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Abstract: This manuscript explores the topological and optical properties of a Passeriformes bird
feather. Inside the feather, the layers of keratin and melanin are responsible for light reflection,
transmission, and absorption; notably, the miniature composition of melanosome barbules plays a
crucial role in its reflective properties. We adopted a multilayer interference model to investigate light
propagation throughout the Passeriformes plume. As a result, we obtained all necessary simulated
results, such as resonance band, efficiency, and electromagnetic radiation patterns of the Passeriformes
plume, and they were verified with the experimental results reported in the literature study regarding
light reflectivity through its internal geometry. Interestingly, we discovered that the interior structure
of the Passeriformes plume functions similarly to a UV reflector antenna.
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1. Introduction

In the biological world, coloration and geometrical characteristics are vital for demon-
strating the optical properties of bird organs [1]. For example, Huth and Burkhardt first
detailed birds’ tetrachromatic features and UV perceptions of light [2]. Tetrachromatic color
vision is found in many birds’ eyes, making them capable of perceiving ultraviolet light.
On the other hand, it has already been shown that iridescent colors are formed due to the
different refractive indexes of different layers (air, keratin, and melanin) in the bird feather.
Therefore, visual communication in some birds and animals is achievable by displaying
and perceiving iridescent colors. For example, iridescent color is distinguishable in the
keratin layer above a single melanin layer of a Passeriformes feather [2]. In earlier studies,
the unidirectional and bidirectional geometry of the barbule was described in detail in
the barbs’ medullar cortex [3–5]. Moreover, one study explored the optical properties of
bird feathers in the infrared region of 700–2600nm. In addition, Fox et al. determined the
reflectance and transmittance of light in the visible region across the different bird species
and examined the variation of light reflection and transmission in the interior morphology
of barbules; these parameters vary across other species [6].

Principally, the barbules of the feather are colored by pigment, and selective interfer-
ence occurs due to light reflection. Such barbules are made from different refractive (low or
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high value) index materials. The back-and-forth reflection of light from the barbs generates
multiple interference patterns. After that, the keratin/chitin and pigment layers, which
are connected physically or chemically, generate the colors [7]. Finally, these colors are
produced by the spongy keratin found in medullary cells in the barbule [8]. It is worth
mentioning that all the optical properties of barbules depend on the angle of illumination.
In that regard, barbules’ light reflectivity spectra and directional properties have been
measured [9].

An experimental study provided findings to assess the influence of the environment
on the development of eumelanic and pheomelanic color in a Passeriformes bird, a black-
capped chickadee. The main conclusion was that investigators should exercise caution
when attributing variance in melanin-based color to melanin alone, and the microstruc-
ture of the feather should be considered [10]. The light reflectance phenomenon reveals
unidirectional and three-directional natures of the colored occipital barbules and breast
barbules, respectively; these reflection properties are discovered by replicating the realistic
structure of the barbules using finite time-domain simulations [11]. Plume morphology
is responsible for color formation. The layers inside the barbules manage the phase divi-
sion in their respective regions [12,13]. However, the morphology of melanosomes varies
between iridescent plums of different species [14]. The iridescent color comes from the
melanin-containing melanosome, which is organized in an array form [15]. Melanin color
is the standard color in the animal world and is significant at the pigmentary stage. The
color concentration is illustrated as a substantial deviation in the brightness of the breast
plumage [16]. Many studies on plumage coloration examine its role in signaling between
animals and their activities. They also illustrate the different coloration systems and their
reaction to the incident light [17].

Meticulous studies have been done on how pigment and its internal architecture
produce color by light scattering. The geometry of the barbules is the key to absorbing the
incident light and producing an enormously low-level light reflection. The super-black
plume is a nanostructured morphology of inclined arrays of barbules that create more light
scattering than regular black barbules (structural absorption); therefore, super-black plums
show extremely low reflection. Barbule morphologies are distinctively different in regular
and super black plumes [18,19]. In addition, they have unique mechanical and aerodynamic
properties due to their stiffness and lightness. Such properties were studied using speckle
pattern interferometry, an optical technique for determining the mechanical activities of
the feather and that is capable of determining the optical phase of the nanostructure in the
plume [19].

Passeriformes birds are the most abundant bird species on earth, with more than
5000 species. They present beautiful iridescent colors; more than 60% present UV reflection,
and 17% reflect UV light with an amplitude between 380 and 399 nm. Moreover, there is
evidence that they are capable of having UV vision. Besides the multitudinous amount of
Passeriformes birds, more UV-related behavioral studies on these birds are necessary [2].

Signal communication in the biological system has always been discussed [20–22].
However, it is always difficult and expensive for a researcher to experiment with bioma-
terials at the nano and picoscale. Here, we suggested a reliable simulation method to
predict the results regarding the biomaterials. We used our simulated results in simple
mathematical calculations to verify our approach’s effectiveness and the experimental
results reported in the literature study. Furthermore, we can set the experimental parameter
conditions according to our simulation findings. In this manuscript, we suggested that the
Passeriformes plume behaves as a UV-reflecting antenna when sunlight falls at a certain
angle through the elements of the Passeriformes plume.

This work is organized as follows: First, we introduce the methodology to simulate
actual results for explaining the optical phenomena regarding the color of a feather. We
solved the geometrical pattern of the barbules through the Maxwell equation solver in
the time-domain mode. As a result, we found that the topology and material properties
of the barbules produce bright colors by light scattering. Interestingly, our simulation
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results are analogous to the experimental results found in the literature studies. Second,
the simulation and experimental results analysis are discussed in more detail in the Results
and Discussion section, and, finally, we obtained our conclusion.

2. Methods

We built the interior geometry of the feather barbules (Figure 1b) by following their
original dimensions and material properties (Figure 1a). Using electromagnetic simulation
software, we proposed an inner multilayer replica of the barbules of a Passeriformes
feather (Figure 1a). We estimated the resonance peaks from the KHz to PHz frequency
range. We picked only those peaks that showed a considerable amplitude (Figure 2a, upper
left panel). We noted the results regarding resonance peaks, gain, efficiency, and VSWR
curves (Figure 2a), which help to explain the experimental literature studies regarding the
light mechanism within the barbules. The proposed geometry illustrates the significant
peaks in the UV region. We theoretically showed a standard multilayer interference
replication to evaluate the feather barbule’s reflection spectrum. The built planar multilayer
structure consists of top and bottom layers of keratin and melanin; both layers are organized
periodically (Figure 2a). The first keratin layer thickness was obtained from [23], and the
width of melanin and keratin films was taken from [24], as detailed in Table 1.
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barbules model was created in the electromagnetic simulation software CST (Computer Simulation 
Technology) to perform the light interaction with barbules [11]. (c) A schematic of light reflection 
through the feather’s multiple layers is shown here. 

Figure 1. (a) Passeriformes feathers' multilayer elements such as the keratin layer, melanin layer,
and melanosome; d1, dm, a, and d0 are the symbols of first keratin layer thickness (adapted
from [23]), melanin layer thickness, and subsequent keratin layers' thicknesses, which corresponds
to melanosomes’ diameters, and the distance between melanosome layers [24], respectively. (b) A
barbules model was created in the electromagnetic simulation software CST (Computer Simulation
Technology) to perform the light interaction with barbules [11]. (c) A schematic of light reflection
through the feather’s multiple layers is shown here.

Table 1. The thickness of different layers in the simulated feather [23,24].

Initial Keratin Layer (d1) Melanosome Diameter (dm) Keratin Space between
Melanosome Layers (a)

Inner-Layer Spacing of
Melanosomes (d0)

12 ± 7 nm [23] 200 nm [24] 200 nm [24] 222 nm [24]
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Figure 2. (a) Simulated resonance curves (1.525–1.575 PHz) of Passeriformes feather barbule model.
The resonance spectrum has three resonance peaks at 1.530 PHz, 1.544 PHz, and 1.551 PHz frequencies.
In the right upper panel, the average value of VSWR is almost equal to 1 at all resonance frequencies.
High efficiency (65%) is observed at the third resonance peak, 1.544 PHz (bottom, left panel). The
created structure in the bottom right panel has a positive gain at resonance peaks. (b) Directivity
values are 15.6 dBi, 10.9 dBi, and 15.1 dBi at 1.530 PHz, 1.544 PHz, and 1.551 PHz resonance peaks,
respectively. (c) The variation of E and H radiation patterns at resonance frequencies is shown.

3. Results and Discussion

The optical properties of keratin and melanin layers allow us to evaluate the relative
significance these films when light interacts with them (Figure 1c). The keratin layer’s
refractive index (nker) as a function of its wavelength is defined as [23,25–27].

nker = 1.532 +
5890
λ2 (1)

where λ is the light wavelength in nm.
The melanin layer absorbs light [28], and it is a combination of keratin and melanosomes.

Therefore, the refractive index for this layer is as follows [29]:

nmel,e f f = ne f f − iKe f f (2)

n2
e f f =

[
A +
√

A2 + B2
]

2

K2
e f f =

[
−A +

√
A2 + B2

]
2

A = fmel(n2
mel − K2

mel) + (1− fmel)(n2
ker − K2

ker)

B = 2 fmelnmelKmel + 2(1−Vmel)nkerKker
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The coefficient fmel is the average melanosome volume fraction in each melanosome
layer, and for the dense melanin substance, we have [23]

nmel = 1.56 +
36000

λ2 (3)

Kmel = 1.62e
−λ
142

Using Equations (1)–(3), the values of refractive indexes of keratin and melanin layers
at the UV wavelength of 400 nm are 1.57 and 1.71−i0.06, respectively.

Following the simulation antenna analogy, we used the VSWR that measures the
load impedance matching to the transmission line characteristic impedance carrying radio
frequency (RF) signals. A portion of the forward wave delivered toward the load is reflected
down the transmission line toward the source when there is an impedance mismatch be-
tween the load and the transmission line. The source then encounters a different impedance
than anticipated, which may result in it supplying less power (or more power in certain
situations), with the outcome being highly dependent on the length of the transmission
line’s electrical cable.

Standing waves along the transmission line caused by such a mismatch are typically
undesirable and increase transmission line losses (significant at higher frequencies and for
longer cables). The VSWR measures the depth of the standing waves, measuring how well
the load matches the transmission line. For example, a VSWR of 1:1 would indicate no
reflected wave with a matched load. An electrical load with an infinite VSWR reflects all
incident power toward the source, since it cannot absorb it.

The equation of the VSWR parameter is given as

VSWR =
1 + |Γ|
1− |Γ| (4)

where Γ represents the reflection coefficient.

3.1. Light Propagation from Air to Keratin Layer

When the light propagates from the air medium (nair = 1) to the keratin (nker) = 1.57
medium (Figure 1c) through the normal of the incidence plane, then the equations for the
reflection coefficients will be as follows [30]:

Γ =
nair cos(θk)− nker cos(θl)

nair cos(θk) + nker cos(θl)
(5)

where θk and θl are the incidence and transmitted angle, respectively, for TE polarization,
and θk and θl are the transmitted and incidence angle, respectively, for TM polarization.

Now, placing Equation (5) in Equation (4) to find the VSWR for both polarizations is
carried out as follows:

VSWR =
nair cos(θk)

nker cos(θl)
(6)

Furthermore, we used Snell’s law to obtain the transmitted angle as a function of the
incidence angle.

The VSWR obtained from the simulation was close to one at the resonance peaks, as
shown in Figure 2a, right top panel. As seen in Figure 3 (top), at the resonance, there was
no reflection for TM polarization light at an angle close to 57◦. This angle corresponds to
Brewster’s condition given by θBrewster = Tan−1(nker/nair) = 57.5◦. Both curves correlate
with the reflectivity, calculated as |Γ|2 (see Figure 3b. Then, when the electric field is
perpendicular to the air–keratin interface, the reflectivity amplitude should increase with
the angle of incidence (TE polarization).
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Figure 3. (a) VSWR for TE and TM polarizations in the UV region at the air–keratin interface. VSWR,
which is measured from one to five, is higher than one for all incidence angles in the case of TE
polarization. At the resonance frequency, the VSWR is close to one, corresponding to Brewster’s
angle condition or equivalently zero reflectivity for TM polarization. (b). Reflectivity spectrum for TE
and TM polarizations in the UV region at the air–keratin interface. We can observe that both graphs
displayed correlate with each other.

On the contrary, the TM reflectivity amplitude should decrease for angles of incidence
less than Brewster’s angle and increase again up to 900. Our results are consistent with
experimental results in the bird-of-paradise (Lawes’ parotia) and the Japanese Jewel Beetle
(Chrysochroa fulgidissima). An earlier study showed that in Lawes’ parotia, the reflectance
amplitude of TE-polarized light or electric vector monotonically increased with the angle
θi, whereas the reflectivity amplitude of TM-polarized light or magnetic vector decreased
in the range of θi from angles of 55◦ to 60◦, although beyond a 60◦ angle, the reflectivity
amplitude increased linearly with θi. Similarly, in Chrysochroa fulgidissima, for TE-polarized
light, the peak reflectance increased with an increasing angle of incidence for both the green
and purple areas, but for TM-polarized light, the peak reflectance decreased, becoming
minimal at an angle of incidence of ~65–70◦; at larger angles, the overall spectral reflectance
increased again [11,25].

3.2. Light Propagation from the Keratin Layer to the Melanin Layer

As the light wave propagates from keratin to melanin(see Figure 1c), the VSWR is close
to one for angles below Brewster’s angle (θBrewster = Tan−1(Re(nmel)/nker)) = 47.4◦ for both
polarizations (Figure 4). Under such conditions, the reflectivity is very low. Consequently,
within an angular region beyond Brewster’s angle, UV-light interference mostly happens
in Passeriformes’ feathers. However, it is known that melanin is not a lossless material and
absorbs light within the NIR–VIS–UV range [11,24,25,28]. Therefore, to better understand
the reflectivity behavior, we calculated the reflectivity from 250 nm up to 25 microns using
the transfer matrix method [31].
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Figure 4. VSWR for TE and TM polarizations in the UV region at the keratin–melanin interface;
VSWR is higher than one for all incidence angles. From our simulation results, VSWR values go from
one to five. At resonance, the VSWR is close to one, corresponding to Brewster’s angle condition or
equivalently zero reflectivity for TM polarization.

3.3. Multilayer Analysis

A multilayer interference reflector is based on the refractive index and thickness of the
layers, assuming that the melanin layers are not lossless (from Section 3.2). The relation
between the maximum reflectivity wavelength, thicknesses, and refractive indexes is given
by [25,32,33]:

λ1 = 2(nkerdl + nmeldm) (7)

Its harmonics is given by:

λi =
λ1

i
i = 2, 3, 4 . . .

Again, nker = 1.57 and Re(nmel) = 1.71, and dl = 200 nm are used as the thickness
of the keratin layer, while dm = 200 nm is used as the thickness of the melanin layer
(Figure 1a) (Table 1); these values are placed in Equation (6) to obtain:

λ1 = 1311 nm (8)

λ2 = 655 nm

λ3 = 436 nm

λ4 = 328 nm

λ5 = 262 nm

According to this, there may be two bands with high reflectivity in the near-infrared
and visible red regions, and three or more high reflectivity bands in the violet–ultraviolet re-
gion. Please bear in mind that these bands’ locations are approximated because Equation (7)
holds for lossless materials only, but it is a good approximation. However, the absorption
effects are introduced using the transfer matrix method [31], where the refractive indexes
can be complex, and their imaginary part reflects the material’s absorption. Therefore, the
values of refractive indexes of keratin and melanin layers used here were calculated using
Equations (1) and (3) with values of 1.57 and 1.71-i0.06, respectively.

In Figure 5, four reflectivity bands are observed (red lines). We used the normalized
frequency given by ω = 2π(dl + dm)/λ, which is dimensionless. One band belongs to
the infrared region with a peak at 1237 nm, another in the violet region at 437 nm, and
two ultraviolet bands at 333 nm and 284 nm. The reflectivity calculation holds for both
TE and TM polarizations because the angle of incidence is zero. There is no reflectivity
band within the red region. The trade-off between light absorption and reflection may
cause this. The real part of the refractive index value of melanin is not high enough to
overcome its imaginary part value, and consequently, absorption beats reflection, killing



Optics 2022, 3 469

any constructive interference. A Passeriformes feather’s average reflectivity spectrum was
measured [10] in the region from 300 to 700 nm. The average reflectivity was 6.4± 0.39%.
An average of 6.7 ± 2.3% was calculated from the theoretical spectrum at an angle of
incidence 0◦. Accordingly, with the above reflectivity analysis, if we increase the incidence
angle, the reflectivity should increase at any angle for TE polarization. We calculated the
reflectivity spectrum under this condition (Figure 6), and the average reflectivity increased
up to 21.1± 4.5% when the angle of incidence was 57◦. In addition, three bands shifted
towards the UV region, contributing to a higher UV light reflectivity.
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Figure 5. Theoretical reflectivity spectrum of the simulated barbule feather for TE, TM polarization,
and incidence angle of 0◦. Four high reflectivity bands (red lines) can be observed at 1237 nm,
437 nm, 333 nm, and 284 nm. The average reflectivity from 300 to 700 nm was 6.7± 2.3%, close to the
experimental value of 6.4± 0.39% measured in [10]. A UV-chroma of 27% was calculated in the same
range, and a UV-chroma of 24± 0.19% was reported in [10]. The normalized frequency is given by
ω = 2π(dl + dm)/λ.
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Figure 6. Theoretical reflectivity spectrum of the simulated feather for TE polarization and incidence
angle of 57◦. Four high reflectivity bands shifted towards the UV region. The red lines at 1237 nm,
437 nm, 333 nm, and 284 nm represented the positions of the peaks when the angle of incidence was
0◦. The average reflectivity from 300 to 700 nm increased up to 21.1± 4.5%. A UV-chroma of 30%
was calculated in the same range. The normalized frequency is given by ω = 2π(dl + dm)/λ.

The UV-chroma is an important parameter to measure UV light contributions to reflec-
tivity. It is measured as the proportion of total reflectivity occurring within 300–400 nm. For
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example, a UV-chroma of 24± 0.19% was reported in [10]. We calculated the UV-chroma
from our two spectra and found values of 27% (θi = 0◦) and 30% (θi = 57◦).

3.4. UV Antenna

The radiated pattern of the feather shown in Figure 2c is similar to the power radiated
in parabolic antennas. Therefore, for simplicity, we could treat the barbule of the feather
as an array of parabolic antennas, each antenna having a directivity or diversity D given
by [34].

D =
4π(Area)

λ2 (9)

furthermore, the directivity is related to the gain G as:

G = eD (10)

where e is the antenna’s efficiency.
In practice, the efficiency value of the parabolic antenna lies in the 50–65% range [34],

which is well suited to our simulated efficiency (Figure 2a, bottom left panel).
The area of a melanosome is given by 4πd2

m/4, and using the wavelength at the three
resonance peaks (195.9 nm, 194.2 nm, and 193.3 nm); the theoretical directivities given by
Equation (9) are 16.14 dBi, 16.21 dBi, and 16.25 dBi, respectively, and these values coincide
with the order of magnitude of our simulated results, which are revealed in Figure 2b
(bottom right panel).

4. Conclusions

Here we have suggested a narrative approach to match the literature results by the
simulation techniques regarding the light interaction mechanisms in the internal geometry
of barbule feathers of Passeriformes birds. Simulations have been performed to detect the
reflection coefficient (S11), efficiency, VSWR, gain, directivity, and radiation pattern. We
have concluded based on the topological and optical properties of the Passeriformes feather
barbules. As discussed in the above sections, the barbules of the Passeriformes bird feather
act as a UV reflector antenna. There is good similarity between our simulation findings and
the experimental results of literature studies. Simulation results confirm that the intended
approach is effective.

Specifically, our simulation and theoretical results are accurate enough compared to
earlier findings. For instance, the theoretical reflectivity spectrum intensity of the simulated
barbule feather for TE, TM polarization, and incidence angle of 0◦ was 10%. This result is
akin to FDT modeling of a similar feather, as shown in [11], or multilayer modeling with
a gradient refractive index [24]. Moreover, for TE polarization, our calculated reflectivity
spectrum intensity in the UV band was 20–32% when the angle of incidence was 57◦.
In [11], in the FDT simulation under TE polarization and angles of incidence between
50◦ and 60◦, the reflectivity spectrum intensity was 20–27%. Moreover, we found the
average reflectivity from 300 to 700 nm was 6.7 ± 2.3%, close to the experimental value of
6.4 ± 0.39% measured in [10]. A UV-chroma of 27% was calculated in the same range, and
a UV-chroma of 24 ± 0.19% was reported in [10].

Finally, the feather barbules have resonance peaks in the PHz frequency range, and
their layers play an important role in displaying iridescent colors. We demonstrated
conditions of maximum or minimum light reflection in layers of a Passeriformes feather
with varying incident light angles. The property that barbules behave as a UV reflector
antenna could help in the design of new solar cell applications.
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