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Abstract: Airy beams showing curved paths have found extensive applications in fields such as
optical trapping, biomedical analysis, and material processing. Despite their utility, dynamic control
of Airy beams poses a significant challenge. This work investigates the experimental realization of
dynamic steering of Airy beams by utilizing computer-generated holograms with phase-amplitude
encoding on a phase-only spatial light modulator (SLM). We successfully generated and controlled
Airy beams by imposing dynamic phase masks that manipulated both the phase and amplitude of
the field, which sets our approach apart from conventional methods with only phase manipulation.
By directly encoding in situ such a hologram and transferring it to an SLM, we are able to control the
initial position and rotational orientation of Airy beams without relying on mechanical movement
or traditional optical setups involving lenses and apertures. Generating Airy beams in any initial
position and rotational direction is anticipated to significantly impact applications such as optical
trapping, optical communication, and biomedical imaging by providing a flexible platform for
dynamic Airy beam manipulation.

Keywords: optical airy beam; spatial light modulator; computer-generated hologram; phase-amplitude
encoding

1. Introduction

Diffraction is a common phenomenon in optics, affecting most conventional light
waves. Researchers have been investigating ways to create non-diffracting beams for some
time. In 1987, Durnin made a significant breakthrough by finding an exact solution to the
Maxwell wave equation using the zero-order Bessel function [1]. This solution demon-
strated that the resulting wave exhibited non-diffraction characteristics and, in addition,
that it could be realized using simple and conventional optical elements. This discovery
marked the formal introduction of the notion of diffraction-free beams [2]. Subsequent
research uncovered other types of non-diffracting beams, extending beyond Bessel beams
propagating in straight lines and encompassed also Airy beams that showed curved trajec-
tories. As early as 1979, Berry and Balazs predicted the existence of Airy beams, describing
a single Airy wave packet as the only non-diffracting solution to the Schrödinger equa-
tion [3]. Unsatisfactorily, the original Airy function had infinite energy, which is unrealistic.
To overcome this limitation, Siviloglou et al. conducted an in-depth investigation of the
solution and introduced an exponential decay function as an additional multiplier to the
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original Airy function [4]. This approach, similar to the technique used to create Bessel
beams, effectively mitigated the problem of infinite energy. The modified Airy function still
satisfied the requirements of the Schrödinger equation. The first practical implementation
of a truncated Airy beam was accomplished using a spatial light modulator, which brought
Airy beams into the realm of experimentally observable optical beams [5]. Subsequent
extensive research revealed that Airy beams, in addition to their non-diffracting nature,
possessed remarkable properties of self-acceleration and self-healing, resembling that of
Bessel beams [6–8]. These distinctive characteristics of Airy beams have captured the inter-
est of researchers and opened up numerous potential applications in the fields of modern
optics and photonics. Various studies have verified the diverse applications of Airy beams,
including their utilization in optical bullets [9–11], optical bottle beam formations [12],
optical routing [13], electron acceleration [14], light sheet microscopy [15–17], tomographic
measurements [18], plasma channels [19], acoustics [20], and particle clearing and optical
manipulation of particles [21,22]. Airy beams have also been studied in the context of
matter waves [23], spin waves [24], water waves [25], and light-induced waveguiding [26].
Furthermore, owing to their resilience in disturbed environments and their ability to self-
heal, Airy beams have found applications in microscopic examinations of biological cells,
atmospheric optical filamentation, and optical communication systems [8]. In fields such
as microfluidic engineering and cell biology, Airy beams offer the capability to manipulate
charged microscopic particles along curved and intricate paths [15]. In addition, investi-
gated possible uses of Airy beams include Airy acoustic sheet rotating tweezers [27], finite
asymmetric exotic beam acoustics [28], optical tweezing, imaging and microscopy, multiple
photon excitation [29] and attenuation compensation to obtain imaging at greater depths
within biological samples [30,31]. The self-accelerating and diffraction-free properties of
the Airy wave packet and the generation of two-dimensional, circular Airy waves with
abruptly autofocusing beams [32] find applications in micro processing and medical laser
microsurgery and treatment [33].

To date, research on Airy beams has primarily focused on the linear optical regime.
Typically, they are generated using moderate laser intensities with cylindrical lenses [34,35]
or through binary phase patterns with liquid crystals [36]. However, integrating nonlinear
optical processes into Airy beams enhances their functionality, for example, by broadening
their wavelength spectrum [37,38]. Despite these advancements, a major challenge in the
study of Airy beams is the active modulation and multiplexing of their propagation charac-
teristics, such as controlling the acceleration direction and trajectory. While metasurfaces
have been employed to adjust the propagation path of Airy beams [39], they exhibit low
nonlinear transformation efficiency for generating nonlinear Airy beams. An alternative
platform for dynamically controlling nonlinear Airy beams is 1D or 2D nonlinear photonic
crystals (NPCs) [40–42]. However, these platforms often face strict operational require-
ments and are limited in flexibility and working frequency ranges. As a result, there is
a pressing need for the development of a universal approach that enables the efficient
generation and flexible manipulation of Airy beams.

In this study, we generated computer-controlled dynamic Airy holograms using phase-
amplitude encoding on a phase-grating structure, resulting in experimentally generated
Airy beams with changeable curved directions. Rather than moving optical components
(such as lenses and apertures) for manipulation of an Airy beam, we modified the holo-
gram in situ to change the phase-amplitude mask in real time, allowing us to control the
direction of the Airy beam as needed. To create an Airy beam using a reflective phase-only
spatial light modulator (SLM), the desired phase-amplitude pattern is first calculated using
analytical methods that take into account the SLM calibration, the optimized grating pe-
riod, and modulation depth. Then, the phase-amplitude pattern is uploaded to the SLM,
which imposes the required phase and amplitude modulation onto the incident laser beam.
Unlike other methods that use cubic phase modulation and then perform Fourier transform
with a focusing lens [5,13], we form an Airy beam directly with the SLM. In addition, we
explicitly present the correction procedure that enables exact reproduction of an Airy beam
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in the first diffraction order. With this approach, the parameters of the Airy beams can
be easily changed by controlling the phase and amplitude pattern set on the SLM, thus
offering a flexible method to study propagation characteristics of the Airy beams, such as
their acceleration direction and trajectory. This technique can be applied for different light
wavelengths and for a wide dynamic range of laser intensities and is expected to have a
broad impact on applications such as optical trapping, optical communication, biomedical
imaging, etc., by offering a versatile platform for dynamic control of Airy beams. This
paper is organized as follows: (1) introduction, (2) modeling aspects, (3) experimental
methods and results, and (4) conclusions.

2. Modelling Aspects
2.1. Analytical Framework for Airy Beams

The Airy wave function first considered by Berry and Balazs [3] is a solution of the
field-free Schrödinger equation. A similar equation has also been used to describe the
diffraction of propagating waves within the paraxial approximation. The field distribution
of a finite-power Airy beam with an exponential limiting factor at the input z = 0 plane
can be expressed as

E(x, y, z = 0) ∝ Ai
(

x
r0

)
Ai

(
y
r0

)
exp

[
a
(

x + y
r0

)]
(1)

where Ai is the Airy function, r0 is a characteristic transverse scaling factor, and a is a
small positive constant to ensure energy confinement of the beam. We note that the Fourier
transform of Equation (1) contains a Gaussian distribution multiplied by a cubic phase term,
the latter being the inherent property of the Airy function [4]. The propagating Airy beam
with the boundary condition of Equation (1) can be presented by the following expression
for the field [5,19,43]:

E ∝ Ai(ξ)Ai(η) exp
[

a
(

x + y
r0

)
− aζ2 − i

(
ζ3

12
− a2ζ

2
− (x + y)ζ

2r0

)]
. (2)

Here ξ = x/r0 − ζ2/4 + iaζ and η = y/r0 − ζ2/4 + iaζ, and ζ = z/(kr2
0) is the normal-

ized propagation distance along the z-axis, k = 2π/λ is the wave number, and λ is the
wavelength of the wave. The intensity profile of the propagating Airy beam can then be
described by the modulus-squared of the field:

I(x, y, z) ∝ |E(x, y, z)|2 ∝
∣∣∣∣Ai2(ξ)Ai2(η) exp

[
2a
(

x + y
r0

)
− 2aζ2

]∣∣∣∣. (3)

The propagation length of this wave, at which the intensity drops by a factor e−2 can
be estimated as L ≈ kr2

0/
√

a [19], and for small values of the parameter a, the trajectory
follows a parabolic curve in three-dimensional space:

{
x = y = z2/

(
4k2r3

0
)}

.

2.2. Phase-Amplitude Pattern Design

We utilized MATLAB to generate a hologram code for manipulation of Airy beam
profiles, concentrating mainly on the rotation of the amplitude distribution of the beam
and the corresponding adjustment of the phase mask. The methodology consists of sev-
eral key steps, which are detailed below. First, we set up the Airy beam spatial do-
main and calculated its amplitude using Airy functions. A 2D Airy beam is separable
into the product of two 1D Airy functions for the x and y axes at z = 0 according to
Equation (1). Second, the beam amplitude is normalized, i.e., the amplitude distribution
M(x, y) = |E(x, y, z = 0)|/max|E(x, y, z = 0)| is used to ensure a consistent maximum
value across the grid, which is crucial for comparing different beam configurations or
analyzing the intensity distribution. It was shown [44,45] that to obtain a beam with
an arbitrary complex amplitude distribution, M(x, y) exp[iΦ(x, y)], one can achieve this
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approximately with a phase-only mask Ψ(x, y) on the SLM by imposing an amplitude
modulation of the phase structure and in addition by applying a periodic phase variation
of a grating:

Ψ(x, y) = mod
[
0.5(M(x, y)Φ(x, y) + Φgr(x, y)) + π, 2π

]
. (4)

Here, we use a sawtooth-shaped grating profile Φgr(x, y) = πMDsawtooth(2πx/Λ) (the
MATLAB sawtooth function with the limits [−1,1] was employed), the modulation depth
was set to MD = 1, Λ is the grating period, and the modulo function mod [44,45] assures
that the imposed phase changes within the limits [0, 2π]. For the case of a real number
amplitude as in Equation (1), which can have positive or negative sign, the phase has the
values Φ(x, y) = 0 for E(x, y) ≥ 0 and Φ(x, y) = π for E(x, y) < 0. For this case, amplitude
distribution in the first diffraction order is as follows [45],

A1(x, y) ∝ R0sin c{π[1 − M(x, y)] exp[i(2πx/Λ + Φshift)]} (5)

where R0 ≈ 1 is the amplitude reflection coefficient of the SLM with a zero phase im-
posed, the function sin c(u) = sin(u)/u for u ̸= 0 and 1 for u = 0, and the term
Φshift = (π/2)[1+ sign(E(x, y))] is used to take into account the sign of the local field [45,46].
The intensity I of the beam is proportional to the square of the amplitude modulus; see
Equation (3). This corresponds to the physical energy distribution of the beam in space, a
key metric in optical beam analysis.

To obtain an Airy beam with an orientation rotated by a specified angle θ, the following
rotation matrix is applied: (

x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
. (6)

This matrix rotates the coordinates by an angle θ, which transforms the grid onto new
rotated coordinates. We note that the rotation of the system of coordinates of Equation (6)
by angle θ corresponds to the rotation of the phase mask in this system of coordinates by
angle (−θ), and the rotation of the phase mask by angle θ corresponds to the rotation of the
beam on the target (in our experiment the detection camera) by (−θ). After rotation, the
amplitude is interpolated on the rotated grid. This interpolation is necessary because the
rotation does not map the coordinates directly onto a uniform grid of the SLM.

The rotation leads to the following substitution in Equations (4) and (5),

M(x, y) → M[x′(x, y), y′(x, y)] = MR(x, y, θ) (7)

where we have introduced a new function of x, y, namely MR(x, y, θ), which corresponds
to a rotated Airy beam distribution, leading also to a changed orientation of the beam
trajectory. As follows from Equation (5), the amplitude in the first diffraction order is
then described by the following formula: |A1,R(x, y)| = sin c[π(1 − MR(x, y, θ))], which is
the obtained approximation that is, however, not exactly equal to the desired amplitude
modulation MR(x, y, θ). To correct for this discrepancy, instead of MR(x, y, θ) we introduce
in Equation (7) a modified function,

MR,corr(x, y, θ) = K[MR(x, y, θ)]MR(x, y, θ) (8)

with the amplitude correction function K(u) depending only on the properties of the sinc
(u) function and its argument. This function K(u) is defined by the equation:

sin c[π(1 − K(u)u)] = ufor 0 ≤ u ≤ 1. (9)

The function K(u) calculated for 0 ≤ u ≤ 1 is depicted in Figure 1a, showing that the
value of the correction function for a given amplitude is determined by the value of the
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amplitude itself. Then, the amplitude of the corrected output in the first diffraction order is
described by the formula,

|A1,R,corr(x, y)| = sin c[π(1 − MR,corr(x, y, θ))] (10)

with MR,corr(x, y, θ) defined by Equation (8).
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Figure 1. Approximation of a truncated Airy function by the expected distribution in the first
diffraction order: (a) amplitude correction function, (b) the input Airy function (blue) and the
uncorrected output distribution in the first diffraction order (black, dashed), (c) the input Airy
function (blue) and the corrected output distribution in the first diffraction order (black, dashed),
showing very close agreement.

2.3. Simulation Results

The calculations show that before the correction the ratio of the desired modulation
function MR(x, y, θ) and the obtained approximation |A1,R(x, y)| for all significant x, y
points with MR(x, y, θ) > 0.1 varies from ~0.78 to 1, i.e., the approximation can deviate
by about 25%. With the correction, the ratio of MR(x, y, θ) and |A1,R,corr(x, y)| varies
within a much narrower interval of less than 0.15%, mostly determined by the accuracy
of the calculation. This is illustrated by the results for the calculated modulation function
presented in Figure 1b,c for θ = 0, a = 0.05, and y = −0.968 (the y value for the Airy
function maxima along the x-axis). It can be seen that by applying the outlined correction,
much better accuracy of the generated Airy beam can be obtained.

Consequently, the described approach allows for precise control over the characteristics
of the optical beam profiles, providing an effective way for manipulating Airy beams



Optics 2024, 5 586

in practical applications. We visualize the amplitude, intensity, and phase-amplitude
hologram using 2D surface plots in Figure 2.
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pitch of 6.4 µm. Because the modal structure of Airy beams requires proper amplitude 
and phase modulation, appropriate calibration of the SLM is crucial for obtaining accurate 

Figure 2. The amplitude of the Airy beam is computed as the product of two 1D Airy functions,
one along each axis (x and y); see Equation (1) with x → −x , and y → −y . To rotate the beam, the
rotation matrix is applied to the grid coordinates, followed by interpolation. The resultant Airy beam
amplitude and intensity, as well as the corresponding phase-amplitude hologram are presented:
(a) Airy beam amplitude distribution. (b) Airy beam intensity distribution. (c) The phase-amplitude
hologram corresponding to the unrotated Airy beam. (d,e) present the Airy beam amplitude and
intensity distributions after applying rotation of θ = −45◦. (f) depicts the phase-amplitude hologram
for the rotated beam.

3. Experimental Methods and Results
3.1. Calibration of the SLM for Phase Modulation

In our experiment, we utilized an SLM (EXULUS-HD1) that integrates an LCoS
panel with a resolution of 1920 × 1080 pixels, an active area of 12.5 mm × 7.1 mm, and
a pixel pitch of 6.4 µm. Because the modal structure of Airy beams requires proper
amplitude and phase modulation, appropriate calibration of the SLM is crucial for obtaining
accurate and reliable results, making it an essential step for high-precision applications.
We employed a continuous wave He-Ne laser with a wavelength of 632.8 nm and a beam
diameter of 0.65 mm (TEM00, 1/e2). Note that the phase shift induced by the SLM is
wavelength-dependent and will affect the device’s phase calibration. The phase calibration
was determined by measuring the SLM reflectivity (the ratio of the values of the reflected
and incident light powers) for a set of grayscale values imposed onto the LCOS panel of the
SLM. The reflected laser power was measured by setting up a Michelson interferometer [47].
The configuration of the interferometer is fixed, so the phase changes produced by varying
the grayscale values between 0 and 255 in steps of three on the SLM in one of the arms
resulted in variations in the laser output power. An example grayscale and the experimental
setup are shown in Figure 3.
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Figure 3. (a) Six grayscale values as an example of the 0–255 grayscale used in the calibration process
and (b) the Michelson interferometer experimental setup used for the SLM calibration.

A uniform grayscale image on the SLM assigns to each pixel a grayscale value, starting
from black (grayscale value 0) to white (grayscale value 255), as shown in Figure 3a. With
an SLM of high reflectivity (assumed to be 1), the initial power of the laser beam P0, and the
reflectivity of the beam splitter R, the power of each of the two sub-beams arriving at the
photodetector is P0(1 − R)R. Then, considering the phase shift φ produced by the SLM for
monochromatic laser light, the total power measured by the power meter is found to be:

P = P0(1 − R)R
∣∣∣1 + eiφ

∣∣∣2 = P0(1 − R)R 2(1 + cos(φ)). (11)

Here, the phase difference between the two fixed arms is φ. For R = 0.5,

P = P0cos2(φ/2). (12)

As the grayscale values (and the phase too) were changed, the total laser power was
measured by the power meter (Thorlabs, PM100USB, S120C). The recorded data are shown
in Figure 4a. They have been fitted by the theoretically expected formula of Equation (12)
(solid blue curve). From this fit, the phase modulation as a function of grayscale value was
determined using relation φ = 2arccos

(√
P/P0

)
and is shown in Figure 4b. The relationship

between the phase modulation φ and the grayscale value χ is well approximated by a linear
function φ = 0.124 + 0.008χ, which corresponds to 0.008π radians per grayscale value in
addition to an offset phase of 0.124π radians. Notably, the maximum phase modulation
reached approximately 2π radians when the grayscale value χ was equal to 234.
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Figure 4. (a) The power output measured in a Michelson interferometer as a function of the grayscale
values. The data points of the measured output power are represented by black open squares, while
the solid blue line shows the theoretical fit with Equation (12). (b) Phase modulation retrieved from
the data and the theoretical fit.



Optics 2024, 5 588

3.2. Diffraction Efficiency Optimization

The diffraction efficiency resulting from the phase pattern displayed on the SLM was
optimized over the grating period (determined by the number of pixels in a period) and the
modulation depth (grayscale values). The experimental arrangement for this optimization
process is shown in Figure 5.
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Figure 5. Experimental setup for measuring diffracted laser beam intensities using a spatial light
modulator (SLM). A laser beam is incident on the SLM, displaying a holographic grating pattern,
which results in multiple diffraction orders (0, +1, −1). To measure the first-order diffraction efficiency
of the grating as a function of the modulation depth (grayscale values) using different grating periods,
a power meter is placed in the path of the first-diffraction-order beam.

The gratings with N steps were generated by a computer. The first-order diffraction
efficiency was measured for the modulation depth (MD) and different number of pixels
(NP) in a grating period. Top and side views of the grating phase structures on the SLM
with grating period (with certain number of pixels, NP) and grayscale (modulation depth,
MD) are shown in Figure 6. In this figure, grating structures were exaggerated to better
visualize the parameters of the grating. In Figure 7a, we depicted the grating efficiency
as a function of the modulation depth, which was determined by calculating the ratio
of the power in the first diffraction order to the power in the zero order. A total of ten
data sets were obtained, with each set representing a distinct grating period. The grating
period is indicated by the number of pixels (NP) employed, assuming that each pixel
corresponded to a pitch of 6.4 µm. All data sets showed a peak at a grayscale value of
~234, which corresponds to a phase shift of ~2π radian, where the maximum peak values of
efficiencies are obtained in the measurements (see Figure 7a). In Figure 7b, the efficiencies
observed at the peak values (grayscale value of 234) for different grating periods are plotted,
showing that the highest diffraction efficiency is achieved for a grating period of eight
pixels. Notably, as the number of steps increased or decreased from this optimal value, the
diffraction efficiency demonstrated a gradual decrease.
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From Figure 7, it is suggested that for achieving maximum efficiency, a modulation
depth around a grayscale value of 234 and a grating period of eight pixels are optimal.
There is a trade-off between NP and efficiency; smaller or larger NP values result in reduced
efficiency. This also results in a trade-off between spatial resolution (determined by NP) and
the efficiency of diffraction. For applications requiring high diffraction efficiency, setting the
SLM parameters close to these optimal values would be beneficial. Adjusting the grating
period and modulation depth can fine-tune the performance of the setup for specific needs.
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Figure 7. (a) Diffraction efficiency of the grating as a function of modulation depth (grayscale value)
for different grating periods (NP—number of pixels). The efficiency is determined by the power ratio
of the first diffraction order to the zero order. Maxima of efficiencies (in a red box) are achieved at a
grayscale value of 234, corresponding to a phase modulation depth of 2π. (b) Diffraction efficiencies
at a grayscale value of 234 as a function of the grating period (NP), showing the maximum value at a
period of eight pixels.

3.3. Airy Beam Generation and Control

Figure 8 illustrates the experimental setup, and the operation of the optical system
can be summarized as follows. A He-Ne laser beam with a wavelength of 632.8 nm first
passes through a spatial filter, which removes higher modes and disturbances in the spatial
profile and expands the Gaussian beam diameter by a factor of eight. This resulted in a final
beam diameter of 5.2 mm (TEM00, 1/e2) to utilize the panel’s active area (which measures
12.5 mm × 7.1 mm) and to accommodate the pixel pitch of 6.4 µm. The expanded beam
is then sent through a polarizer to ensure that the polarization direction of the incident
beam is aligned with the long axis of the liquid crystal molecules. The beam subsequently
reaches the SLM device at an incidence angle of approximately 5◦. The SLM modulates
the incident beam with the encoded phase-amplitude mask. Ultimately, a 2D Airy beam
obtained in the +1 diffraction order is captured by a camera (Basler ace2, a2A 1920).

In many applications, precise control over the propagation trajectory of an Airy beam
is necessary to achieve the desired effect. By manipulating the central position of the mask
shown in Figure 2, the original position of the generated Airy beam can be adjusted so
that the trajectory of the Airy beam is controlled. Experimental 2D holographic Airy beam
images taken with a CCD camera are presented in Figure 9a–d, which were obtained with
the holograms located at the center and shifted by 40, 80, and 120 pixels along the x and
y directions on the SLM, respectively. The shifts in the hologram result in predictable
changes in the beam position and its intensity profile, demonstrating the flexibility of SLMs
in beam-shaping applications.

The inherent modulation of the Airy beam causes them to self-bend during propaga-
tion. It is noted that the profiles of the observed Airy beams produce the expected Airy
beam structure, thus confirming the validity of the proposed generation method. Figure 10
illustrates corresponding intensity distributions of Airy beam at (a) the central position
and (b) 40, (c) 80, and (d) 120 pixels shifted along the x and y direction for different phase
masks. The generated Airy beams were measured at about 20 cm away from the SLM. As
the phase mask is shifted, the peak intensity in each distribution moves progressively to the
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left and down. The results demonstrate how shifting the phase mask influences positioning
of the beam in a controlled manner.
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Figure 8. The experimental setup for generating Airy beams using a spatial light modulator (SLM). A
He-Ne laser beam passes through a spatial filter (SP) and a polarizer (P) and is incident on the SLM.
A phase-amplitude encoded hologram displayed on the SLM modulates the laser beam, producing
diffraction orders (0, +1, −1). The first-order diffraction (+1) was selected to form the Airy beam
shown in the bottom image.
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Figure 9. Experimental results of optical Airy beams generated using displaced holographic
phase masks on the SLM. Each figure shows results captured by a CCD camera for the hologram:
(a) positioned at the center, (b) shifted by 40 pixels along the x-axis, (c) shifted by 80 pixels along the
x-axis, and (d) shifted by 120 pixels along the x-axis on the SLM.
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Figure 11 displays intensity distributions for different orientations of optical Airy
beams, visualized for both positive (from 0◦ to 180◦, left column) and negative (from 0◦ to
−180◦, right column) angular displacements. We note that by changing the Airy pattern
orientation, the direction of acceleration also changes, typically towards the main lobe of
the beam, which can be valuable for certain applications. Thus, the orientation of an Airy
beam structure was angularly switched by using a rotated phase-amplitude mask obtained
with a series of computer-generated holograms that were applied to the SLM, eliminating
the need for any mechanical motion device. As a result, we experimentally generated Airy
beams with changeable curved directions. Our approach allows also for precise control
over the trajectory of the beam, enabling applications that require dynamic steering.
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4. Conclusions

Airy beams were generated through direct phase and amplitude encoding by dis-
playing holographic masks on a spatial light modulator. To create an Airy beam using a
phase-only SLM, the desired phase pattern was first calculated using analytical methods.
This phase pattern was then uploaded onto the SLM, which imposes the desired spatial
phase modulation onto the incident laser beam. The original position of the generated
Airy beam was controlled by manipulating the central position of the phase mask, elimi-
nating the need for mechanical devices. By using a computer-controlled approach based
on phase-amplitude encoding onto the phase-grating structure, we also experimentally
generated Airy beams with changeable curved directions. Thus, we have shown how a
spatial light modulator can be used as a versatile tool for direction control of Airy beams.
Instead of manipulating an Airy beam by moving the optical components (e.g., lenses and
apertures), we in situ generated holograms and manipulated the phase masks on the SLM
in real time to change the direction of the Airy beam as needed. This allows for precise
control over the trajectory of the beam, enabling applications that require dynamic steering.
The presented approach can find applications in light sheet microscopy [15], providing an
easy way of scanning the beam and also as a way to generate Airy beams without using a
focusing lens, thus simplifying the setup and its alignment. The described method can be
also useful for control of the beam routing and multiplexing [13]. Our approach makes it
easy to shift the position of the Airy beam, which is useful for precise beam positioning and
its direction adjustment in microsurgery [33]. The presented method effectively simplifies
the experimental setup and provides also the advantage of using fewer optical elements,
facilitating interdisciplinary and multidisciplinary scientific studies such as optical trap-
ping, optical communication, biomedical imaging, etc., as it offers a versatile platform for
dynamic generation and manipulation of Airy beams.
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