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Abstract: Governments and energy providers all over the world are moving towards the use of
renewable energy sources. Solar photovoltaic (PV) energy is one of the providers’ favourite options
because it is comparatively cheaper, clean, available, abundant, and comparatively maintenance-free.
Although the PV energy source has many benefits, its output power is dependent on continuously
changing weather and environmental factors, so there is a need to forecast the PV output power. Many
techniques have been employed to predict the PV output power. This work focuses on the short-term
forecast horizon of PV output power. Multilayer perception (MLP), convolutional neural networks
(CNN), and k-nearest neighbour (kNN) neural networks have been used singly or in a hybrid (with
other algorithms) to forecast solar PV power or global solar irradiance with success. The performances
of these three algorithms have been compared with other algorithms singly or in a hybrid (with
other methods) but not with themselves. This study aims to compare the predictive performance of a
number of neural network algorithms in solar PV energy yield forecasting under different weather
conditions and showcase their robustness in making predictions in this regard. The performance of
MLPNN, CNN, and kNN are compared using solar PV (hourly) data for Grahamstown, Eastern Cape,
South Africa. The choice of location is part of the study parameters to provide insight into renewable
energy power integration in specific areas in South Africa that may be prone to extreme weather
conditions. Our data does not have lots of missing data and many data spikes. The kNN algorithm
was found to have an RMSE value of 4.95%, an MAE value of 2.74% at its worst performance, an
RMSE value of 1.49%, and an MAE value of 0.85% at its best performance. It outperformed the others
by a good margin, and kNN could serve as a fast, easy, and accurate tool for forecasting solar PV
output power. Considering the performance of the kNN algorithm across the different seasons, this
study shows that kNN is a reliable and robust algorithm for forecasting solar PV output power.
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1. Introduction

The world’s energy suppliers are shifting towards using clean, renewable energy
sources to reduce the pollution caused by fossil fuel energy sources. Photovoltaic and
wind energy sources are the most favoured renewable energy alternatives because they
have zero emissions, require minimal maintenance, and their initial installation cost is
also coming down [1,2]. The output power of solar photovoltaic (PV) energy systems is
highly dependent on constantly changing weather and environmental conditions like solar
irradiance, wind speed, ambient temperature, cloud coverage, module temperature, etc.
Forecasting its output power is necessary to effectively plan and integrate the solar PV
energy system into the main grid.

Many approaches and techniques have been used to predict solar PV output power.
The physical models, the statistical models, and the hybrid (combination of physical and
statistical) models [3–6] are some of the major approaches that have been used to model
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and predict PV output power. The physical approach designs its model by simulating
the conversion of global solar irradiance to electricity using weather parameters as input
to a mathematical model (which describes the solar PV system) to predict the PV output
power [7]. The total sky imagers and satellite image techniques [8] are examples of the
implementation of the physical method. These techniques make highly accurate predictions
when the weather conditions are stable throughout the prediction period. The statistical
techniques are designed mainly from the principle of persistence. Using tested scientific
processes, they predict the PV output power by establishing a relationship between the
input variables (vectors) and the target output power. The input vectors are the weather
parameters (solar irradiance, wind speed, ambient temperature, module temperature, rain,
humidity, etc.) that directly or indirectly affect the solar panels’ electricity generation.
At the same time, the PV output power is the predicted output. Traditional statistical
methods [9] use regression analyses to produce models that forecast the PV output power.

Artificial intelligence (AI) or machine learning (ML) is another way of applying this
technique. A good example of the AI techniques that have been used to forecast PV output
power are artificial neural networks (ANN) [10], long short-term memory (LSTM) [11–13],
support vector machines (SVM) [9,10,14], etc. The multilayer perceptron neural network
(MLPNN) [15], the convolutional neural network (CNN) [16,17], gated recurrent units
(GRU) [18–20], and k-nearest neighbour (kNN) [14,19,21,22] are some instances of the ANN
which have been successfully used to model and forecast solar PV output power. Even
with the success of these forecasting methods, they have limitations. The SVM algorithm is
computationally expensive, and one may need help interpreting the results [23]. The ANN
algorithm requires a large amount of data to make accurate predictions. The kNN technique
requires no training time; hence, it is fast, but prediction accuracy decreases when the input
data has lots of spikes and/or lots of missing data. Ratshilengo et al. [5] compared the
results of modelling the global solar irradiance with the generic algorithm (GA), recurrent
neural network (RNN), and kNN techniques and showed that GA outperformed others in
accuracy. Most of this research focused on a single technique or forecasted solar irradiation
(when they worked with more than one technique), but in this study, we aim to compare the
predictive performance of modelling the actual solar PV output power using MLPNN, CNN,
and kNN algorithms and show that the kNN method had the best overall performance
on our data. It is more beneficial to model the solar PV output power instead of solar
irradiance (because the generated PV output power also captures the impact of the ambient
and module temperatures, whose rise negatively affects the PV output power and the
impact of other factors that affect solar irradiance). Comparative performance analysis has
not been conducted on these three modelling algorithms for forecasting solar PV output
power. kNN is a simple algorithm that can serve as a fast and easy-to-use tool in forecasting
solar PV output power. It is essential to mention that our data had few spikes and no
missing or corrupted records.

The layout of this study is as follows. Section 2 presents a brief review of PV output
power forecasting, and the Section 3 presents a detailed review of artificial neural networks.
Section 4 presents data description, variable selection, and evaluation metrics. Section 5
presents the results and discussion. Section 6 considers the challenges of PV output power
forecasting, while conclusions are drawn in Section 7.

2. A Brief Overview of Solar PV Power Prediction in the Literature

Numerous studies have been published on forecasting PV output power. When solar
panels receive irradiance, they convert the incident irradiance to electricity. Hence, solar
irradiation strongly correlates with solar PV panels’ output power. Machine learning
techniques like the ANN [24], support vector machines (SVMs) [25], kNN, etc., have been
used to forecast solar irradiance. ML techniques are equipped with the ability to capture
complex nonlinear mapping between input and output data. Efforts have been made to
model solar PV output power with ANNs. Liu and Zhang [12] modelled the solar PV
output power using kNN and analyse the performance of their model for cloudy, clear
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skies and overcast weather conditions. Ratshilengo et al. [5] compared the performance of
the generic algorithm (GA), recurrent neural networks (RNN), and kNN in modelling solar
irradiance. They found GA outperformed the other two using their performance metrics. A
combination of autoregressive and dynamic system approaches for hour-ahead global solar
irradiance forecasting was proposed by [26]. Table 1 summarises some previous studies on
solar PV output power prediction.

Table 1. A summary literature review of PV power output forecasting showing references, forecast
horizon, technique, and results.

Ref. Forecast Horizon Target Forecast Method Forecast Error

[5] Short-term PV power LSTM RMSE = 67.8%, MAE = 43.8%,
NRMSE = 0.19%

CNN RMSE = 38.5%, MAE = 4.0%,
NRMSE = 0.04%

CNN-LSTM RMSE = 5.2%, MAE = 2.9%,
NRMSE = −0.03%

[5] Short-term Irradiance RNN RMSE = 56.89%, MAE = 20.18%,
rRME = 7.54%, rMAE = −4.49%

kNN RMSE = 57.48%, MAE = 20.94%,
rRME = 7.58%, rMAE = 4.58%

GA RMSE = 35.50%, MAE = 26.74%,
rRME = 5.95%, rMAE = 5.17%

[27] Very short-term PV power Persistence, MLP, CNN,
LSTM RMSE = 15.3%

[28] Short-term PV power
Similarity algorithm, kNN,

NARX, and smart
persistence models

RMSE = 2.3%

[29] Short-term PV power Hybrid model of wavelet
decomposition and ANN

RMSE values between 7.193 and
19.663%

[16] Short- and
long-term PV power Prophet, LSTM, CNN,

C-LSTM

MAE range 2.9–16,730.3, RMSE
range 5.2–21,753.2, NRMSE range

0.0–30.59

[15] Short-term Irradiance MLPNN MAPE = 6.15%

[30] Short-term Wind power k-means clustering method MAPE ≈ 11%

Some ways to forecast solar PV power are by modelling irradiance (indirectly mod-
elling PV output power) or directly modelling the PV output power. A lot of research has
been published in this regard.

3. Artificial Neural Network

ANN is one technique that has been used extensively to model and forecast solar
PV output power with high accuracy [31,32]. This comes from its ability to capture the
complex nonlinear relationship between the input features (weather and environmental
data) and corresponding output power. ANN is a set of computational systems composed
of many simple processing units inspired by the human nervous system. Figure 1a shows
a schematic representation of a basic ANN, with the input, hidden, and output layers,
connections, and neurons. Data of the (input) features are fed into the input layer. The
hidden layer (which could be more than one) processes and analyses these input data. The
output layer completes the process by finalising and providing the network output. The
connections connect neurons in the adjacent layer together with the updated weights.
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Figure 1. (a) Schematic representation of a typical ANN having the input, hidden, and output layers.
(b) A pictorial presentation of a mathematical model of an ANN cell [6].

Figure 1b presents a pictural representation of basic ANN mathematics. It shows
that the neuron of a basic ANN cell is made of two parts: the activation and combination
functions. The network sums up all the input values using the activation function, making
the activation function act like a squeezing transfer function on the input to produce the
output results. Some commonly used activation functions are sigmoid, linear, hyperbolic
tangent sigmoid, bipolar linear, and unipolar step. The basic mathematical expression of
an ANN is given as follows [33]:

Uj = b +
N

∑
k=1

(Wk × Ik), (1)

where Uj is the predicted network output, b is the bias weight, N is the number of inputs,
Wk is the connection weight, and Ik is network input. There are many types of neurons
and interconnections used in ANN. Some examples of this are feedforward and backpropa-
gation NN. Feedforward NNs pass information/data in one forward direction only. The
backpropagation NN allows the process to cycle through over again. It loops back, and in-
formation learned in the previous iteration is used to update the hyperparameters (weights)
during the next iteration to improve prediction. Deep learning is a type of ANN where its
layers are arranged hierarchically to learn complex features from simple ones [16]. One
weakness of the deep learning NN is that it takes a relatively long time to train the model.

There are two basic stages of the ANN: training and testing. The data for modelling
PV output power are often split into training and test sets. Generally, 80% of the data are
set aside for training, while 20% are reserved for testing. During the training stage, the
neural network uses the training dataset to learn and find a mapping relationship between
the input data by updating the synaptic weights. Prediction errors are calculated using the
forecasted and measured values. The magnitude of the errors is used to update the weights
and biases, and the process is repeated until the desired accuracy level is achieved. The
testing dataset is used to test the final model produced in the training stage, and the ANN
model’s performance is evaluated. A statistical approach that considers each experimental
run as a test, called the design of experiment approach, was described by [34] for use
with ANNs.

Neural networks having a single hidden layer is usually enough to solve most data
modelling problems, but complex nonlinear mapping patterns between the input and
output data may require the use of two or more hidden layers to obtain accurate results.
Multilayer feedforward neural networks (MLFFNN) [35], adaptive neuro-fuzzy interface
systems [36–39], multilayer perceptron neural networks (MLPNN) [15,40], convolutional
neural networks (CNN) [16,40] are some examples of ANN with multiple layers. In
this study, we will compare the results of modelling solar PV output power using
MLPNN, CNN, and kNN models. Subsequent sections will present a brief overview of
these techniques.
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3.1. Multilayer Perceptron Neural Networks (MLPNN)

MLPNN is a special type of ANN organised in layers and can be used for classification
and regression depending on the activation function used. A typical MLPNN has three
layers, like most ANNs—the input, output and hidden layers. The hidden layer can have
more than one hidden unit depending on the complexity of the problem at hand. Let Ip be
a p-th point in an N-dimensional input to MLPNN, the output be Yp, and the weight of the
hidden layer be Wh. To keep the discussion simple, take the case of a single-layer MLP. The
output of the first hidden unit L1 can be expressed as follows:

L1(i) =
N+1

∑
k=1

Wh(i, k)Ip(k). (2)

A linear activation function could be given as follows:

Op(i) = f
(

Lp(i)
)
. (3)

The nonlinear activation function could be given as follows:

f (Lp(i)) =
1(

1 + e−Lp(i)
) . (4)

MLPNN algorithm applies the weight of the previous iteration when calculating that
of the next iteration. Let W1 be the weight of the input to the hidden layer and W2 that of
the hidden to the output layers. Then, the overall output Yp is given as follows [41]:

Y1(i) =
N+1

∑
k=1

W1(i, k)Ip(k) +
Nh

∑
j=1

W2(i, j)Op(j). (5)

Every layer of the MLP receives input from the previous layer and sends its output to
the next layer, which receives it as input, and so on. Hence, every layer has input, weight,
bias, and output vectors. The input layer has an activation function but no thresholds.
It connects and transfers data to successive layers. The hidden and the output layers
have weights assigned to them together with their thresholds. At each layer, the input
vectors are multiplied with the layers corresponding threshold and passed through the
activations function, which could be linear or nonlinear [42]. Backpropagation is an
example of a training method employed by MLPNN during its training phase. It involves
two major steps: forward propagation, where the input data are fed into the network to
make predictions, and backward propagation, where the errors of the prediction are fed
into the network during the next iteration to update the weight to improve prediction
accuracy. Some of the advantages of MLPNN are that it requires no prior assumptions,
no relative importance to be given to the input dataset, and adjustment weights at the
training stage [43,44].

3.2. Convolutional Neural Networks (CNNs)

The CNNs are another commonly used deep learning feedforward NN used to model
PV output power whose inputs are tensors. They have many hidden convolutional layers
that can be combined with other types of layers, such as the pooling layer. CNN has been
used effectively in image processing, signal processing, audio classification, and time series
data processing. When this network is applied in image processing, the input image is a
two-dimensional pixel grid, but time series data represent two-dimensional data having
time steps along the rows and input features (e.g., output power, irradiance, ambient
temperature, wind speed, etc.) along the column.
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Figure 2 presents a schematic illustration of the CNN with a one-dimensional con-
volutional layer. It shows the input and one-dimensional convolution layers, a dropout
layer, a dense layer of fully connected neurons, a flattening layer, and the output layer.
These 1D convolutional layers apply filters on the input data and extract relevant features
from them [45]. To prevent overfitting, the dropout layer randomly removes some neurons
during the training step. The extracted features received by the fully connected dense layer
are passed to the flattening layer to turn the feature maps into a one-dimensional vector.
Finally, the output layer brings out the result for prediction. A few authors have used CNN
to forecast PV output power, singly or in a hybrid with other algorithms. An example
is [45], who used CNN and CNN-LSTM hybrid to accurately predict PV output, power
leveraging its ability to capture complex variations in the time series data. Another is [46],
who applied CNN-GRU and CNN-LSTM hybrid techniques to forecast PV output power.
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3.3. k-Nearest Neighbour (kNN)

The kNN is a simple supervised ML algorithm that can be applied to solve regression
and classification problems [47]. Supervised ML is a type of ML technique that requires the
use of labelled input and output data, while unsupervised ML is the process of analysing
unlabeled data. The supervised ML model tries to learn the mapping relationship between
the labelled input features and output data. The model is finetuned till the desired forecast-
ing accuracy is achieved. The kNN algorithm, like most forecasting algorithms, works by
using training data as the “basis” for predicting future values. In the algorithm, Neighbours
are chosen from the basis and sorted depending on certain similarity criteria between the
attributes of the training data and that of the testing data. The attributes are the training
(and testing) data’s weather and PV output power data, while the target is the residual of
the difference between them. The mean of the target values of the neighbours is used to
forecast the PV power. The measure of similarity (e.g., the Manhattan distance) is given as
follows [48]:

dj =
n

∑
k=1

Wk

∣∣∣xtrain,j,k − xtest,k

∣∣∣, (6)

where dj is the distance between the i-th training and test data, Wk is the weight of the j-th
attribute, and attribute values of the training data and test are xtrain and xtest, respectively.
j and k are the indices of the training data and test attributes, respectively, while n is the
number of attributes. The weights were calculated using the k-fold cross-validation [49].
The k target values are used to forecast residual FR as follows:

FR =
∑M

k=1 vkDtrain,k

∑M
k=1 vk

, (7)
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where Dtrain is the training data-target value, k is the index of the neighbours’ chosen
training data, and vk is the weight of the corresponding i-th target value. At the same time,
M represents the total number of nearest neighbours. One advantage of the kNN is that
it requires no training time. Another is that it is simple to apply, and new data samples
can easily be added. The kNN also has a few disadvantages. These include the fact that it
is ineffective in handling very large data and performs poorly with high-dimension data.
Another disadvantage is that it is sensitive to noisy data (that is, data having outliers and
missing values).

The kNN algorithm (Algorithm 1) works as follows [47]:

Algorithm 1: The kNN algorithm.

function kNN_predict(train_data, test_data, k):
distances = []

for each train_instance in train_data:
distance = calc_distance(train_instance, test_data)
distances.append((train_instance, distance))

sorted_distances = sort(distances, by = distance)

k_nearest_neighbours = sorted_distances[:k]

counts = {}
for neighbour in k_nearest_neighbours:
label = neighbour[0].label
if label in counts:
counts[label] + = 1
else:
counts[label] = 1

predicted_label = getmax(counts)

return predicted_label

Consider the above sudo code; assuming one has a set of training data—“train_data”—
with unknown labels, “test_data” is the test data one wants to predict, “calc_distance”
is a method to calculate the distance between two instances, “sort” is a method to sort
the distances, “get_max” is a method that obtains the label with the maximum count,
and k is the number of nearest neighbours to consider. The kNN algorithm computes
the distance between the “test_data” and every instance in the “train_data”, selects the k
nearest neighbours, and then predicts the label of the “test_data” based on the majority
label among its k nearest neighbours.

4. Data Description and Variable Selection
4.1. Data Description

We have a time series hourly data having fields for PV output power, normal global
irradiance, diffused irradiance, sun height, ambient temperature, reflected irradiance, wind
speed, and 24-h time cycle in Grahamstown, Eastern Cape, South Africa for the period
from 2009 to 2020. Figure 3 presents the graph of the data—the PV output power.
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4.2. Selecting Input Variables

The more variables used as input, the better the performance of the algorithms, but the
higher the execution time, the higher the chances of overfitting. To select the variables that
will serve as inputs to the algorithms, we consider the interaction between the variables
and their correlation with the output power. Figure 4 presents scatterplots of all pairs of
attributes. This figure can help one to see the relationship between the variables.
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The diagonal plots display the Gaussian distribution of the values of each variable. As
expected, there is a strong correlation between global (and diffused) solar irradiance and
PV power, but there is no correlation between reflected irradiance and PV power. This fact
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will be demonstrated more quantitatively later using the Lasso regression analysis. One
cannot precisely say for the other variables. We excluded the reflected solar irradiance from
the list of input variables.

4.3. Prediction Intervals and Performance Evaluation
4.3.1. Prediction Intervals

The prediction interval (PI) helps energy providers and operators assess the uncer-
tainty level in the electrical energy they supply [50,51]. It is a great tool for measuring
uncertainty in model predictions. We will subsequently take a brief look at prediction
interval widths.

The prediction interval width (PIWt) is the estimated difference between the upper
(Ut) and lower Lt limits of the values given as follows:

PIWt = Ut − Lt t = 1, 2, 3, . . . N. (8)

The PI coverage probability (PICP) and PI normalised average width (PINAW) are
used to assess the performance of the prediction intervals. The PICP is used to estimate the
reliability of the PIs, while PINAW is used to assess the width of the PIs. These two are
expressed mathematically as follows [52]:

PICP =
1
N

N

∑
t=1

ct, ct =

{
1 if yt ∈ (Lt, Ut)

0 otherwise
, (9)

PINAW =
1
N

N

∑
t=1

PIWt

ymax − ymin
, (10)

where yt is the data, and ymin and ymax are the minimum and maximum values of PIW,
respectively. The PIs are weighted against a predetermined confidence interval (CI) value.
One has valid PI values when the value of PICP is greater than or equal to that predefined
CI value. The PI normalised average deviation (PINAD) defines the degree of deviation
from the actual value to the PIs and is expressed mathematically as follows [52]:

PINAD =
1

N(y max − ymin)

N

∑
t=1

ct, ct =


Lt − yt, if yt < Lt
0 i f Lt ≤ yt ≤ Ut
yt − Ut, if yt > Ut

. (11)

4.3.2. Performance Matrices

A good number of performance measurement tools are available in the literature.
Some are better fit for particular contexts and target objectives.

The mean absolute error (MAE) is the average of the absolute difference between
the measured (yt) and predicted (ŷt) data. For a total of N predictions, the MAE is given
as follows:

MAE =
1
N

N

∑
t=1

|yt − ŷt|, (12)

The relative MAE (rMAE) gives an MAE value comparable to the measured values.
The rMAE is given mathematically as follows:

rMAE =
1
N

N

∑
t=1

|yt − ŷt|
yt

. (13)
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The root mean squared error (RMSE) is the average of the squared difference between
the measured and predicted values. The average of the square of the prediction residual. It
is always non-negative and is given as follows:

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)
2. (14)

The relative RMSE (rRMSE) gives a percentage RMSE value. The rRMSE is given
as follows:

rRMSE =
100

y

√√√√ 1
N

N

∑
t=1

(yt − ŷt)
2. (15)

where y is the average of yt, t = 1, 2, 3, . . . N. The smaller the values for these error metrics,
the more accurate the forecasted value.

The R2 score is another commonly used metric to measure the performance of a
forecast. The R2 score can be expressed mathematically as follows:

R2 = 1
∑N

t=1 (ŷ t − yt)
2

∑N
t=1 (y t − yt)

2 , (16)

The closer the value of R2 is to 1, the more accurate the prediction of the true value.
It is common practice to normalise (or scale) data before passing through the training

step, but we did not practice this in our case because our data had a few missing records
and outliers.

4.4. Selecting Input Variables

It is a common practice to use Lasso analysis to perform variable selection, which uses
the ℓ loss function penalty given as follows [5]:

β̂Lasso(λ) = argmin
∥∥∥→y − Xβ̂

∥∥∥2

2
+ λ

∣∣∣∣β̂∣∣∣∣1. (17)

In Table 2, we show the parametric coefficient of the Lasso regression analysis. All the
variables except for the reflected irradiance are important forecasting variables.

Table 2. Parameter coefficient of Lasso regression.

Variables Coefficients

Global normal irradiance 0.790206
Diffuse irradiance 0.902841

Reflected irradiance 0.000000
Sun elevation −0.412872

Ambient temperature −0.817793
Wind speed 1.017501

24-h time cycle 0.186437

5. Results

Python Tensor flow and Sklearn (version 1.2.2) are the software packages we used for
all our investigations. The implementation details are as follows.

The MLPNN model started with a fully connected layer having 128 neurons and a
ReLU activation function, and a final output layer, which consists of a single neuron for
output. They complied with MSE as a loss function and Adam optimiser. The compiled
model was trained on the training data for 50 epochs.

The CNN model starts with a one-dimensional convolutional layer to extract the
features from the input data, then a max pooling layer to reduce the dimensionality of the
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feature maps (using a pooling size of 8). The data are then flattened and passed through
a dense layer with 50 units having a ReLU activation function. Finally, the output layer
consists of a single unit used to predict the target value. All these are complied with MSE
and Adam as loss function and optimiser, respectively. The compiled model was also
trained on the training data for 50 epochs.

The kNN regressor model is initialised with a number of neighbours = 5, algo-
rithm = auto (to allow it to select the best algorithm), leaf size = 30, metric = Minkowski,
p = 2 (or L2 norm), and weights = uniform. The initialised model is trained on the training
data, and prediction is made on the test data.

Changing hyperparameters of each of the models were performed to see if we can
obtain better results but the above configurations produced the best results on our data
and are presented below.

5.1. Prediction Results

Figure 5 presents plots of the data and fits of the different models we used in this
study for short-term forecasting (38 h ahead) of the solar PV output power for two clear
sky days and two cloudy days. The graph in blue is the measured data, while that in red,
green, and black are for MLPNN, CNN, and kNN models’ forecasts, respectively. We can
see visually from these plots that the prediction produced by kNN best fits the data for
these two conditions. MLPNN also produces a reasonably good fit on a clear sky day.
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Figure 5. Plots of the solar PV output power data together with the graphs of MLPNN, CNN, and
kNN models’ predictions (dash lines) on a clear summer sky day (a) and cloudy day (b). The same
plots are shown for a clear winter sky day (c) and a cloudy day (d). The solid lines represent the
measured data, while the dashed line represents the predictions.

In Figure 6, the density plots of the measured solar PV output power and the different
models’ predictions are presented. The solid blue line graph is the measured data, while
the dashed lines represent the models’ forecasts. From these graphs, it can be observed that



Optics 2024, 5 304

kNN prediction best matches the data, followed closely by the MLPNN predictions. We
will subsequently present a qualitative evaluation of these models’ performance.
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cloudy day (b), while the bottom panel presents the same on a clear winter sky day (c) and cloudy
day (d).

Figure 6 presents the density plots of the measured solar PV output power together
with the models’ predictions during the summer season (top row) on a clear sky day (a)
and a cloudy day (b). The same is present for a clear winter sky day (c) and cloudy day
(d) on the bottom row. The kNN model’s density graph produced the closest match to the
measured data for all four weather conditions under investigation.

Table 3 presents the results of evaluating our models’ performance using MAE, rMAE,
RMSE, rRMSE, and R2 metrics for the four weather conditions. The kNN has the overall
best performance for these metrics, followed by the MLPNN and then CNN.

Table 3. Evaluating models’ performances on a clear summer sky day (a) and cloudy summer sky
day (b) and on clear and cloudy sky days in winter ((c) and (d), respectively).

(a) Clear sky day in summer (b) Cloudy sky day in summer

MLPNN CNN kNN MLPNN CNN kNN

RMSE 21.42 23.15 4.95 39.35 67.54 2.08
rRMSE 8.69 9.39 2.01 39.40 67.62 2.08
MAE 12.34 14.04 2.74 21.86 46.19 1.11
rMAE 0.49 0.56 0.11 0.91 1.92 0.05

R2 0.99 0.99 1.00 0.92 0.77 1.00

(c) Clear sky day in winter (d) Cloudy sky day in winter

MLPNN CNN kNN MLPNN CNN kNN

RMSE 10.96 25.69 4.11 17.22 20.09 1.49
rRMSE 9.71 22.77 3.64 32.59 38.04 2.82
MAE 6.47 14.09 2.00 8.18 12.88 0.85
rMAE 0.27 0.59 0.08 0.34 0.54 0.04

R2 1.00 0.98 1.00 0.95 0.93 1.00
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5.2. Prediction Accuracy Analysis

This section evaluates how the models’ predictions are centred using PIs and the
forecast error distribution.

5.2.1. Prediction Interval Evaluation

In Table 4, we compare the performance confidence intervals of these modes’ predic-
tions using PICP, PINAW, and PINAD with a preset confidence level of 95%. Only the
kNN model has a value of PICP greater than 95% on clear sky days. The model with the
lowest value for PINAD and the narrowest PINAW is the model that best fits the data [52].
kNN has the smallest PINAD and has the best overall performance with respect to these
prediction interval matrices.

Table 4. Comparing the performance of the models using PICD, PINAW, and PINAD on a confidence
level set to 95% on clear sky and cloudy summer days ((a) and (b), respectively), while the second
row presents the same for clear sky and cloudy winter days ((c) and (d) respectively).

(a) Clear sky day in summer (b) Cloudy sky day in summer

MLPNN MLPNN MLPNN

PICP 28.0 28.95 96 12.5 4.17 91.67
PINAW 0.631 0.622 0.637 0.561 0.633 0.511
PINAD 0.0520 0.0989 0.0002 0.4510 1.0619 0.0011

(c) Clear sky day in winter (d) Cloudy sky day in winter

MLPNN MLPNN MLPNN

PICP 20.83 20.83 100.0 12.5 4.16 87.50
PINAW 0.507 0.455 0.481 0. 530 0.526 0.495
PINAD 0.0866 0.2212 0.0000 0. 2769 0.5736 0.0016

5.2.2. Analysing Residuals

In Table 5, statistical analyses on the residuals of all the models’ predictions are
presented for MLPNN, CNN, and kNN models (with a confidence level of 95%) on a
summer clear sky day. The table shows that kNN has the smallest standard deviation
among the three models under investigation, which implies that it produces the best fit for
the data. MLPNN has the next best fit for the data. kNN and MLPNN have skewness close
to zero, meaning their errors have a normal distribution. All the models have a kurtosis
value that is less than 3.

Table 5. Comparing residuals of the models’ prediction.

Median Min Max Mean Std. Dev. Skewness Kurtosis

MLPNN 0.09 −57.31 67.73 −1.36 22.20 0.28 2.56
CNN 0.17 −77.58 30.96 −6.05 24.62 −1.31 1.68
kNN 0.00 −12.54 10.92 1.01 4.39 0.16 1.79

Figure 7 presents the whisker and box plots of the residuals of the forecast made with
the MLPNN, CNN and kNN models for clear sky and cloudy days during summer and
winter seasons. The residual of the kNN model has the smallest tail compared to the others,
followed by the forecast made with MLPNN although it made a worst prediction in the
summer cloudy day under investigation. It also shows that the kNN model produced the
best overall forecast.
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5.3. Discussion of Results

This work focused on modelling and forecasting solar PV (hourly) output power
for Grahamstown, Eastern Cape, South Africa. We modelled data of PV output power
from January 2009 to December 2020. The data were split into 80% training and 20% test
data. We modelled the data with MLPNN, CNN, and kNN techniques and used RMSE,
rRMSE, MAE, rMAE, and R2 performance evaluation matrices to evaluate the models on
cloudy and clear days in the summer and winter seasons. The kNN algorithm at its best
performance had an RMSE = 1.49%, rRMSE = 2.01%, MAE = 0.85% and rMAE = 0.04%, and
RMSE = 4.95%, rRMSE = 3.64%, MAE = 2.74%, and rMAE = 0.11% at its worst performance.
The kNN models always had an R2 value of 1, while the other methods under investigation
had a value of less than 1 in most cases. Also, when a confidence interval analysis on the
models with a preset confidence interval of 95% was performed, kNN had a PICP value
that was above 95%. All these evaluation matrices show that the kNN algorithm produced
the best prediction. One can also draw the same conclusion if you look at whisker and
box plots of the residuals of the forecast made by the models under investigation for the
four weather conditions, where the kNN model had the smallest tails (compared to that
of the other models). The kNN is the best model for our data. Note that the data under
investigation have very few spikes (or outliers) and missing records (and are not too noisy),
so the kNN model perfectly predicted the data. Again, while MLPNN and CNN each take
several minutes to train their respective model, kNN has no training step. It goes straight
into modelling the PV output power. So, when it comes to execution time, kNN still wins
the contest.

We were inspired by the works of [5,24,53]. Mutavhatsindi et al. [53] analysed the
performance of support vector regression, principal component regression, feedforward
neural networks, and LSTM networks. Ratshilengo et al. [5] indeed compared the GA
algorithm with the RNN and kNN algorithms models’ performance in forecasting global
horizontal irradiance. They found the GA algorithm to have the best overall forecast
performance. The kNN model in this study produced lower metric values for RMSE,
MAE, rRMSE, and rMAE than those produced by [5], although they modelled global solar
irradiance while we modelled solar PV output power.
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6. Challenges of Photovoltaic Power Forecasting

Forecasting solar PV output power has some challenges. One of these is that it depends
on the accuracy of the future weather forecast. Since most PV output power predicting
techniques take future weather forecast data as an input parameter, the accuracy of the
PV output power prediction is highly dependent on the accuracy of the underlying input
weather data [54]. Another challenge is having an enormous amount of data. Even though
having large data can help some predicting algorithms to make more accurate predictions,
processing large data can consume a lot of machine resources, thereby compromising
output speed, especially in cases where real-time data processing is a requirement.

It is often thought that complex models like hybrid and statistical methods will yield
more accurate results. Complex models, like most statistical and hybrid models, are often
expected to produce more accurate results. This is not always the situation, as simpler
methods can produce accurate results if the input vectors are properly preprocessed and
filtered. This is also a challenge, as shown by the views held by [55] in selecting the right
model and input parameters.

Additionally, the problem of PV solar panel module degradation and site-specific
losses exists, which negatively affects medium and long-term forecast horizon estimates.
Solar PV output power forecasting models depend on historical data; the forecasted data
may defer significantly from the actual PV panels’ output power because of ageing and
panel degradation. Hence, although site-specific models have been generated, there is a
need to constantly review the model’s input parameters over time based on the degradation
of the solar PV modules.

7. Conclusions

This study carried out a performance evaluation of MLPNN, CNN, and kNN methods
in modeling solar PV output power for (solar PV installation in) Grahamstown, Eastern
Cape, South Africa, for a short-term forecast horizon. Several works are available in
literature where the authors modelled solar irradiance with great success. This gives a
good indication of the potential electrical energy solar PV systems can provide. This study
modelled the actual solar PV output power. It is more beneficial to model the PV output
power instead of solar irradiance because it captures the impact of ambient temperature,
module temperature, and degradation (as well as other factors) whose rise negatively affects
the PV module’s efficiency. After training the models, we analysed their prediction results
on sunny and cloudy sky days in summer and winter. The RMSE, rRMSE, MAE, rMAE,
and R2 performance evaluator are commonly used model evaluation matrices. Applying
these performance evaluators to the results of the models under investigation showed that
while the CNN model had the worst performance, the kNN model had the overall best
performance, followed by the MLPNN model. Statistical analysis performed on the models’
prediction residuals shows that the kNN model had the smallest standard deviation, which
implies that it was the best fit for the data. The skewness values of both kNN and MLPNN
are close to zero, which indicates a good fit for the data. This study’s findings will be a
useful tool for energy providers (both private and public) who want quick and easy but
accurate forecasts of their solar photovoltaic installation—to plan energy distribution and
expansion of installations in a sustainable and environmentally friendly way.
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