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Abstract: The study of the refractive index of traditional lenses is one of the foundational
topics in the field of optics. The refractive index of a lens determines its ability to refract
and focus light, making it a key parameter in optical design and applications. For the
measurement of the refractive index of blind samples of finished lenses, this paper proposes
a measurement method based on the use of a focal length measuring instrument and an
aspheric profilometer to measure the surface shape data of the front and back surfaces of the
lens. This method combines curve fitting algorithms and curvature radius fitting algorithms,
ultimately reconstructing the lens model using Zemax and back-calculating the refractive
index of the lens. For the samples employed in this paper, the measurement accuracy of
the focal length can achieve 1.06%, the fitting accuracy of the curvature radius can reach
0.138%, and the recovery accuracy of the refractive index can attain 6.303 × 10−4%.

Keywords: aspheric; curvature radius fitting; leveling algorithm; reverse modeling;
refractive index

1. Introduction
The use of aspheric elements in optical systems can correct aberrations, improve

imaging quality, and reduce system size. Traditional research on the refractive index [1] of
lenses primarily focuses on material selection, the optimization of fabrication processes,
and the relationship between refractive index and optical performance. The advent of
advanced materials science has led to the incorporation of a plethora of novel substances in
lens fabrication, most of which exhibit superior refractive indices and optical characteristics,
thereby expanding the potential for future lens production. Recent endeavors have been
directed towards developing methodologies for ascertaining the refractive index of lenses
without compromising their surface integrity. Utilizing the immersion technique, several
refractive index measurement strategies have been introduced. For instance, reference [2]
details a procedure in which the lens under examination is submerged in a fluid with
an adjustable refractive index until parity with the lens’s refractive index is achieved.
This approach, which deduces the lens’s refractive index from that of the fluid, is fraught
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with constraints that hinder its broad application. It necessitates the identification of
an appropriate fluid medium that resists absorption, a task that is both laborious and
fraught with experimental variability. Achieving consistent results often entails numerous
iterative trials to discern the fluid’s imaging behavior. Alternative methods for refractive
index determination have been proposed, circumventing the need for miscible immersion.
These include the utilization of the Murty shearing interferometer [3], Ronchi gratings [4],
acousto-optic gratings [5], the Fabry–Perot etalon [6], the Moiré deflection measurement [7],
and Fourier transform spectroscopy [8], all of which expedite the measurement process.
While these techniques obviate the need for repetitive experimentation, the fidelity of the
liquid index measurement remains a critical determinant of the method’s efficacy, with the
accuracy of the refractive index measurement being contingent upon the precision of the
liquid index assessment.

In 2003, Li Chao [9] and others introduced the phenomena of spherical reflection
imaging and refraction−reflection−refraction imaging observed in the determination of
the focal length of crescent-shaped thin lenses, pointing out that these phenomena can
be used to accurately determine the refractive index and the curvature radii of the front
and back surfaces. In 2004, Zheng Shiwang [10] proposed a simple method based on the
geometric optics spherical formula, which can derive the curvature radii and refractive
index of thin lenses. In 2011, Xu Jianli [11] observed the spherical reflection imaging of
biconcave thick lenses, and using this experimental phenomenon in conjunction with
the object–image formula, measured the curvature radii and refractive index of the front
and back surfaces of biconcave thick lenses. In 2013, Lingfeng et al. [12] proposed a non-
immersive lens refractive index measurement method based on fiber point diffraction
longitudinal interference. If the object point is located at the vertex of the front surface, the
lens imaging process simplifies to a single refraction at the back surface. The refractive
index of the lens is obtained by measuring its thickness, the curvature radius of the back
surface, and the distances between the object point and the image point. Experiments have
shown that this method achieves an accuracy better than 2.2 × 10−4, and aspheric lenses
can also be accurately measured using this method. In 2019, HD Ford et al. [13] combined
confocal scanning with low-coherence interferometry to provide remote measurements
of the refractive index and thickness of transparent materials. Additionally, the refractive
index can be derived by measuring multiple parameters of the lens using Michelson
interferometry [14], digital holographic interferometry [15], and laser differential confocal
techniques [16].

The above methods have significant limitations, including high operational difficulty,
complexity, and time consumption. This article proposes a method for obtaining the
refractive index of a lens by inversely reconstructing the aspheric model based on the focal
length and curvature radius. To ensure the generality of the experimental process and the
accuracy and repeatability of the results, we used lenses with different curvature aspheric
profiles, including short focal length, long focal length, biconvex, and plano-convex shapes.
The test results indicate that this method is universal and highly precise. The measurement
accuracy of this experiment is high, and it has good operability and low cost. This method
not only allows for the measurement of the refractive index of blind samples, but also has
practical guiding significance for the design, optimization, and manufacturing processes of
various lenses, whether involving single aspheric lenses or aspheric lens groups.

2. Experimental Methods and Principles
2.1. Measurement Method for Lens Focal Length

The focal length of a lens is an important parameter for determining the object–image
relationship, and the accuracy of its measurement directly affects the debugging and use
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of the entire optical system. Compared to conventional-sized lenses, the focal length
measurement of small-sized aspheric samples requires higher clamping precision and
measurement accuracy. As the aspheric surface has multiple points of curvature variation
outside of the central curvature position, multiple focal points often exist when testing the
entire effective aperture of the sample. Therefore, an aperture stop is added to limit the
effective aperture, allowing for precise measurement of the focal length.

2.2. Measurement Method for Curvature Radius of Aspheric Surfaces
2.2.1. Measurement of Aspheric Surface Profile Curves

Aspheric optical elements are those whose surface shape deviates from that of a
sphere. Due to the limitations of the measurement adjustment mechanism of the aspheric
profilometer, it cannot ensure that when the probe passes through the center of the sample,
multiple scans can be conducted near the vertex of the sample during the peak-finding
process (e.g., rotating the sample stage by 90◦). The measurement yields multiple surface
profile curves of the same sample with different effective apertures; among these curves,
the one with the largest aperture is selected as the actual curve representing the aspheric
profile of the lens. The test results are shown in Figure 1.
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Figure 1. Non−spherical profilometer measuring lens surface curve.

2.2.2. Fitting of Aspheric Curvature Radius

The aspheric surface is primarily measured based on its shape and parameters. The
surface shape refers to the three-dimensional distribution of the surface in the spatial
domain. The measurement result of the surface shape is a geometric quantity. The optical
axis passing through the vertex of the aspheric lens surface curve is designated as the
y-axis, while the direction perpendicular to the optical axis is designated as the x-axis. The
surface curve comprises multiple discrete points (x, y). The fitting formula can be generally
divided into the basic shape section (including paraxial curvature c and conic constant k),
the high-order correction section (including high-order coefficients a4, a6,. . ., a20), and the
longitudinal correction section (offset b). This form of fitting formula can flexibly describe
various complex aspheric shapes and its fitting effect can be optimized by adjusting the
parameters. The aspheric formula is as follows:

y =
cx2

1 +
√

1 − (k + 1)c2x2
+

n

∑
i=2

a2ix2i + b (1)

Standard data from patent examples have been selected to generate standard curves
using the above aspheric fitting formulas. The generated standard curves are perfectly
flat, so no leveling preprocessing is required. As shown in Figure 1, for surface profiles
with smaller curvature radii, the fitted curvature radius values are obtained by varying
the fitting interval range. By comparing these values with the true values from the patent
examples, the maximum fitting error is found to be ∆Rmax = −0.000256819 mm, as shown
in Figure 2a,d. For surface profiles with larger curvature radii, the maximum fitting error
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is ∆Rmax = −0.02009724 mm, as shown in Figure 2b,e. For surface profiles with multiple
points of curvature change, the maximum fitting error is ∆Rmax = −0.000332606 mm, as
shown in Figure 2c,f. Repeated fitting was conducted for the surface profiles with varying
curvatures, and the fitting errors remained consistent.
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Figure 2. Fitting results of three different surface profiles in various interval ranges: (a,d) show the
fitting results for surface profiles with smaller curvature radii across different intervals; (b,e) show the
fitting results for surface profiles with larger curvature radii across different intervals; (c,f) show the
fitting results for surface profiles with multiple points of curvature change across different intervals.

However, the actual profile curves measured by the aspheric profilometer exhibit a
certain degree of tilt, and due to the measurement accuracy of the instrument, it cannot be
guaranteed that the curves are perfectly flat. Therefore, before fitting the aspheric curvature
radius, it is necessary to level the curves first.

(a) Curve Leveling and Symmetry Preprocessing

The curves measured by an aspheric profilometer are often tilted, and the apex of the
aspheric surface does not lie at the origin of the coordinate system. However, for even-order
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aspheric curves that are axisymmetric, it is necessary to select a symmetric fitting interval in
order to accurately fit the curvature at the same cross-section. If the curve is not leveled, the
fitting curvature errors can be significant, or fitting errors may occur. Therefore, leveling the
surface profile curves measured by the aspheric profilometer is crucial for surface fitting.
To address this issue, this paper proposes an algorithm for an evaluation function that uses
the rotation angle of the symmetry axis and the horizontal and vertical translations of the
curve as variables, setting a leveling precision to adjust the apex of the initially scanned
tilted curve to the origin of the coordinate system, ensuring that the curve is symmetric
about the Y-axis.

(b) Fitting Accuracy Evaluation Metrics

R2, adjusted R2, RMSE, and SSE are used as evaluation metrics for the accuracy of
surface fitting. R2 is a statistical measure of the goodness-of-fit, also known as the coefficient
of determination, with values ranging from 0 to 1. The closer the value of R2 is to 1, the
better the regression line fits the observed values.

R2 = 1 − SSE
SST

(2)

In this context, SSE is the sum of squared errors, and SST is the total sum of squares.
Adjusted R2 is a modification of R2. When additional variables are added to a model,

R2 typically increases, even if the added variables do not contribute meaningfully to the
model. Adjusted R2 corrects for this by introducing a term that accounts for the number of
variables in the model. The closer the value of adjusted R2 is to 1, the better the fit of the
model. The expression is as follows:

Adjust R2 = 1 −
(

1 − R2
) n − 1

n − p − 1
(3)

The root mean square error (RMSE) is the square root of the mean square error (MSE).
A smaller RMSE indicates a better fit of the model to the data. The expression is as follows:

RMSE =

√
SSE

n
(4)

The sum of squared errors (SSE) calculates the difference in the sum of the squares of
the errors between the fitted data and the corresponding points of the original data. The
closer the SSE is to 0, the better the model selection and fit, and the more successful the
data prediction. The expression is as follows:

SSE = ∑n
i=1

(
yi −

∼
y
)

(5)

(c) Fitting Method for Radius of Curvature

After the curve is flattened, repeated fitting is performed by changing the fitting
interval multiple times. The fitting results can yield coefficients for the cone, radius of
curvature, and higher-order even aspheric terms, among others. The cone coefficient
is a parameter that describes the similarity between the aspheric shape and a cone; it
not only determines the shape characteristics of the asphere but also affects the optical
performance and application effectiveness of the asphere. Higher-order even aspheric
terms are beneficial for aberration correction, improving image quality, and enhancing
the performance of optical systems. Among these factors, the radius of curvature has
the most significant impact on the numerical model restoration of the refractive index. It
describes the degree to which the lens or mirror surface deviates from a straight line, that
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is, its degree of curvature. For aspheric lenses, the radius of curvature changes with the
distance from the optical axis, which is a key feature distinguishing it from spherical lenses.
Different materials have different refractive indices, and variations in the refractive index
can affect the design of the curvature radius of the lens. Therefore, when designing and
manufacturing lenses, it is essential to consider the relationship between the radius of
curvature, focal length, and refractive index to ensure that the optical performance of the
lens meets its application requirements.

Due to the impact of flattening accuracy, the aspheric surface cannot be adjusted to
an absolute flat state, resulting in certain errors. Thus, a standard surface shape is rotated
by a certain angle, and under the condition of being unable to achieve absolute flatness,
the radius of curvature R is adjusted by changing the fitting range in different intervals to
verify the reliability of the fitting. As shown in Figure 3.
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for surface shapes with multiple variable curvature points across different intervals.

From the analysis of the above fitting data, it can be concluded that under the rotation
at flattening accuracy, the fitting errors of the radii of curvature are all greater than the
fitting errors of the standard curve when absolutely flat. For surface shapes with larger
radii of curvature, the fitting error is ∆Rmax = −0.655022144 mm; for surface shapes with
smaller radii of curvature, the fitting error is ∆Rmax = 0.000385191 mm; and for surface
shapes with multiple variable curvature points, the fitting error is ∆Rmax = 0.000575795 mm.
The fitting data for the rotated surface shapes indicate that, given the current flattening
accuracy, the induced fitting error of the radius of curvature is within an acceptable range,
and has little impact on subsequent numerical model restoration.

After rotation, both the SSE and RMSE of the different surface shapes are less than 10−5,
indicating a high degree of fitting, with a smaller difference between the predicted values
and the actual values. Additionally, the R2 and adjusted R2 values across the different
fitting intervals are all equal to 1, demonstrating that the model has a strong explanatory
power regarding the observed data, resulting in better fitting outcomes.

2.3. Inverse Numerical Model Restoration of Refractive Index

In the process of determining the refractive index of a blind sample lens, the accuracy
of the measurement can be confirmed by calculating the refractive index using the focal
length, radius of curvature, and refractive index formulas from geometric optics. Generally,
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thick lenses are commonly used, and the focal length f of a thick lens with a thickness of d
can be expressed as follows:

1
f
= (n − 1)

(
1

R1
− 1

R2

)
+ (

d
n
)
(n − 1)2

R1R2
(6)

After obtaining the two key data points of focal length and radius of curvature, the
refractive index of the aspheric lens can be derived through an inverse numerical model. By
comparing the refractive index calculated using the thick lens formula with the refractive
index obtained from the inverse model restoration, the correctness of the experiment can
be verified.

3. Experiment and Data Analysis
In the experiment, the standard samples used were the aspheric AC90754 plano-

convex lens, the AC91558 plano-convex lens, and the AC111116 double-convex lens, and
their focal lengths and aspheric surface shape data were tested.

3.1. Focal Length Measurement Results

A parallel light beam was passed through the sample lens and a collimating lens, then
imaged onto the optical tube’s image plane. The focal point was accurately positioned
using a displacement stage, allowing for the calculation of the effective focal length of the
sample. The accurate determination of the image point on the image plane after the light
beam passes through the sample and collimating lens directly affects the accuracy of the
measurement results. However, due to precision issues during the molding and processing
stages, there exists an error compared to the design value of the focal length. By carrying
out the measurement multiple times and calculating the average, the focal length data
obtained for AC90754, AC91558, and AC111116 were f1 = 4.856 mm, f2 = 18.204 mm, and
f3 = 2.716 mm, respectively.

3.2. Surface Profile Measurement

The surface profile data were measured using a Taylor Hobson PGI 1240 profilometer.
This instrument is suitable for the optical measurement of aspheric surfaces ranging from
small to medium sizes, with measurements being virtually unaffected by the steepness
of the aspheric surface, and the maximum edge measurement angle reaching 85◦. The
measured surface profile data shown in Figure 4 below:

3.3. Radius of Curvature Fitting
3.3.1. Leveling and Selection of Curves

To define the function, the original test curve requires a horizontal translation distance
dx, a vertical translation distance dy, and a rotation angle ∆θ. For the discrete points on
the curve, the leveling process ensures symmetry about the y-axis. Upper and lower limit
thresholds are defined to find the closest positive and negative x values on the curve. As
shown in Figure 5. Next, a leveling evaluation function Q is defined as follows:

Q = ∑n
i=0 |y(x i)−y(−x i)| (7)

where n is the radius of the lens. For each point, the x-values that are opposite with respect
to the y-axis are used to minimize the horizontal coordinate difference between the two
points. The cumulative sum is then computed to minimize the value of Q. A minimized Q
value indicates that the curve has been leveled, as shown in Figure 6.
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After data preprocessing and leveling, multiple sets of data are compared to select the
optimal group. For an aspheric surface profile, five sets of data are used. By leveling and
visualizing the data, multiple measurement datasets are plotted on the same coordinate
system for intuitive comparison. From the multiple sets of aspheric surface profile data, the
profile data with the “maximum opening” are selected as the best data for aspheric surface
scanning. As shown in Figure 7.
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Figure 6. (a,b) show the comparison of curves before and after leveling, respectively. In (a), the blue
circle represents the center at the number 80 when not leveled, and the red dotted line indicates
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3.3.2. Fitting Accuracy Evaluation Indicators

Fitting accuracy evaluation indicators are criteria used to determine the quality of
fitting results. The results of four evaluation indicators for fitting three types of surface
profiles over different ranges are shown in Figure 8.

For the AC111116 and AC90754 aspheric lenses, which have relatively small curva-
tures, the values of the goodness −of −fit R2 and adjusted R2 in the fitting results are almost
1, and are particularly close to 1 in the small interval range of [−0.1, 0.1], indicating good
fitting quality. Additionally, in different fitting intervals, the goodness −of −fit metrics SSE
and RMSE are close to 0; however, as the fitting interval increases, both the SSE and RMSE
also increase, indicating a decline in fitting quality. When the fitting interval approaches the
full diameter of the lens, the SSE and RMSE exhibit a clear jump, suggesting that the fitting
performance is poor when the fitting interval is the full diameter of the lens. Experimental
data indicate that for lenses with small curvatures, selecting half the lens’s full diameter as
the fitting interval yields better results.

For the AC91558 aspheric lens, which has a relatively large curvature, the values of
the goodness −of −fit R2 and adjusted R2 are 1 when a larger fitting interval range is
chosen, and close to 1 when a smaller fitting interval is selected, indicating good fitting
quality. Moreover, in the different fitting intervals, the goodness−of −fit metrics SSE and
RMSE are close to 0, but they increase as the fitting interval expands, leading to a decline
in the surface fitting quality, indicating poor fitting performance for the curvature radius.
Therefore, to ensure the reliability of the curvature radius fitting results, it is essential to
select a suitably small fitting interval range.



Optics 2025, 6, 4 11 of 16

Optics 2025, 6, x FOR PEER REVIEW 11 of 16 
 

  
(a) (b) 

 
(c) 

Figure 8. (a–c) represent the results of four evaluation indicators for the AC111116 lens, AC90754 
lens, and AC91558 lens, respectively, under different fitting diameters. 

For the AC111116 and AC90754 aspheric lenses, which have relatively small curva-
tures, the values of the goodness −of −fit R2 and adjusted R2 in the fitting results are almost 
1, and are particularly close to 1 in the small interval range of [−0.1, 0.1], indicating good 
fitting quality. Additionally, in different fitting intervals, the goodness −of −fit metrics SSE 
and RMSE are close to 0; however, as the fitting interval increases, both the SSE and RMSE 
also increase, indicating a decline in fitting quality. When the fitting interval approaches 
the full diameter of the lens, the SSE and RMSE exhibit a clear jump, suggesting that the 
fitting performance is poor when the fitting interval is the full diameter of the lens. Exper-
imental data indicate that for lenses with small curvatures, selecting half the lens’s full 
diameter as the fitting interval yields better results. 

For the AC91558 aspheric lens, which has a relatively large curvature, the values of 
the goodness −of −fit R2 and adjusted R2 are 1 when a larger fitting interval range is chosen, 
and close to 1 when a smaller fitting interval is selected, indicating good fitting quality. 
Moreover, in the different fitting intervals, the goodness−of −fit metrics SSE and RMSE are 
close to 0, but they increase as the fitting interval expands, leading to a decline in the sur-
face fitting quality, indicating poor fitting performance for the curvature radius. There-
fore, to ensure the reliability of the curvature radius fitting results, it is essential to select 
a suitably small fitting interval range. 

3.3.3. Surface Profile Fitting 

Due to the differences in sample surface profiles, some fitting processes cannot be 
completed in one step. This requires adjustments such as changing the fitting interval and 
re-selecting the iterative algorithm. Additionally, some data may need to be re-leveled 
and preprocessed to achieve high−precision curvature fitting. After completing the pre-
processing of measurement results, valid data should be selected, and excess portions of 

Figure 8. (a–c) represent the results of four evaluation indicators for the AC111116 lens, AC90754
lens, and AC91558 lens, respectively, under different fitting diameters.

3.3.3. Surface Profile Fitting

Due to the differences in sample surface profiles, some fitting processes cannot be
completed in one step. This requires adjustments such as changing the fitting interval and
re-selecting the iterative algorithm. Additionally, some data may need to be re-leveled and
preprocessed to achieve high−precision curvature fitting. After completing the prepro-
cessing of measurement results, valid data should be selected, and excess portions of the
surface profile curve should be excluded, such as the stepped areas outside the edges of
the surface profile curve. Appropriate iterative algorithms and result criteria should be
selected for fitting. Different aspheric surface profiles require different fitting intervals, as
the choice of fitting interval will also affect fitting accuracy. The flowchart for aspheric
fitting is shown in Figure 9. The fitting results are shown in Figure 10.

The AC111116 lens has symmetrical front and back surfaces, with the curvature radii
being equal in magnitude, but opposite in sign. Therefore, in this experiment, we fitted its
front surface and obtained the curvature for different fitting intervals. During the aspheric
fitting process, the overall fitted curvature radius values maintained measurement repeata-
bility within an acceptable error range. To improve the accuracy of the measurement results,
it is crucial to choose the optimal fitting interval that minimizes errors. For surfaces with
relatively small curvature, we observed from the fitting data that under the small interval
of [−0.1, 0.1], the maximum fitting error reached 0.057977 mm, resulting in significant
error impact. When using a larger fitting interval, since the aspheric diameter is 4.2 mm, if
the fitting interval is set to [−2.1 mm, 2.1 mm], which corresponds to the aspheric fitting
diameter of 4.2 mm, the error is not at its maximum. However, the evaluation metrics
SSE and RMSE are relatively large, indicating decreased fitting quality. Thus, for aspheric
lenses with smaller curvature, using a fitting interval that is slightly less than 50% of the
aspheric diameter yields a fitting error of 0.013912 mm. At this point, the fitting quality is
also considerable, reducing the fitting error by about three times compared to the smaller
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diameter case, and the error caused by substituting into the Zemax numerical model will
also be minimized.
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For the AC90754 lens, the ∆R is small during small interval fittings. However, as
can be seen from Figure 9, the fitting quality for R2 and adjusted R2 is poor, so this is
not considered a reference fitting interval. In the larger fitting range of [−0.8, 0.8], the
maximum fitting error reaches 0.02169 mm. In contrast, when fitting using a 50% full
diameter interval, the resulting error is small, and the fitting quality is good.

The AC91558 lens has a greater curvature profile. When choosing a large fitting
interval, the fitting errors for the curvature radius are relatively large, with the maximum
fitting error reaching −1.11504 mm. However, using a smaller fitting interval results in
smaller errors, with the minimum error being 0.014653 mm in the fitting interval of [−1.1,
1.1], and the fitting quality is also good. Therefore, for aspheric lenses with a smooth central
region and larger curvature, selecting a small diameter fitting interval improves fitting
accuracy, yielding more accurate curvature radius.

3.4. Refractive Index Recovery Verification

For the process of reconstructing the refractive index model, the focal length of the
aspheric lens and the curvature radius of its aspheric surface profile have been obtained
through the previous analysis. The central thickness parameter of the unknown lens is
acquired through CT scanning, and the measurement accuracy of the thickness achieved by
CT scanning can reach the millimeter level, rendering the error induced in the recovered
refractive index negligible.

The accuracy of refractive index recovery is determined by the measurement accuracy
of the focal length and the fitting accuracy of the curvature radius. The fitting results are
shown in Figure 11. Therefore, the precision of refractive index recovery needs to utilize
the focal length measurement data and the surface fitting results to reconstruct the model
of the aspheric lens through Zemax. The fitting results are shown in Figure 12. Finally, the
recovered refractive index is compared with the actual refractive index.
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For plano-convex (or plano-concave) lenses, since the curvature of one side is infinite,
Equation (6) can be simplified to Equation (8):

1
f
= (n − 1)/R (8)

The focal length and refractive index are the core influencing factors in the process
of numerically simulating the recovery of the refractive index. To investigate the errors in
the recovered refractive index caused by measurement errors in the focal length and fitting
errors in the curvature radius, we can derive the partial derivatives of both the curvature
radius and focal length using the thick lens formula in Equation (8). The partial differential
equations are given in Equations (9) and (10):

∂n
∂R

=
1
f

(9)

∂n
∂ f

=
n − 1

f
(10)

The refractive index range of commonly used optical plastics for lens manufacturing
is between 1.492 and 1.681, while the refractive index of glass materials for lenses is also
less than 2. From this, we can derive that ∂n

∂R = 1
f > ∂n

∂ f = n−1
f , indicating that the accuracy

of the curvature radius fitting has the greatest impact on the refractive index. For biconvex
or biconcave samples, both surfaces have curvature, so the effect of the curvature radius on
the refractive index is even more significant. The measurement accuracy of the focal length
is 1.06%, thus the impact of the focal length on the refractive index recovery error can be
considered negligible. The results are presented in Table 1.

Table 1. Fitting errors of radius of curvature and errors in recovered refractive index.

Sample
True Radius
of Curvature

(mm)

Fitted Radius
of Curvature

(mm)

Fitting Error
of Radius of
Curvature

(mm)

True
Refractive

Index

Recovered
Refractive

Index

Recovery
Accuracy of
Refractive

Index

AC111116
3.2007 3.1868 0.0139

1.8058 1.8024 0.188%−3.2007 −3.1868 −0.0139

AC90754
2.8386 2.8225 0.0161

1.58642 1.58643 6.303 × 10−4%PLANO - -

AC91558
10.6677 10.6530 0.0147

1.5864 1.5856 0.0504%PLANO - -

From the data in the tables, it can be seen that when an appropriate fitting interval
is selected, the fitting error of the radius of curvature is small, and the recovery error of
the refractive index is also small. The recovery error for the AC111116 lens is 0.0034, the
refractive index recovery error for the AC90754 lens is 1 × 10−5, and the refractive index
recovery error for the AC91558 lens is 0.0008. However, in the actual fitting process, for
different surface shapes, selecting an appropriate fitting interval allows for obtaining a
radius of curvature with a smaller fitting error. Furthermore, when measuring aspheric
surface data, the accuracy improves with higher leveling precision, which in turn enhances
the recovery precision of the refractive index.
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4. Conclusions
In the forward design process of aspheric lenses, specific focal lengths can be obtained

by designing the radius of curvature and the refractive index of the materials. This paper
presents a method for reverse numerical simulation of material refractive index recovery,
given the focal length and the radius of curvature of the aspheric lens surface, which can
guide existing parameter design issues during the actual manufacturing process. The
recovery precision varies for different surface shapes, with the fitting precision of the radius
of curvature reaching a maximum of 0.138%, and the accuracy of refractive index recovery
reaching a maximum of 6.303 × 10−4%. Additionally, by measuring the focal lengths
at three wavelengths, the Abbe number of the lens can be derived using the dispersion
formula, which can further lead to identifying the specific material of unknown samples.
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