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Abstract: It is very important to design a rapid and sensitive device for the creatinine concentration
detection due to it being one of the most considerable benchmarks for efficient kidney working.
Here, a novel biophotonic sensor using one-dimensional ternary PC based on Si/TiN/SiO2 layers is
proposed for the creatinine concentration detection in a blood serum sample. A central cavity layer is
inserted between two equal periodic numbers. The blood sample can be infiltrated in the cavity layer
with various creatinine concentrations. Based on the technique of transfer matrix, the transmittance
spectra properties are investigated. The influences of variation of the incidence angle for both TE and
TM polarizations and the cavity layer thickness are carefully investigated to attain the best sensitivity
of the biophotonic detector. A high sensitivity of 938.02 nm/RIU is realized for the suggested detector,
which is comparable to most recent works published in this area. Moreover, the proposed sensor
has an inexpensive cost, real-time detection, and simple structure, which is helpful to the industrial
design using low-cost product nanofabrication techniques. Based on above-mentioned outcomes, our
biosensor candidate is a suitable and effective device for the detection of creatinine concentration,
and it can use for any biological sample.

Keywords: ternary photonic crystal; creatinine concentration; titanium nitride; transfer matrix; sensitivity

1. Introduction

Recently, the research in nano-optoelectronic devices gathered a large amount attention
by physicists and engineers for their various and enormous applications [1]. Multiple layers
with high and low refractive indices make up a photonic crystal (PC), which governs the
travel of light [2]. One-dimensional (1D), two-dimensional (2D), and three-dimensional
(3D) PC can be categorized based on the repeated dimensions [3]. In addition, PC structures
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can be sorted into binary (two layers in one period), ternary (three layers in one period),
and quaternary (four layers in one period) based on the number of layers in each cell
(period). The presence of a photonic band gap (PBG) in the transmittance profile of PCs is a
crucial characteristic [4]. Consequently, PCs have been considerably utilized in a variety of
applications, including as a narrowband filter [5], an optical absorber [6], and an optical
mirror [7], as well as for optical sensing [8], a polarization manipulating device [9], and
optical binding [10]. Given that the scaling factor of the PC fabrication process from micro-
to nanoscales was well-matched for both the IR and visible areas [11], photonic crystals
(PCs) have been used as a temperature sensor [12], biosensor [13], chemical sensor [14],
hydrostatic pressure detector [15], and gas sensor [16].

Creatinine is a chemical waste excreted with metabolic processes in biological systems.
It is very important for the energy production in muscles. The process of creatinine
clearance from the biological system is essential. This action occurs by the body disposing
of creatinine in urine after it transfers through the blood to the kidney. Thus, the creatinine
levels in blood are measured as important benchmarks for kidney performance [17,18].
Thus, the sensing process of creatinine concentration in the blood is an essential stage to
detect kidney diseases [19,20]. There are several techniques to decide levels of creatinine in
blood, such as Jaffe’s method [21], as well as enzymatic methods [22,23].

Here, a one-dimensional ternary photonic crystal (1D-TPC) with a defective layer
utilized as a biophotonic sensor for the creatinine concentration detection in blood serum.
A ternary PC was chosen because it is more sensitive compared to binary PCs. The transfer
matrix approach was employed to investigate the spectra of transmittance of the suggested
structure. The influences of incident angle (TE and TM polarizations) and defect layer
thickness were checked. The proposed detector’s greatest sensitivity was computed and
contrasted with the most recent sensors, which is related to biosensing.

2. Theoretical Method

According to Figure 1, a ternary photonic crystal (TPC) with the (A1A2A3)N/D/
(A1A2A3)N structure is assumed. The layers A1, A2, and A3, are Si, TiN, and SiO2, re-
spectively. D is the cavity that sits in the middle of two similar periodic structures. Air
surrounds the TPC on both sides. N is the number of periods.
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The optical properties of PCs can be simulated and investigated using several tech-
niques. For a 1D PCs, the optical properties can be studied using a lot of the mathematical
techniques such as the transfer matrix and finite element methods. As a straightforward
and adaptable method for examining the optical characteristics of 1D periodic structures,
such as transmission and reflection spectra, we shall employ the transfer matrix approach.
One layer’s (Ej) characteristic matrix can be expressed as

Ej =

[
cos
(
Yj
)

− i sin(Yj)
ϕj

−iϕj sin
(
Yj
)

cos
(
Yj
)
]

(1)
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Yj is the jth layer’s phase variation, where

Yj =
2π

λ
njhj cos θj (2)

where nj is the refractive index and hj is the thickness. θj is the incident angle into the layer
which is expressed with the initial incidence angle θ0 as

cos θj =

√√√√1−
(

n0 sin(θ0)

nj

)2

(3)

ϕj = nj cos
(
θj
)

for the transverse electric (TE) wave, ϕj = cos
(
θj
)
/nj for the trans-

verse magnetic (TM) wave, and n0 is the refractive index of the incidence medium. The
matrix E0 for one cell comprising three layers A1, A2, and A3 can be printed as E0 = EA1
EA2 EA3. The full transfer matrix X of a defective TPC can be written as

X = (E0)
N ED(E0)

N =

[
X11 X12
X21 X22

]
(4)

The elements of the complete transfer matrix X are Xij, and ED is the transfer matrix
of the cavity medium. The coefficient of transmission (t) can be expressed as

t =
2ϕin

(X11 + X12 ϕout)ϕin + (X21 + X22 ϕout)
(5)

and the transmittance can write as the form

T =
ϕout

ϕin
|t|2 (6)

The TPC is intended to be surrounded by air. Thus, ϕin = ϕout = cos(θ0) for both (TE)
and (TM) polarizations.

3. Results and Discussion
3.1. Creatinine Concentration Biosensor

A photonic crystal having the structure (Si/TiN/SiO2)N/defect (Si/TiN/SiO2)N is
applied as a creatinine sensor. The refractive indices of the layers are 3.3 (for Si), 1.28 (for
TiN), and 1.46 (for SiO2). It is worth mentioning that TiN demonstrates some crucial assets
such as amazing thermal stability, soft optical loss, and chemical inertness. Owing to its
high thermal stability and high field improvements, a TiN-based photonic structure can
be the appropriate candidate for optical sensing devices with high performance [24]. In
general, ternary PC is chosen because it is more sensitive compared to binary PCs [25].
Therefore, we can use another layer other than titanium dioxide with similar properties to
install a ternary photonic crystal. The thicknesses are selected as h1 = 120 nm, h2 = 260 nm,
and h3 = 190 nm. The assumed number of periods is N = 4. D is the cavity layer to
be treated as a blood sample with different concentrations of creatinine. In Table 1, the
refractive indices for various concentrations in µmol/L of creatinine in a blood sample
is given [26,27] and is shown in Figure 2 (red points). Using a mathematic program, the
index-concentration relation’s polynomial fit is provided by

RI(C) = −849.40 + 30.75 C− 0.369725 C2 + 0.00148011 C3 (7)

where RI(C) is the refractive index and C is the creatinine concentration. Any C-value can
be predicted using Equation (7) for a blood sample’s refractive index. The fitted index as
a function of the creatinine concentration is illustrated is Figure 2 (black curve). Normal
incidence (θ0 = 0◦) is first studied, which is the same for both TE and TM modes, and
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the thickness of defective cavity is selected as hf = 500 nm. The transmittance spectrum
through the suggested TPC without any defective layer is exhibited in Figure 3a. A wide
PBG of width of 1243.19 nm can be observed with left and right ends at wavelengths of
1580 nm and 2823.19 nm, respectively. Figure 3b displays the transmittance spectrum of the
proposed structure when the defect layer is filled with a blood sample at a concentration of
creatinine of 80.9 µmol/L and 82.3 µmol/L. The width of the PBG grows to 1243.88 nm
where the right and left ends are at wavelengths of 2783.69 nm and 1539.81 nm, respectively.
It is noted that the width of PBG did not change, but a little shift occurred in the direction
of the left side. With an enlarged view inside Figure 3, two defect modes can be noticed
at a resonant wavelength of 1871.76 nm and 1864.47 nm for C = 80.9 and 82.3 µmol/L,
respectively. It is observed that the defect peak shifted toward the lower wavelength when
a blood sample (C = 82.3 µmol/L) instead of the blood sample (80.9 µmol/L). This swing of
defect peak is due to the defect mode’s location-dependent refractive index, which complies
with the standing wave requirement [28]:

OPD = ne f f L = J λ (8)

where OPD, J, neff, and L are the difference of optical path, effective index of refractive,
difference of geometric path and an integer number, respectively. The sensitivity of these
modes is calculated and found to be 331.36 nm/RIU (refractive index unit). In the next
sections, we optimize both the incident angle for TE and TM polarization and thickness of
cavity layer to obtain a higher sensitivity of the proposed TPC sensor.

Table 1. The blood sample’s refractive index at various concentrations of creatinine.

Creatinine Concentration
(µmol/L) 80.9 81.43 82.3 83.3 84.07 85.28

Refractive index 2.661 2.655 2.639 2.610 2.589 2.565
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Figure 3. Transmittance spectra of TPC (a) without a defect medium; (b) with a defect medium at 
θ0 = 0.0°, h1 = 120 nm, h2 = 260 nm, h3 = 190 nm, h3 = 500 nm, n1 = 3.3, n2 = 1.28, n3 = 1.46. 

  

Figure 3. Transmittance spectra of TPC (a) without a defect medium; (b) with a defect medium at
θ0 = 0.0◦, h1 = 120 nm, h2 = 260 nm, h3 = 190 nm, h3 = 500 nm, n1 = 3.3, n2 = 1.28, n3 = 1.46.

3.2. Effect of Variation in the Incident Angle

In this section, the transmittance spectra was investigated for both TE and TM waves
when the cavity layer thickness was fixed as hf = 500 nm and the angle of incidence was
adjusted in 10-degree steps from 0◦ to 70◦. The spectrum of transmission is exhibited in
Figure 4a–d (TE polarization) and Figure 5a–d (TM polarization) corresponding to incident
angles 0◦, 20◦, 40◦, and 60◦, respectively. The transmission spectra of Figures 4 and 5 show
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the reaction as the cavity region in the proposed structure was infiltrated separately with
blood samples for two concentrations of creatinine (80.9 µmol/L and 82.3 µmol/L). With
an increase in creatinine concentration, the defect mode shifts toward a lower wavelength.
Because blood samples’ refractive indices drop as their creatinine concentrations rise, the
defect peaks within the transmittance spectra shift in response. Moreover, the increase in
the incidence angle at the same concentration of creatinine causes movement of the defect
peaks toward the lower wavelength region with reduction in their intensity, as observed in
Figure 4a–d (TE polarization), and with growth in their intensity, as seen in Figure 5a–d
(TM polarization). The blue shift of the defect mode with an increasing of incident angle
can be explained based on Bragg Snell’s law [29]:

s λ = 2 g
(

n2
e f f − sin2 θ0

)
0.5 (9)

where s, λ, g, ne f f , and θ0 are the diffraction order (s = 1, 2, 3, . . . ), the free space wave-
length, the interplanar spacing, the effective index of refractive, and the angle of incidence,
respectively.
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Figure 4. Transmittance curves of the suggested TPC biosensor with different incident angles (a) 0.0◦,
(b) 20◦, (c) 40◦, and (d) 60◦ for the TE mode.

It is also noted that the increase in the incident angle shrinks the intensity of each
defect peak faintly without influencing the detecting capabilities and qualifications of the
biosensor. Figure 6 shows the sensitivity improvement for TE polarization is higher than
TM polarization as the incident angle increases, which is a very important condition in the
design of optical sensing devices. The sensitivity was calculated and found to rise from
331.36 to 429.09 nm/RIU when the incident angle increased from θ0 = 0.0◦ to θ0 = 70◦ for
the TE case. We also observed a little enhancement of the sensitivity with an increase in
the incident angle for the TM case. The sensitivity increased from 331.36 (θ0 = 0.0◦) to
340 nm/RIU (θ0 = 40◦), and after that, the sensitivity started declining. Figure 6 exhibits the
behavior of the sensitivity with the angle of incidence. The calculations of the defect mode
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positions, wavelength shift, and sensitivity for all these angles are presented for TE (Table 2)
and TM (Table 3) polarizations. At θ0 = 60◦, the movement of the defect peaks through
the PBG is toward the lower wavelength side with progressed sensitivity and acceptable
intensity of defect modes. It is observed that the defect modes of TE polarization are sharper
than those of TM polarization, which is one of the fundamental requirements for any good-
quality optical sensor. When we compare the findings of TE and TM polarizations, we find
the case of TE is better than that of TM polarization. It is worth noting that for angles larger
than θ0 = 60◦ in the TE case, the defect modes are very small, which is undesirable in the
design of sensing devices. Thus, the incident angle of θ0 = 60◦ for TE polarization is the
optimum value because it has improved sensitivity, sharp peaks, and acceptable intensity
of defect modes that are sufficiently and easily sensed by the transducer of the reported
biophotonic detector design.
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Table 2. Position of resonant peak and sensitivity (S) of creatinine concentration for different incident
angles at n1 = 3.3, n2 = 1.28, n3 = 1.46, h1 = 120 nm, h2 = 190 nm, h3 = 260 nm, hf = 500 nm, and N = 4
(TE mode).

Incident Angle (θ0) Position of Resonant Peak
at C = 80.9 (mmol/L)

Position of Resonant Peak
at C = 82.3 (mmol/L)

Shift of Wavelength
(nm)

S
(nm/RIU)

0.0 1871.76 1864.47 7.29 331.36
10 1864.17 1856.85 7.32 332.72
20 1842.34 1834.89 7.45 338.63
30 1809 1801.17 7.83 355.90
40 1768.3 1760.02 8.28 376.36
50 1725.21 1716.52 8.69 395
60 1685.11 1675.96 9.15 415.90
70 1652.73 1643.29 9.44 429.09
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Figure 6. Sensitivity versus incident angle for both TE and TM modes at hf = 500 nm. 
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Table 3. Position of resonant peak and sensitivity (S) of creatinine concentration for different incident
angles at n1 = 3.3, n2 = 1.28, n3 = 1.46, h1 = 120 nm, h2 = 190 nm, h3 = 260 nm, hf = 500 nm, and N = 4
(TM mode).

Incident Angle (θ0) Position of Resonant Peak
at C = 80.9 (µmol/L)

Position of Resonant Peak
at C = 82.3 (µmol/L)

Shift of Wavelength
(nm)

S
(nm/RIU)

0.0 1871.76 1864.47 7.29 331.36

10 1865.33 1858.01 7.32 332.72

20 1846.5 1839.16 7.34 333.63

30 1816.8 1809.36 7.44 338.18

40 1778.51 1771.03 7.48 340

50 1734.82 1727.35 7.47 339.54

60 1689.83 1682.41 7.42 337.27

70 1649.07 1641.72 7.35 334.09

3.3. Effect of Variation in the Thickness of Defective Cavity

In this section, we inspect how the thickness of defective cavity influences the sensitiv-
ity of the suggested TPC biosensor under conditions of normal incidence. For this target, we
scanned the thickness of the cavity layer from 0.5 µm to 5.5 µm with a step of 0.5 µm. The
transmittance spectra of the suggested photonic structure corresponding to a cavity layer of
thicknesses 1.5, 2.5, 3.5, and 4.5 µm are shown in Figure 7a–d, respectively. Transmittance
spectra of Figure 7 exhibit that, due to an increase in the thickness of the cavity layer under
conditions of normal incidence corresponding to blood samples whose refractive indices
change from higher to lower value, the defect modes inside the photonic BG shift their
location toward a lower wavelength. Figure 6 shows the sensitivity development when the
cavity’s thickness increases, which is, again, one of the central qualifications for any good
biophotonic sensor. It can be seen that the sensitivity climbs from 331.36 to 841.36 nm/RIU



Optics 2022, 3 455

as the thickness of the cavity layer rises from hf = 0.5 µm to hf = 5.5 µm, as shown in
Figure 8. By increasing the thickness of the cavity layer to greater than hf = 5.5 µm, a few
increases in the sensitivity are noticed. As a result, the optimal thickness of the cavity layer
is hf = 5.5 µm. Moreover, their intensity gradually grows and reaches the maximum at a
cavity layer of thickness 5.5 µm. The maximum value of intensity is always desired for a
good-performing biophotonic sensor. As the thickness of the cavity layer increases, the
electromagnetic wave will have a longer geometric path through the cavity, and a greater
interaction occurs between the incident wave and the sensing sample. As a result, the
sensitivity and intensity of peaks are improved. Thus, the optimum thickness of the cavity
layer is selected as 5.5 µm. The calculations of defect mode positions, wavelength shift, and
sensitivity for all these thicknesses of cavity layers are presented in Table 4.
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Figure 7. Transmittance curves of the suggested TPC biosensor with different thicknesses of cavity
layers: (a) 1.55 µm, (b) 2.55 µm, (c) 3.55 µm, and (d) 4.5 µm at θ0 = 0◦.

3.4. Analysis of the Optimum Case for the Proposed Structure

Based on the aforementioned outcomes, we found the optimized case at which the
proposed biophotonic sensor works efficiently occurs at a thickness of cavity layer hf = 5.5
µm and an incident angle θ0 = 60◦. At this optimum state, Figure 9 shows the spectrum of
transmittance for different concentrations of creatinine (80.9, 81.43, 82.3, 83.3, 84.07, and
85.28 µmol/L). It is worth to note that we fixed other structural parameters in this work
in order to achieve a broader photonic BG, which gave us the ability to examine a larger
number of blood samples for different concentrations of creatinine. It can be seen that the
defect peaks inside the photonic BG change their place toward lower wavelengths as the
concentration of creatinine grows. This shifting of the defect peak through the photonic
BG is due to the decrease in the blood sample index as the concentration of creatinine rises.
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The polynomial relation between the resonant wavelength of defect mode (RW) and the
concentration of creatinine (C) of the proposed TPC biosensor can be fitted and written as

RW(C) = −790602 + 28623.8 C− 344.02 C2 + 1.37 C3 (10)
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Figure 8. Sensitivity versus thickness of defect layer at θ0 = 0◦ and N = 4.

Table 4. Position of resonant peak and sensitivity of creatinine concentration for different thicknesses
of defect layer at θ0 = 0.0◦ and N = 4.

Thickness of Cavity
Layer (µm)

Position of Resonant Peak
at C = 80.9 (µmol/L)

Position of Resonant Peak
at C = 82.3 (µmol/L))

Shift of Wavelength
(nm)

S
(nm/RIU)

0.5 1871.76 1864.47 7.29 331.36

1 2039.38 2029.24 10.14 460.90

1.5 2207 2194.01 12.99 590.45

2 2274.09 2259.68 14.41 655

2.5 2341.19 2325.36 15.83 719.54

3 2377.24 2360.79 16.45 747.72

3.5 2413.3 2396.23 17.07 775.90

4 2435.93 2418.41 17.52 796.36

4.5 2458.57 2440.59 17.98 817.27

5 2474.14 2455.89 18.25 829.54

5.5 2489.71 2471.2 18.51 841.36

Equation (8) can be employed to predict the resonant position of the peak for any con-
centration of creatinine. Table 5 shows the numerically calculated positions of the resonant
peak, shift of wavelength, and sensitivity of creatinine biosensor. This table presents the sen-
sitivity variation of the suggested structure between 928.33 nm/RIU and 938.02 nm/RIU
under the effect of various concentrations of creatinine. Moreover, the polynomial relation
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between the sensitivity (S) of our biophotonic sensor and the concentration of creatinine in
the blood (C) of the suggested TPC biosensor can be fitted and expressed as

S(C) = 17186.7− 570.31 C + 6.634 C2 − 0.025576 C3 (11)
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Figure 9. Transmittance spectra of the suggested TPC biosensor for various concentrations of protein
at θ0 = 60◦, hf = 5.5 µm, and N = 4.

Table 5. Position of resonant peak and sensitivity of different concentrations of creatinine in blood
serum at h1 = 120 nm, h2 = 190 nm, h3 = 260 nm, θ0 = 60◦, hf = 5.5 µm, and N = 4.

Creatinine Concentration
(µmol/L)

Index of
Refraction

Resonant Peak Position
(nm)

Shift of Wavelength
(nm)

S
(nm/RIU)

80.9 2.661 2539 - -

81.43 2.655 2533.43 5.57 928.33

82.3 2.639 2518.58 20.42 930

83.3 2.610 2491.47 47.53 931.96

84.07 2.589 2471.72 67.28 934.44

85.28 2.565 2448.95 90.05 938.02

It is clear that the equivalents between the fitting curves and simulated data are quite
a good match, as is shown in Figures 10 and 11 for resonant wavelength and sensitivity,
respectively. Here, it is noteworthy that the sensitivity of the proposed biophotonic sensor
is ultra-high and can be used for other biosensing. The suggested biosensor designed
(by alternating Si/TiN/SiO2) with a creatinine sample as a defect layer demonstrated an
efficient sensitivity reach to 938.02 nm/RIU, which is not realized for a lot of recently
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published articles related to biosensing. For example, in 2020, Arafa H Aly et. al. searched
the sensitivity of a 1D photonic crystal with a cavity layer for creatinine concentration
detection in blood, and they achieved a sensitivity of 306 nm/RIU. As another example, the
maximum sensitivity was reported to be 640.29 nm/RIU in 2021 by Sakshi Gandhi, who
examined the sensitivity of a biosensor for the creatinine detection in levels of blood serum.
Here, in comparison to all of these recent publications, the proposed biophotonic sensor
that is presented in this work demonstrated the highest sensitivity. Table 6 compares the
sensitivity of the suggested biosensor to the most contemporary biosensing designs. Giving
some advice about how to fabricate the proposed sensor is really important. Using the
nanoimprint lithography technology, the proposed structure can be generated easily. The
photonic crystal can be incorporated into a waveguide to describe the built system. A cavity
is introduced between two identical numbers of periods and can be treated as a sensing
medium. The cavity is filled with the sensing sample, and the structure is illuminated by a
light source. To exhibit and inspect the transmitted beam, an optical detector is necessary
on the other side of the system.

Optics 2022, 3, FOR PEER REVIEW 13 
 

80 81 82 83 84 85 86

2440

2460

2480

2500

2520

2540

R
es

on
an

t w
av

el
en

gt
h 

(n
m

)

Creatinine concentration  
Figure 10. Resonant wavelength versus creatinine concentration for a ternary photonic crystal at θ0 
= 60°, hf = 5.5 µm, and N = 4. 

80 81 82 83 84 85 86

927

930

933

936

939

942
 

Se
ns

iti
vi

ty
 (n

m
/R

IU
)

Creatinine concentration  
Figure 11. The sensitivity as a function of creatinine concentration for a proposed ternary photonic 
crystal at θ0 = 60°, hf = 5.5 µm, and N = 4. 

Table 6. The present study’s sensitivity in comparison to the most recent biosensors that have been 
published. 

Techniques/Structures Year 
S 

(nm/RIU) References 

A PC made of nanocomposite materials as a biosensor 2019 43 [30] 
Biosensor using array of split ring resonators 2019 657.5 [31] 

1D-PC based biosensor for creatinine concentration de-
tection 2020 306.25 [26] 

Figure 10. Resonant wavelength versus creatinine concentration for a ternary photonic crystal at
θ0 = 60◦, hf = 5.5 µm, and N = 4.
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Table 6. The present study’s sensitivity in comparison to the most recent biosensors that have
been published.

Techniques/Structures Year S
(nm/RIU) References

A PC made of nanocomposite materials as
a biosensor 2019 43 [30]

Biosensor using array of split ring resonators 2019 657.5 [31]

1D-PC based biosensor for creatinine
concentration detection 2020 306.25 [26]

1D-PC with extra layers on the sensing sample’s sides 2021 161 [32]

Creatinine concentration biosensor using a
1D-defective photonic structure 2021 640.29 [27]

A layer of nano-composite based a 1D-PC 2022 893 [33]

Ternary PC based on titanium nitride sandwiched
between Si and SiO2

2022 938.02 Current work

4. Conclusions

1D defective TPC with the structure air/(Si/TiN/SiO2)4/cavity layer/(Si/TiN/SiO2)4/air
was tested as a biophotonic sensor device for the creatinine concentration detection in a
blood serum sample. We constructed the formulation of transfer matrix that was employed
with the help of mathematical software to investigate these outcomes. At oblique incidence,
TE polarization shows performance better than TM polarization. With any variation in
the creatinine concentration, the proposed design demonstrates excellent tuning. It is also
noted that the performance of the biosensor can be modified by related factors, such as
angle of incidence and thickness of the cavity layer. Increasing the incident angle enhances
the sensitivity of the suggested structure. It was observed that when the angle of incidence
increases, the peak’s intensity acceptably decreased until it reached an angle of θ0 = 60◦,
at which point the intensity began to unsatisfactorily decline. Thus, the optimum angle
was selected as θ0 = 60◦. In addition, the sensitivity of the proposed biosensor showed
dramatic improvement with the growing of the cavity layer’s thickness. We found the
optimum thickness to be hf = 5.5 µm. The maximum sensitivity of the proposed biophotonic
sensor was found to be 938.02 nm/RIU. It is clear our proposed structure demonstrates
high sensitivity for the detection of creatinine concentration. Moreover, our biosensor is
economical, tunable, and has a simple architecture that gives it a good technique for the
detection of creatinine concentration. The aforementioned findings could find an applicable
and real path for any design related to biosensing.
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