηε − η1,j + 10−5 j for the left panel of
Figure 8, η̃ = η − ηε − η2,j + 5jη2,1 for the right panel, η̃ = η − ηε − η1,j + 10−2(j− 4) for
the left panel of Figure 9, η̃ = η − ηε − η2,j + 2× 10−3(j− 4) for the right panel, and ε = εj,
~ε = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, ~η1 = {−1.2 × 10−5,−1.634 × 10−4,
−7.69 × 10−4,−0.0039,−0.0136,−0.0245,−0.059,−0.11,−0.195,−0.347,−0.5474},
~η2 = {1.413 × 10−6, 4.3 × 10−6,−1.2 × 10−4,−0.0015,−0.006,−0.019,−0.047,−0.099,
−0.185− 0.333,−0.5294}) obtained by increasing gradually ε up to 1, which corresponds
to κ ≈ 0.135. The width of the S-shaped area of the CW branches as well as the width
of the branch of the localized solutions increases with ε up to ε = 0.8 and then decreases.
For ε ≥ 0.4 the upper branch of CW states stabilizes for the chosen parameter values
(Figure 9, left). Asymmetric localized structures corresponding to the stable parts of the
periodic solution branches with ε ≥ 0.2 in Figure 10 look similar to the those shown in the
right panel of Figure 7 obtained for ε = 0.2.
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Figure 7. Left panel: One-parameter bifurcation diagram of Equation (12) with ϕ = ϕε, κ = κε,
and ε = 0.2. CW (periodic) solutions are shown by thick (thin) lines. Solid lines represent stable
states and dashed lines represent unstable states. The parameter η is changed near ηε defined by
Equation (29). Right panel: Stable localized periodic solutions for the same η from the first (main)
stable part of the periodic solution branch (solid) and the secondary stable part (dashed). Other
parameters are as in Figure 6.
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Figure 8. Bifurcation diagrams of Equation (12) obtained for different values of ε. Left panel: CW
states cut around S-shaped bifurcation curve (thick lines) and periodic solutions (thin lines). Solid
lines represent stable states and dashed lines represent unstable states, η̃ = η − ηε + δη(ε) is a shifted
value of η. Right panel: Branches of periodic solutions from the left panel, magnified. The intensity is
scaled by ε2 and other parameters are as in Figure 6.



Optics 2022, 3 375

0 0.02 0.04 0.06
0.5

1

1.5

2

2.5

0.005 0.01 0.015 0.02
1

1.2

1.4

1.6

1.8

2

2.2

Figure 9. CW states cut around S-shaped bifurcation curve (thick lines) and periodic solutions (thin
lines) of (12), where solid lines represent stable states and dashed lines represent unstable states.
Right panel: Branches of periodic solutions from the left panel, magnified. The intensity is scaled by
ε2, the curves from left to right correspond to j = 5, 6, 7, 8, 9, 10, 11, and other parameters are as in
Figure 8.
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Figure 10. Top panels: Localized periodic solutions of Equation (12) from the middle points of the
stable parts of the branches depicted on Figures 8 and 9 for ε increasing from 0.05 (bottom curve of
the left upper panel) to 1 (top curve of the bottom panel). Bottom panel: Wider localized solutions
from the secondary parts of the periodic solution branches for ε increasing from 0.2 (bottom curve) to
1 (top curve). Time is scaled by the solution period Tw∼ε−1, which is controlled by the delay time T.
Other parameters are as in Figure 8.
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Finally, let us study how the variation of the effective dispersion coefficient β influences
the existence range of the temporal localized structures. One can see in the top left panel of
Figure 11 that near the LLE limit (ε = 0.05) the localized solutions can be observed only
for negative β < −0.05 corresponding to the anomalous dispersion regime. It is seen that
when β increases the interval of the injection rates between two fold bifurcations, where
stable localized solutions exist, shrinks so that for β ≥ −0.06 one can hardly see any stable
localized structure in the region of S-shaped CW curve. However, by increasing ε out of the
LLE limit first to ε = 0.3 (top right panel of Figure 11) and then to ε = 0.5 (bottom left panel),
one can see that around ε ≈ 0.5 localized structures can be observed for β = 0 as well.
Furthermore, for 0.5 ≤ ε ≤ 1 (bottom right panel) stable bright temporal dissipative solitons
can be observed even with small positive β, 0 ≤ β < 0.1. Therefore, we conclude that out
of the LLE limit temporal localized structures in the DDE model (12) could be observed not
only in anomalous dispersion regime but also for positive β, although in a smaller range of
the injection rates η. We have considered here only one possible way to exit the LLE limit
in a continuous manner, however our preliminary numerical simulations suggest that there
are many possible combinations of values of κ, η, ϕ, and β away from the LLE limit, where
stable or unstable temporally localized structures can be observed. We leave this question
to further studies, and, in particular, for experimentally justified parameters.
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Figure 11. Top left: Bifurcation diagram of Equation (12) for ε = 0.05 and various values of β. Thick
lines indicate CW solutions cut around S-shaped bifurcation curve, while thin lines correspond to
periodic solutions. Solid (dashed) lines represent stable (unstable) solutions. Fold bifurcations are
marked by F and Hopf bifurcations are marked by H. Other panels show fold bifurcations of the
localized periodic solutions of (12) on the plane of two parameters, β and η. They correspond to
ε = 0.3 (top right), ε = 0.5 (bottom left), and ε = 1.0 (bottom right). Other parameters are as in
Figure 8.
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In this section we have demonstrated the existence of bright localized structures of the
second oder DDE model (12). It follows from this result that such kind of structures should
also exist in the original set of two DDEs (1) and (2). We can use this theory then to find
parameters for (1) and (2) where localized structures exist (see Figure 12).
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Figure 12. Periodic pulse train solution A(t) of (1) and (2) (left) and single pulse (right), where the
parameters are γ1 = 1, ω1 ≈ 1.29, γ2 ≈ 0.26, ω2 ≈ −0.034, κl ≈ 0.68, φ ≈ −4.17,η0 ≈ 1.65, α = 1.5,
T = 200. In the normalized Equation (12) these values correspond to σ = 3.23, β = 1, κ = 0.25,
ϕ ≈ −3.383, η = 1.

5. Conclusions

We have considered a DDE model of an optically injected ring Kerr cavity with
two spectral filters having different widths and central frequencies. We have derived
a normalized complex-valued second order DDE (12), which is similar to real-valued
DDE reported in [39]. This equation can be considered as a generalization of the Ikeda
map, which explicitly contains second-order dispersion coefficient at zero frequency as
a parameter. We have derived an admissibility relation for these parameters, analyzed
stability of the CW solutions of this model in the limit of large delay, and demonstrated
the effect of strong dispersion on the development of modulational instability. We have
shown that in the limit of small losses and weak injection the DDE model can be reduced
to a generalized version of the well known LLE, which is known to have dissipative
soliton solutions. We have performed numerical bifurcation analysis of CW solutions
and temporal localized structures using DDE-BIFTOOL package [43] and demonstrated
qualitative similarity of the solutions of the DDE model with those of the LLE in the
regime of anomalous dispersion (β < 0) in the corresponding limit. Moreover, out of
LLE limit one can observe numerically stable asymmetric bright localized structures not
only in the anomalous dispersion regime, but also at zero and small positive values of
β, albeit in a shrinkingly smaller interval of existence. This is in agreement with the
results of Ref. [46] obtained using an extended LLE with the third order dispersion term
included. Experimental observations of asymmetric temporal Kerr cavity solitons near zero
dispersion point, where higher order dispersion comes into play, were reported in [47].

To summarize, we have proposed theoretically a Kerr cavity scheme, where the
dispersion introduced by two spectral filters with different central frequencies can lead
to the development of modulational instability and appearance of stable temporal cavity
solitons even when the material dispersion is negligible. This scheme is different from the
traditional Kerr cavity setups for frequency comb generation, where chromatic dispersion
of the intracavity material plays a crucial role in soliton formation. The modeling approach
we have developed is also suitable for the analysis of more complex systems with two
spectral filters, such as Mamyshev oscillators. Investigation of short pulse generation in
Mamyshev oscillators using the theoretical basis developed here might be a subject for
future research.
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Appendix A. MI in the LLE Limit

Linear stability of the CW solutions of the classical Lugiato-Lefever equations was
studied alalytically and numerically in a number of works, see e.g., Refs. [48–50] for both
the normal and anomalous dispersion regimes. In this Appendix we consider the DDE
model (12) in the LLE limit, where this model can be reduced to the generalized LLE (16)
with the additional diffusion (spectral filtering) term (σ2 − 2)/2, which exerts a stabilizing
effect on the CW solutions. A detailed linear stability analysis of the generaized LLE
model (12) is beyond the scope of this paper. We present here only some analytical results
concerning the sign change of one of the two quantities Λ′′±(0) (see Equation (25)), which
can be a precusor of the MI.

Without the loss of generality we can assume that α = 1 and k = 1. Substituting (14)
and A0 = εu0 +O(ε2) into (23)–(25) and using Λ±(0) = −< ln Y±(0) we obtain:

Λ±(0) = ε2
(

1∓<
√

D̃
)
+O(ε3), D̃ = −

(
θ + 3u2

0

)(
θ + u2

0

)
, (A1)

Λ′′±(0) = 2− σ±<
[

2β(2u2
0 + θ)√
D̃

]
+O(ε). (A2)

where Λ′′±(0) can be positive only when D̃ > 0, i.e., for − θ
3 < u2

0 < −θ. We see
from (A1) and (A2) that for D̃ > 0 in the LLE limit we have Λ+(0) < Λ−(0) and the
curvature Λ′′−(0) can be positive only for

β(2u2
0 + θ) < 0. (A3)

Let us consider the case when Equation (20) has three real roots, which similarly to
the standard LLE takes place for θ < −

√
3. Taking a real root u2

0 = a2 of Equation (20) we
can express the remaining two roots as

u2
0± =

1
2

(
±
√
−4a2θ − 3a4 − 4− a2 − 2θ

)
, (A4)

where three distinct roots are real for θ < −
√

3 and

− 2θ

3
− 2

3

√
θ2 − 3 < a2 < −2θ

3
+

2
3

√
θ2 − 3. (A5)

From this condition it follows that 2a2 + θ > 0 for all − 4√
5
< θ < −

√
3. Furthermore,

the condition that u2
0± < a2 for both the roots defined by (A4) is also possible only for

2a2 + θ > 0. Therefore it follows from (A3) that for any θ < −
√

3 the CW state with the
highest intensity can have Λ′′−(0) > 0 only in the anomalous dispersion regime β < 0.
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Since the condition Λ′′−(0) > 0 is not sufficient for the development of MI of a CW state,
we assume further in (21) with k = α = 1 that =λ = εw. Then up to order ε2 we obtain:

Λ±(w) ≈ −
[

2 +
w2(σ2 − 2

)
2

±
√

D(w)

]
ε2,

where D(w) = −
(
u2

0 + βw2 − θ
)(

3u2
0 + βw2 − θ

)
. We can find the frequencies w at which

the MI can observed using the conditions

Λ′−(w) = 0, Λ−(w) = 0. (A6)

In particular, in the normal dispersion regime (β > 0) solving (A6) with respect to w2

and θ we obtain

w2 ≈ 4
σ2 − 2

 u2
0β√

4β2 + (σ2 − 2)2
− 1

 > 0 (A7)

and two solitions for θ

− θ ≈
u2

0

[
2(σ2 − 2) +

√
4β2 + (σ2 − 2)2

]
− 4β

σ2 − 2
> 4, (A8)

− θ ≈ 1
σ2 − 2

u2
0

2(σ2 − 2) +
4β2 −

(
σ2 − 2

)2√
4β2 + (σ2 − 2)2

− 4β

 > 2
√

3. (A9)

Since according to (A7)–(A9) both w2 and −θ increase with u0, the value of −θ cor-
responding to w = 0 gives the lower bound of the detuning parameter, for which the
development of MI is possible. We note that for w = 0 and θ < 0 we have D(0) < 0,
and Λ−(0) 6= 0, hence MI is not possible, and the lower bound obtained using w = 0 is
not tight and provides a necessary condition for the MI. It follows from Equation (A7) that

for w = 0 we get u2
0 =

√
4β2+(σ2−2)2

β > 2. Substituting this expression into (A8) and (A9)
yields the following expression for the lower bound of the MI:

− θ ≈ 2
√

4β2 + (σ2 − 2)2 ± (σ2 − 2)
β

, (A10)

where the sign "+" ("−") corresponds to Equation (A8) [Equation (A9)]. The expression in
the right hand side of Equation (A10) achieves its minimal value−θ ≈ 2

√
3 at σ2 = 2∓ 2β√

3
.

Therefore, for −θ < 2
√

3 MI is not possible in the normal dispersion regime.
From the previous paragraph we see that in normal dispersion regime the MI is

possible only for sufficiently large −θ > 2
√

3. In the anomalous dispersion case (β < 0) by
solving Equation (A6) we get the following expression for the MI frequencies

w2 ≈ − 4
σ2 − 2

 u2
0β√

4β2 + (σ2 − 2)2
+ 1

 > 0

with u0 >

√
4β2+(σ2−2)2

−β > 2 and two solutions for the detuning parameter θ:

−θ ≈
u2

0

[
2(σ2 − 2)−

√
4β2 + (σ2 − 2)2

]
− 4β

σ2 − 2
,
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and

−θ ≈ 1
σ2 − 2

u2
0

2(σ2 − 2) +
−4β2 +

(
σ2 − 2

)2√
4β2 + (σ2 − 2)2

− 4β

.

Here, the coefficients by u2
0 can change sign depending on the parameters, hence there

is no clear lower boundary for −θ in contrast to normal dispersion regime. Moreover, we
could numerically observe MI for σ =

√
2.5, see Figures 4 and 5 Finally, we conclude that

while it is possible to observe MI in the case of anomalous dispersion, in normal dispersion
case that can be done only for sufficiently large −θ > 2

√
3.

Appendix B. Examples of MI Out of LLE Limit

Finally, we consider some examples of specific CWs, where relation (26) can be sim-
plified, so that conditions for the change of curvature of Λ±(ξ) at ξ = 0 can be obtained
explicitly, and then MI can be demonstrated numerically for close parameters.

For that, let us first study the conditions (27) and (28), which ensure that the CW
is stable for β = 0 and that Λ′′(0) can become positive for some β 6= 0, and introduce
auxiliary variable

ζ = cos
(

αA2
0 + ϕ

)
,

in Equations (17) and (18). Then we get sin(αA2
0 + ϕ) = ±

√
1− ζ2 and Equation (19) can

be rewritten in the form A0 = η√
κ+1−2

√
κζ

with −1 ≤ ζ ≤ 1.

For sin[2(αA2
0 + ϕ)] < 0 using the relations (23) and (24) the inequalities (27) and (28)

can be rewritten in the form

1− |ζ|√
1− ζ2

< αA2
0 ≤

1√
1− ζ2

(
|ζ|+ 1 + κ

2
√

κ

)
. (A11)

Furthermore, from (26) one can see that for αA2
0 >

√
1−ζ2

|ζ| > 1−|ζ|√
1−ζ2

we have B > 0

when Λ+(0) < Λ−(0) < 0, and B < 0 when Λ−(0) < Λ+(0) < 0. Hence it follows
from (25) that the sign change of one of the two quantities Λ′′±(0) corresponding to larger
Λ±(0), which can lead to a MI of the CW solution, can occur only for β < 0. In the LLE
limit one can see that this scenario usually corresponds to the change of the curvature sign
of Λ(µ) of the upper part of the CW branch (see Figure 3) in anomalous dispersion regime.

Alternatively, for 1−|ζ|√
1−ζ2

< αA2
0 <

√
1−ζ2

|ζ| we have B < 0 when Λ+(0) < Λ−(0) < 0,

and B > 0 when Λ−(0) < Λ+(0) < 0. Hence, in this case the sign change of the curvature
can occur for β > 0.

For sin[2(αA2
0 + ϕ)] > 0 instead of (A11) we get the inequalities

|ζ|+ 1 < αA2
0

√
1− ζ2 ≤ |ζ|+ 1 + κ

2
√

κ
, (A12)

which imply that A0 > 1√
α

, which is incompatible with the LLE limit, where A0 is
asymptotically small. Since |ζ| ≤ 1, from (24) one can see that for A0 = 0 we have
D ≤ 0. In particular, according to Equations (23) and (24) together with the inequality
sin[2(αA2

0 + ϕ)] > 0, for D = 0 we get Y±(0) = − 1√
κ

for sin(αA2
0 + ϕ) > 0 and Y±(0) = 1√

κ

for sin(αA2
0 + ϕ) < 0. Therefore, for larger A0 and D we have Λ−(0) < Λ+(0) < 0 for

B > 0 and Λ+(0) < Λ−(0) < 0 for B < 0. Hence, it follows from (25) that in this case the
change of curvature can be observed for β > 0.

Let us consider a simple case where ϕ = −αA2
0 + π/2 in Equation (12) and, therefore,

cos
(
αA2

0 + ϕ
)
= 0 in Equation (19). Hence, we get A0 = η√

1+κ
< η, which corresponds to

the CW with the lowest intensity in case of bistable S-shaped CW branch. Furthermore,
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from (23) we obtain D = α2η4

(κ+1)2 − 1 and Y+(0) = 1√
κ

(
αη2

κ+1 +
√

D
)

. Therefore, from (25)

and (A12) with sufficiently large β we can have

Λ′′+(0) = 2− σ2 +
2β√

α2η4

(κ+1)2 − 1
> 0, 1 + κ < αη2 <

(1 + κ)2

2
√

κ
.

This condition is reminiscent of the MI condition of a CW in the anomalous dispersion
regime in the case of CW solutions of a semiconductor laser model [31], though second-
order dispersion coefficient β is multiplied here not by α but by a function of α, η, κ. Similarly
to the case of a laser under optical injection [32], this condition manifests the change of
curvature of Λ(ξ) at ξ = 0 for some β > 0, and it precedes appearance of a MI for larger β,
which can be observed numerically (see Figure A1, top).
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Figure A1. Curves of pseudocontinuous spectrum in the limit of large delay (21) of (12) of the CW
with the lowest intensity A0 =

η√
1+κ

for ζ = π
2 , η = 1.285 (top) and the largest intensity (A13) for

ζ = π/6, η = 0.975 with β = −0.3 (top-left), β = 0.3 (top-right), β = −0.1 (bottom-left) and β = 0.1
(bottom-right). Other parameters are κ = 0.8, σ =

√
2.5, α = 1.

The most usual way to find a localized structure in form of a bright dissipative
soliton, is to look for three coexisting CWs, where CW with the largest field intensity A2

0 is

modulationally unstable. Indeed, for ϕ = −αA2
0 +

π
6 , where ζ =

√
3

2 , the CW takes the form

A0 =
η

2−
√

3κ

√
3 +

1−
√

3κ

κ2 −
√

3κ + 1
> η. (A13)

and the condition Λ′′(0) ≥ 0 takes the form

2− σ2 +
2β
(√

3αA2
0 + 1

)
√

α2 A4
0 − 2

√
3αA2

0 − 1
≥ 0, 2 +

√
3 < αA2

0 ≤
κ +
√

3
√

κ + 1√
κ

.
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Similarly, the change of curvature of Λ(ξ) at ξ = 0 can occur only for β > 0, where
also a MI can be observed (see Figure A1, bottom). We can use the CW (A13) by choosing
corresponding parameter ϕ to find parameters where localized structures exist, and ob-
tain parameters for the original system (1) and (2) to obtain these structures in numerical
simulations (see Figure 12).
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