
Citation: Nolan, D.A. Higher-

Dimensional Communications Using

Multimode Fibers and Compact

Components to Enable a Dense Set of

Communicating Channels. Optics

2024, 5, 330–341. https://doi.org/

10.3390/opt5030024

Academic Editor: Yasufumi Enami

Received: 28 June 2024

Revised: 28 July 2024

Accepted: 2 August 2024

Published: 7 August 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Higher-Dimensional Communications Using Multimode
Fibers and Compact Components to Enable a Dense Set of
Communicating Channels
Daniel A. Nolan

Science & Technology Division, Corning Research & Development Corporation, Corning, NY 14831, USA;
danielnolan42@outlook.com

Abstract: Higher-dimensional communications are of interest for multiple reasons, including increas-
ing the classical transmission capacity and, more recently, the quantum state transfer through fibers
using the many modes within the fiber. For quantum communications, this enables an increase in
the number of bits per photon, increasing quantum fidelity, increasing error thresholds and enabling
hyperentanglement transfer, among other possibilities. A high-dimensional quantum state transfer
can be transported through multimode fiber using the many modes available. However, this transfer
of information through multimode optical fiber is limited by attenuation and mode coupling among
the various spatial and polarization modes. Here, we consider how this mode coupling impacts the
transfer process. We consider the fiber’s modal properties, including orbital angular momentum,
modal group numbers, and principal modes. We also investigate and propose input and output
optical components, as well as fiber properties, which better mitigate the deleterious effects of mode
coupling. We use the WKB approximation to the scaler wave equation as a guidance to quantify this
coupling and then implement corrections to this approximation using exact solutions to the scaler
wave equation. We consider methods to circumvent this mode coupling using optical fiber designs,
holographic optical components and devices that are commercially available today. Some of these
components, such as the holographic gratings and lenses, could be implemented using flat optics.

Keywords: multidimensional communications; mode coupling; quantum key distribution input/output
optics

1. Introduction

Quantum communication is an important component of quantum information science.
Among other aspects, quantum communication involves quantum state transfer among
multiple nodes, including quantum computers and simulators and, in general, multiple
communication sites. Quantum communication also, in principle, enables absolute secure
communication among the parties involved. A very active area of research within quantum
communications is quantum cryptography. Quantum cryptography enables secure commu-
nications between two points, termed Alice and Bob. There already exists a considerable
amount of commercial deployment of quantum key distribution systems, QKDs, in both
fiber-based and free space applications. Currently, the QKD is the driving technology
behind the development of quantum state transfer. Progress continues in the development
of new quantum sources, detectors and low-loss optical fibers. In general, there are two
approaches to QKDs, discrete and continuous variables. Discrete quantum communication
linking distances more than hundreds of kilometers [1–3] has been achieved. New concepts
such as twin-field QKDs [4] have enabled point-to-point links of over 800 km. Continuous-
variable QKDs take advantage of the wave nature of light by using a homodyne detector [5].
Distances of over 200 km have been achieved [6], as well as demonstrations of over 15 km
using seven-core multicore fiber [7].
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Quantum key distribution using entangled photons is currently under intense research.
Entangled photon states are non-separable and as such enable the possibility of implement-
ing quantum nodes, utilizing quantum memories and repeaters for quantum information
networks [8]. These systems take advantage of the fact that two photons are entangled in
polarization, frequency or time. The quantum photon can be in one of two states, and this
is encoded as a qubit. Beyond two-dimensional entanglement is higher-dimensional entan-
glement and hyperentanglement. Hyperentanglement [9], is simultaneous entanglement in
multiple, rather than just two, degrees of freedom. Examples of the other degrees of free-
dom include polarization, space, time and frequency. The advantages of communicating
with higher-order entanglement (using qudits rather than qubits) include increasing the
quantum transfer capacity, increasing the number of bits per photon, increasing quantum
fidelity and increasing the error threshold. The transfer of higher-dimensional states in
optical fiber is of significant research interest. Demonstrations in both multimode [10]
and in multicore [11] fiber have been reported. In multimode fiber, the distribution of
high-dimensional orbital angular momentum over 1 km of few-mode fiber has been demon-
strated, using an actively stabilizing phase pre-compensation technique to overcome the
negative effects of spatial and polarization mode coupling [9]. Finally, it is important to
mention some of the challenges of high-dimensional quantum communication that have
recently been documented [12].

There are many important aspects to the transmission of higher-dimensional (modal)
communications through optical fiber. This includes the active sources and devices required
for the transmission and signal processing, as in silicon photonics processing [13], as
well as systems considerations, such as the required amplifiers for longer transmission
distances [14]. In this report, we limit ourselves to the implementation of input and output
passive optical components, as well as fiber index profiles, to enable better simultaneous–
higher-dimensional quantum communication over multiple channels. We consider fiber-
optical properties, as well as the compatible input/output optics that best enable the entire
quantum communication system to function. The passive optical components are those
compatible with free space connectivity and those that are either commercially available or
are currently undergoing intensive global research activity via metasurfaces. The available
components and devices considered include spatial light modulators, gratings and lenses,
among others. Longer term, it is expected that the implementation of these components
will be enabled with flat optics, rather than bulk optical components. We use data from the
literature to substantiate the viability of other components for higher-dimensional quantum
communication systems. The idea of using holographic gratings to couple array sources and
detectors to the specific LP11 optical fiber mode has been proposed and implemented [15]. This
enables the simultaneously transmission of four channels. That is, two spatial modes times
two polarization modes, 2 × 2 = 4 modes. Here, we investigate how to scale this idea to many
modes and show that it is very possible to scale to 20 or more spatial–polarization modes.

We consider the modal properties of the transmitting optical fiber, including orbital
angular momentum, mode groups and principal modes. The possibility of transmitting
information free from the deleterious effects of mode coupling, the width of the transmis-
sion temporal window and the minimum optical loss are important to understanding the
viability of high-dimension quantum communications.

In Section 2, we focus on the modal properties of the fiber and how the fiber’s index
profile affects the intermodal and intramodal temporal bandwidth, as well as how this
profile affects the input and output optical component requirements. We discuss the
relationship of the orbital angular momentum modes with intermodal and intramodal
temporal delays. We investigate the use of a step index fiber profile to better enable one to
target specific modal groups and modes within a modal group. We model the phase grating
properties that map the spatial distribution of the laser and detection array distribution
with the specific inter and intra modes of the fiber.

In Section 3, we point out the limitations to the WKB approximation. Exact solutions
to the wave equation show that a break in the degeneracies of the modes within a modal
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group occurs. Also, there is a distribution of the input/output angles of the modes, rather
than a single value, and this affects the achievable coupling efficiencies and modal cross-talk
at the input/output.

In Section 4, we discuss the principal modes and show how they can be used to deal
with mode coupling and to enable node-to-node quantum communication, using the many
intra modes of the fiber. These principal modes are only used with the intra modes because
the fiber design prevents inter modal coupling.

In Section 5, Outlook, we discuss the current situation, including the consequences of
implementing the corrections to the WKB approximation. We also discuss the availability
of the disclosed devices and components, as well as the possibility of substituting flat optics
components and devices for the bulk components described.

2. High-Dimensional Quantum State Propagation in Fiber and the Associated Input and
Output Components

The intent here is to consider higher-dimensional quantum communication, including
the fiber and input and output components, as an entity. We propose the optimization of the
optics, as opposed to optimizing the fiber and then separately optimizing the input/output
optics. In this way, we enable a denser communication system, a system that enables
parallel processing in separate modal channels in the presence of mode coupling. We
propose a system where the processing of quantum signals propagates within the modal
groups of the fiber, as opposed as to specific modes such as OAM modes.

Mode coupling among the modes within a modal group occurs almost spontaneously,
since these modes are degenerate amongst themselves. This is according to the WKB
approximation, which has to be exact for an infinitely parabolic index profile. Although,
there are differences between the exact solution and the WKB approximation, as the effective
index of the mode groups approaches that of the cladding index. In this case, there is a
splitting of the modal groups. For degenerate modes, only the slightest perturbation in a
deployed fiber, such as twisting or bending, will cause the mixing of information among the
communicating spatial channels. Mode coupling in multimode fiber has been documented
well within the literature; see, for example, reference [16]. In an alpha index fiber profile [17]
the modal groups, mode numbers and modes within a modal group are determined by
the core–clad index difference, the radius of the core and the propagating wavelength.
In an alpha index profile, one can keep the same number of modal groups, and at the
same time minimize the amount of mode coupling from modal group to modal group,
by increasing the core delta and decreasing the core radius. This is true, regardless of the
alpha parameter of the profile, the step index (alpha of infinity) vs alpha of parabolic (alpha
= 2), for example. This approach enables the isolation of quantum channels using the
modal groups. Mode coupling will occur within a cabled and deployed optical fiber when
the propagation distances are significant within a degenerate modal group. This includes
the OAM modes, because typically OAM modes are degenerate with other OAM modes
within a modal group. This is especially true of OAM modes of an equal radial number and
opposite azimuthal number, again because they are degenerate. This has been evidenced in
a specially designed ring-core fiber [18]. Here there is a temporal broadening of the pulses
propagating in OAM modes of an opposite azimuthal number, which the authors say is
similar to polarization mode dispersion due to polarization mode coupling.

MIMO (modes in–modes out) [19] is a classical optical communication technology
that enables one to deal with this issue. However, MIMO requires significant power,
and for this reason, it cannot be used with quantum systems. An alternative approach,
principal mode communication, is possible but is less developed and involves a number
of special optical components, including active components, some of which are not yet
commercialized. We discuss this approach for quantum communications in Section 3.
Modal pre-compensation [10] is a relatively new approach to deal with mode coupling and
is just now being considered for quantum communications.



Optics 2024, 5 333

Inputting signals into a fiber and targeting modal groups is difficult, especially when
launching into modal groups beyond M = 1. However, it has been proposed that this is
less difficult when the transmission fiber is a step index fiber [20]. Although the modal
groups in a step index fiber separate significantly in time as they propagate, the coupling
from modal group to modal group can be insignificant for a larger index delta and smaller
core radius. A step index fiber for space division multiplexing was first proposed by
Cedarquest [20] as early as 1984. He proposed using a step index fiber, because to a first
approximation, the WKB approximation, the mode power distribution only depends on a
specific angle and therefore simplifies the input. However, the angle of propagation is not
singular, but there exists a distribution in angle around a centroid value. Again, the WKB
approximation is only a guide and good starting point.

2.1. Intermodal Coupling

Cederquist [20] proposed methods to couple light into and out of the modal groups of
a step index fiber using a computer-generated hologram. One of his methods enabled him
to input a point source of light to a desired modal group. In another method, he showed
how to input a strip of light into targeted modal groups. However, it was not shown how
to input separate modes within a modal group. Later, Huang [21], based on the previous
work of Berkout [22] and Lavery [15], used a lens to input light to the modes within the
second modal group of a parabolic fiber, but this method is not scalable to more modal
groups. Huang did, however, demonstrate MIMO using this second modal group. In
another implementation of higher-order modes, Mirhosseini [23] demonstrated quantum
cryptography using both OAM and angular modes.

Here, we describe a new optical method to couple to and from modal groups in a step
index fiber, based on the WKB approximation. Higher-order correction will be considered
in Section 3.

Below is a diagram showing light exiting a multimode group. For a step index fiber,
all the modes exit the fiber at a specific angle characteristic of that group.

In a step index profile, each modal group exits the fiber around an angular cen-
troid, an annular cone. Lenses and holograms or metasurfaces can impose a geometric
transformation—outputting the modal groups onto a linear array detector. The higher
the output angle of the modal group, the further the light is removed in the X direction.
In addition, the length of the array is longer in the Y direction. This is made possible by
putting a phase plate (e.g., metasurface, SLM or etched array) after the lens in Figure 1.
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Figure 1. Z > propagation direction.

Below, we show pictorially how different modal groups’ angular cones are transformed
to linear optical arrays after the light traverses the phase plate (Figure 2).
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Figure 2. How different modal groups’ angular cones are transformed to linear optical arrays after
the light traverses the phase plate.

Now, we determine the phase plate values for the azimuthal angles of the angular
cone. We use the optical phase transformations disclosed in reference [22] by Berkhout,
which are an improvement over those of Cederquist [20]. In this equation, the values of a
and b are arbitrary, with dimensions of length.

ϕ(x, y) = −2πa
λ f

[
ytan−1

( y
x

)
− xln

(√
x2 + y2

b

)
+ x

]
(1)

Here, x, y are positions around the annular ring of the modal group light cone; a is
a free parameter that dictates the length of the focused strip and how far the strip shifts
along the x axis; f is the focal length of the Fourier lens; λ the wavelength; and b acts as a
scaling factor.

Here, we show an example phase plate used to convert the light of an angular cone to
light of a rectangular distribution. The light from the fiber is assumed to be that of a cone
exiting at a specific angle and then intercepting the plate with a radius of 250 microns. The
calculated phase differences, in microns, around the ring (0 to 2 pi) are shown below These
micron delays can be converted to fractions of wavelength for the use of an SLM, or spatial
light modulator (Figure 3).
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azimuthal ring of the plate at a specific radius). X axis, azimuthal angle [radians]; Y axis, phase delay
values, φ(θ).
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In order to generate this phase delay around each modal ring position, one can use
a metasurface plate or even a spatial light modulator. One can implement polarization-
dependent versions or polarization-independent versions. Metasurface designs can be
implemented using an RCWA (rigorous coupled wave analysis) algorithm. SLMs are
polarization-dependent but can be configured to be polarization-independent [24].

In reference [20], Cedarquist et. al. showed an optical component arrangement to
transform an input ring of light into a linear strip of light, which could then be focused onto
a detector. The ring of light results from the collimation of angular modal group cones, output
from a step index fiber. The phase delay component can be fabricated with a metasurface or
computer-generated hologram and is placed between lenses, as in Figure 4 below.
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According to ref [13], for a step index fiber, the number, M, of modal groups is

M = n1 × ka ×
√

∆/2 (2)

where n1 is the index of the core, k = 2π/λ, λ is the wavelength and ∆ = (n1 − n2)/n1,
where n2 is the index of the cladding.

The angular offset to input light into a particular modal group, m, is

sin (θm) = n1 ×
√

2∆ × m/M (3)

So that
θm = arcsin

(
n1 ×

√
2∆ × (m/M)

)
(4)

For a step index fiber, the angular input/output values increase linearly with the
modal group number. As an example, for ∆ = 0.01, and a = 9 microns, M = 3.7 and the
angular input/output values (Table 1) are as follows:

Table 1. The angular input/output values.

m θm

1 3.14

2 6.29

3 9.46

For MIMO (modes in–modes out) applications, each angular output cone is trans-
formed to a linear strip as described above. There at the linear strip, a detector array can be
placed. The number of detectors will be equal to the number of modes within that modal
group. To minimize the digital processing temporal window, it is desirable to enable strong
mode coupling throughout the transport path. So, intramode coupling at the input and
output sites is not of concern but encouraged. It does matter, though, that light is efficiently
coupled into and out of a specific modal group.
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2.2. Coupling from a Linear Array to Spatial Modes within a Modal Group

The coordinate transformations of modal groups exiting the fiber are transformed by
a phase grating implemented with an SLM, metasurface or etched glass. A given modal
group transforms to positions on a linear strip (e.g., detector array)

The modal group’s light exit cone can be further characterized with an azimuthal
angle. Specific azimuthal angles transform to positions on the linear strip (Figure 5). The
azimuthal zero angle begins on the positive x axis.
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Light along the exit cone–angular position transforms to a position on the strip. The
spatial transmission is double-valued, in that two positions on the arc correspond to one
position on the linear strip. This indicates that there is modal coupling, as the modes within
a modal group undergo a coordinate transformation.

There are m spatial groups within the mth mode and two polarizations for each spatial
mode. As for multiplexing within a modal group, it is not necessary to multiplex with
a specific modal group. In fact, it is proposed here to multiplex with subgroups within
the modal group. The modal group can be separated into m subgroups; each subgroup is
composed of a different combination of spatial modes.

Xj =
m

∑
j=1

CjiXi (5)

The transformed angular cone is transformed to a linear strip, and the linear strip is
sectioned into m sections. The subsections are physical regions of overlap with a specific
source or detector in an array. The figure below is an example of an arc with four sections
and four subgroups, because the transformation is double-valued. A linear array of sources,
for example, transforms to the group mode cone, such that a source in the array couples
to two arcs on the angular cone spaced 180 degrees apart. For example, if we have four
sources, color coded (blue, green, red, orange) on a linear strip, they will transform to two
opposite positions on the arc. This is shown in Figure 6 below.

In addition to mode-coupling concerns, it is important that attenuation is addressed.
For quantum key distributions [1–4], attenuation is of major concern. The transportation
of a single photon is detected with a quantum detector, but the probability of detecting
such a photon is in the order of −20 dB down and even less. In these references, it is
shown how this low probability can be dealt with. The higher modal groups for quantum
transportation will always be of higher attenuation than the fundamental mode. This is
due to micro and macro bending. The attenuation of light in the fundamental mode is in
the order of 0.15 dB/km. The attenuation of the higher modes will always be more, and
it is expected that this value will increase with the mode number. This will be the subject
of further research, including applications for higher-order quantum key distribution and
also quantum routing.
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3. Corrections to the WKB Approximation

The WKB approximation has been used extensively to solve the propagation and
modal properties of an optical fiber [17]. This method is often used as a guidance to set
the fiber parameters and then implement more exact calculations. In this approximation,
the field can be forced to be zero at the core cladding boundary. This method gives the
exact solutions for the modal eigenvalues for a parabolic index profile, but the presence
of cladding distorts these values. So, it is important to consider that corrections to this
approximation for our case here, and for this reason, we look at the scaler wave equation
for an optical fiber and we assume that the fiber is of circular symmetry.

The wave equation for the modes within an optical fiber is

▽2 E + k02 n2(r)E = 0 (6)

where n(r) is the index profile of the fiber and ko is 2 π/λ, and λ is the wavelength of light.
The wave equation describes well the propagation properties of the modes within a

circular multimode fiber for low index differences between the core and cladding index
values, typical for telecommunication fibers. The WKB approximation to the wave equation
enables us to determine the first-order properties of the propagation, but it is important to
consider its limitations. The wave equation, Equation (6), can be solved exactly using an
eigenvalue expansion method; see, for example, Meunier [25]. Here, we model the modal
propagation output from a fiber and the subsequent propagation through the system of
Figure 4. We use the step index fiber properties of [18], a core cladding index difference, ∆,
of 1% and a core radius of 9 microns. This gives us 4 modal groups and 10 spatial modes,
each with two polarizations, for a total of 20 modal channels

The solution to the wave equation gives the modal eigenvalues, propagation constants,
and eigenfunctions and fields. These modes can be quantified with a radial number (µ) and
an azimuthal number (ν). Typically, one can solve a series of radial modes, µ, for a specific
azimuthal mode, for example, ν = 0 or ν = 1, etc. Using this method, we obtained the same
propagation constants as those shown for a step index profile in ref [24]. The eigenfunctions
for these modes can be used to obtain the field distributions for the modes discussed in
Section 2. We can also solve for the angular distribution of light output from the fiber using
the far-field methods shown in [26]. The first important result is that the angular output
cannot be quantified using a single specific angle, but rather an angular distribution of light
results, even for a step index fiber. We found that the modal angular output distributions
result in cross-talk between the modal groups, and this cross-talk is on the order of -10 dB
for the first four modal groups of a step index fiber, excluding (attenuating) the LP12 (µ = 1,



Optics 2024, 5 338

ν = 1) mode to maintain this low level of modal group cross-talk. Angular filters can be
used to further minimize this unwanted cross-talk.

As an example, the output distribution of LP21 is (ν = 2, µ = 0), on a screen 1 cm from
the fiber.

The second important result in using the solutions to the scaler wave equation is that
this output angular distribution (not a specific angle) causes interference effects exiting the
circular to rectangular hologram of Figure 4. Similar interference patterns are shown in [22].
Berkhout [22] proposes a second hologram based on the principal of a stationary phase in
order to deal with this complicated interference. The second hologram can be placed on the
opposite side of a glass on which the first hologram is deposited. The importance of this
second hologram is also discussed in Refs. [27,28]. This holographic grating is described
using the equation

ϕ(x, y) = −2πab/(λ f )exp
(
− x

a

)
cos
(y

a

)
(7)

Here, a and b are parameters to enable a scaling of the free space propagation following
the hologram.

Now, we model the modal propagation output from a fiber and the subsequent
propagation through the system of Figure 4. We use the step index fiber properties of [18],
a core cladding index difference, ∆, of 1% and a core radius of 9 microns. This gives us 4
modal groups and 10 spatial modes; each spatial mode includes two polarizations, for a
total of 20 modal channels. We use the hologram described by Equation (1) above and also
consider adding the second hologram of Equation (7), The holograms are inserted between
the two lenses of Figure 4. The first hologram converts the geometry of the light form from
circular to rectangular, and the second hologram corrects the complex interference effects
patterns. We use Python LightPipes 2.1.5 to model the entire free space propagation. In
LightPipes, we use a grid size of 200 × 200 and a pixel size of 10 microns. The grid is
centered to capture the field, of which the power is shown in Figure 7. The center of the
grid is at position x = 100, y = 100. The output of the calculation for three mode groups,
along the x axis (y = 100), is shown in Figure 8. The light does focus onto sequential grid
positions 110, 130, 140. But there exist spurious peaks, which are due to the limitations
of the model–grid size, but also due to interference patterns exiting the holograms. This
Python LightPipes model will require further investigation, as the spurious noise is in
part real and in part due to the limitations of the grid calculations. But with the second
hologram, the light output does focus onto a rectangular grid, offset from the center and to
the right quadrant. So, here we have a very interesting fiber–free space platform for space
division multiplexing analysis.
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4. Principal Mode Propagation

Principal mode propagation in an optical fiber is a method to deal with the intramode
coupling that occurs among the propagating modes of the fiber. Such a mode coupling
can be significant enough that the output mode signal is completely scrambled. Vectorial–
modal pre-compensation [9] is another method to deal with mode coupling. Although
this is an important approach and, we can expect, useful for this application, we will not
consider this further in this report and only focus on principal mode propagation. Using
principal modes, which are a superposition of guided modes, one can transmit an optical
signal through a fiber in the presence of significant mode coupling and then output the
pulse to a principal mode, all being accomplished with the output signal being free from
pulse distortion.

The principal modes in a highly multimode fiber have been characterized using inter-
ferometric methods and temporal based methods. Using fibers of meter
lengths [29–32]. The temporal-based method [31,33] has been used to determine a few
principal modes over kilometer lengths. These methods assume no or little optical loss
during the propagation and launch and detection. Methods to deal with launch conditions
and also optical loss have been discussed in the literature [34,35]. In this discussion, we
assume no excess loss, including the input/output optics, as well as pulse propagation
within the propagating fiber.

An important parameter is the temporal window of the arrival times that a photon
can take as it propagates through the fiber and among the possible guided modes. This
temporal window must be wide enough to include all the possible modal path arrival
times. The window of arrival times for subsequent signal pulses must not overlap with the
windows of previous pulses.

So, we propose to use principal mode transmission only among the modes within a
modal group, i.e., the intra modes. We can consider the guided modes of Figure 6. Each
of these modes is a superposition of eigenmodes of the step index fiber. Remember, in
a step index fiber, each modal group propagates as an angular cone but broadened in
angle, and the modes within a modal group can be characterized as a superposition of
the guided modes within that modal group. We can determine the principal modes from
the spatial sectors of Figure 6. These principal modes can be determined using either the
interferometric method or the time delay method. The principal modes change in time. This
time is estimated to be on the order of seconds, and because of this, the principal modes will
need constant adjustment. This can be done first using classical, higher-powered light, and
once determined, single photons can be launched accordingly, as specified. Launching and
detecting the principal modes will require an optical component configuration of Figure 4.
This will require the use of lenses and a tunable device such as a spatial light modulator. It is
expected that the lenses can be replaced with flat optics components, currently undergoing
global research.
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5. Outlook/Conclusions

Currently, higher-dimensional quantum communication is undergoing global research
for the reasons discussed above. Here, we have proposed a method to implement simulta-
neously many channels of communication through fibers. We used the WKB approximation
as a guidance to deal with the mode coupling that occurs when inputting and outputting
light to the fiber, as well as the mode coupling that occurs within the fiber during transmis-
sion. We then used the exact solutions to the scaler equation to quantify the corrections
to the WKB approximation regarding the input/output coupling. These corrections are
significant and show that cross-talk will occur at the input/output sites, but that this can
be minimized using spatial filters. We also implemented a Python LightPipes algorithm
to better understand and quantify how the light converts from a circular to a rectangular
geometry and therefore how circular optical modes convert to the rectangular arrays of
sources and detectors. To implement and commercialize these optical fiber-based quantum
systems, there is a need to develop new optical components including tunable–deployable
devices such a spatial light modulators, SLMs, as well as new compact optical components
such as flat optics—lenses, phase plates, angular filters and gratings. Also, we can consider
modems, described in [36] to the better separate the inter-modes. All, these devices will
need to be suitable for telecom system deployment. Also, an attenuation target for the
modal-dependent input/output optical components will be less than 1 dB per component.
Meanwhile, the methods described here will need further research, to better determine
the number of higher dimensions possible using the optical component configurations
disclosed, as well as the optical fiber parameters, including mode-dependent coupling and
mode-dependent attenuation.
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