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Abstract: This study reports on the use of supercritical CO2 (scCO2) for the metallization of ultrahigh-
molecular-weight polyethylene (UHMW-PE) filaments, which are used as functional components in
weavable devices. UHMW-PE is well known for its chemical and impact resistance, making it suitable
for use in bulletproof clothing and shields. However, its chemical resistance poses a challenge for
metallization. By utilizing scCO2 as the solvent in the catalyzation process, a uniform and defect-free
layer of Ni-P is successfully deposited on the UHMW-PE filaments. The deposition rate of Ni-P
is enhanced at higher temperatures during the scCO2 catalyzation. Importantly, the durability of
the Ni-P-metalized UHMW-PE filaments is improved when the scCO2 catalyzation is carried out at
120 ◦C, as evidenced by minimal changes in electrical resistivity after a rolling test.

Keywords: UHMW-PE; supercritical carbon dioxide; catalyzation temperature; Ni-P; metallization;
electroless plating

1. Introduction

In the recent years, there has been a rapid commercialization and practical use of
wearable devices [1–3]. Wearable devices are worn on the body, such as on the arm, head,
or clothing, and facilitate the measurement and transmission of vital signs. One promising
area in wearable device technology is the interactive wearable device system [4], where
textiles are endowed with chemical and physical sensing functions and the ability to elicit
physical responses. To further enhance and expand the functionality of such wearable
device systems, two or more types of filaments with different functions can be woven
together to create a multifunctional wearable device, also known as a weavable device [5,6].
Functional filaments with good electrical conductivity are essential for weavable devices,
which can be achieved through the metallization of polymer filaments. The integration of
polymers and metals can be accomplished through various methods such as electroless
plating [7–9], vacuum thermal evaporation [10,11], magnetron sputtering deposition [12],
and chemical fluid deposition [13,14]. Electroless plating is preferred over evaporation
techniques due to its low cost, relatively high deposition rate, and accessibility, as it does
not require a vacuum environment like evaporation techniques.

Ensuring both sufficient electrical conductivity and stability in these metalized poly-
mers for practical device application remains challenging because of the difference in
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mechanical properties between the metal and polymer, and the difference often leads to
insufficient adhesion between the two materials and defective results. Surface modification,
such as plasma [10] and laser [15] treatments, of the polymer substrate is a solution to
promote the adhesion before the metallization process. Recently, a metallization process
by performing the catalyzation step of electroless plating in supercritical carbon dioxide
(scCO2) was reported to realize metallized polymer textiles possessing applicable electrical
conductivity and adhesion properties between the metal and polymer toward functional
components in flexible electronic devices. ScCO2 is non-polar, and it has low viscosity, high
self-diffusivity, and zero surface tension [16]. By these properties, scCO2 has high affinity
toward non-polar substances, such as polymers.

Generally, the process of electroless plating consists of three steps: a pretreatment
step to clean and roughen the surface of the polymer substrate, a catalyzation step to
decorate catalyst seeds on the polymer surface, and a metal deposition step to deposit
metals on the polymer substrate. By utilizing scCO2 as the solvent in the catalyzation
step, the catalyst seeds can be inserted into the polymer structure [8,12]. Subsequently, the
reduction and deposition of metals would be initiated from the catalyst seed inside the
polymer structure. This results in metal structures extending into the polymer structure,
leading to improved interactions between the polymer substrate and the metal coating. As
a result of this improved interaction, the stability of the metallized polymer substrate is
significantly enhanced while ensuring a decent electrical conductivity by the metal coating
on the polymer substrate. The use of the scCO2 catalyzation has been demonstrated in the
metallization of nylon 6,6 textile, silk textile, and PET textile. The metal coatings deposited
on these polymers are compact and smooth with high adhesion strength. Following the
scCO2-assisted electroless plating, the metallized polymer can be functionalized with a
more electrically conductive metal, such as gold, or photocatalytic materials to realize
flexible photocatalytic materials.

Ultrahigh-molecular-weight polyethylene (UHMW-PE) is a polymer that has gath-
ered significant research interest for weavable devices due to its excellent chemical and
mechanical properties, including low mass density, chemical resistance, abrasion resis-
tance, high thermal conductivity, and impact resistance [17–19]. UHMW-PE filaments are
commonly used in bulletproof vests, bedclothes, and protective gloves. The functional-
ization of UHMW-PE filaments with conductivity has potential applications in various
fields, including medical sensors, smart textiles, and protective clothing [20]. However, the
surface inactivity of UHMW-PE makes it challenging to metallize. Previous reports on the
metallization of UHMW-PE have required a surface modification step, such as the use of
dopamine [21] and electron beam continuous radiation-induced graft polymerization [22],
before the catalyzation step to enable the deposition of metals on the UHMW-PE. Moreover,
UHMW-PE filaments are known for their exceptional mechanical properties, making them
highly suitable for demanding applications. According to Candadai et al. [17], UHMW-PE
fibers exhibit remarkable tensile strength, abrasion resistance, and impact resistance, which
are essential for weavable device application. Gao et al. further demonstrated that UHMW-
PE fibers maintain high tensile strength and durability, reinforcing their suitability for
integration into weavable technology [23]. These studies confirm that UHMW-PE filaments
possess the mechanical robustness required for use in weavable devices, ensuring both
durability and performance. The successful metallization of UHMW-PE filaments could
lead to significant advancements in wearable technology, providing durable, conductive
materials for a range of applications from healthcare monitoring devices to advanced
military gear.

In this study, the Ni-P metallization of UHMW-PE filaments is achieved using scCO2
catalyzation. Ni-P is chosen as the base material to allow for further functionalization of
the UHMW-PE filaments. For instance, Ni-P can be used as the sacrificial material for
deposition of a more electrically conductive and biocompatible gold layer]. Palladium(II)
hexafluoroacetylacetonate is utilized as the palladium source due to its high solubility in
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scCO2 [24–27]. The durability of the Ni-P/UHMW-PE is evaluated through a rolling test,
and the electrical resistivity of the Ni-P/UHMW-PE is measured to quantify its durability.

2. Materials and Methods
2.1. ScCO2-Assisted Ni-P Metallization of UHMW-PE Filament

The UHMW-PE filaments (IZANAS®) were procured from TOYOBO MC Co., Ltd.
(Osaka, Japan). A custom-designed jig (refer to Figure 1) was utilized to support the
filaments during the scCO2 catalyzation to prevent entanglement. The jig was manufac-
tured by the Design and Manufacturing Division, Open Facility Center, Tokyo Institute of
Technology. The jig ensured that the UHMW-PE filaments were securely held in place, pre-
venting them from tangling or contacting each other during the catalyzation process, which
facilitated a uniform distribution of the catalyst on the filament surfaces. Palladium(II)
hexafluoroacetylacetonate (Pd(hfa)2; ≤100%) and ε-caprolactam (99%) were obtained from
Sigma-Aldrich (Burlington, MA, USA). CO2 (99.99%) was sourced from Taiyo Nippon
Sanso Gas & Welding Corporation (Tokyo, Japan). The Ni-P deposition solution was sup-
plied by Okuno Chemical Industries Co. (Osaka, Japan) and comprised nickel chloride
(9 wt%), sodium hypophosphite (12 wt%), complexing agent (12 wt%), and ion-exchange
water (67 wt%). The high-pressure CO2 apparatus for the scCO2 catalyzation was acquired
from Japan Spectra Company (Tokyo, Japan), with a reaction cell volume of 50 mL.
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Figure 1. PEEK jig with the UHMW-PE filaments.

The UHMW-PE filaments were first sonicated in ethanol for 5 min and then dried in a
box oven at 50 ◦C for 10 min prior to the scCO2 catalyzation step. During the catalyzation
step, the filaments, along with the jig, 50 mg of Pd(hfa)2, 30 mg of ε-caprolactam, and
a stir bar, were enclosed in the reaction cell. The stir bar was used to ensure a uniform
distribution of the catalyst and ε-caprolactam, promoting an even distribution on the
UHMW-PE filament surfaces for improved catalyzation efficiency and consistent metal
deposition. The catalyzation was carried out for 2.0 h at a pressure of 15.0 MPa, using three
different catalyzation temperatures, 80 ◦C, 100 ◦C, and 120 ◦C, taking into consideration
the melting point of UHMW-PE, which is 136 ◦C. The Ni-P deposition was performed at
atmospheric pressure and at a deposition temperature of 70 ◦C using the Ni-P electroless
plating solution. The deposition time varied between 1 h, 2 h, and 3 h. No post-treatment
was conducted after the Ni-P deposition.

Nonetheless, the scCO2 catalyzation involves high-pressure conditions (15.0 MPa) and
elevated temperatures (up to 120 ◦C), which could pose challenges related to equipment
durability and safety. Additionally, the inherent chemical resistance and high melting
point of UHMW-PE (136 ◦C) make the metallization process more complex. These factors
must be carefully managed to ensure successful and consistent results. Furthermore,
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the surface inactivity of UHMW-PE necessitates effective surface pretreatment to enable
successful metallization.

2.2. Analyses of Surface and Physical Properties

The surface morphology of the catalyzed UHMW-PE and Ni-P/UHMW-PE was
characterized using an optical microscope (OM, VHV-8000, KEYENCE, Osaka, Japan)
and a scanning electron microscope (SEM, JSM-7500, JEOL, Tokyo, Japan). For observation
of the cross-section, Ni-P/UHMW-PE filaments were mounted in epoxy and examined
using the SEM. The constituent elements of the sample surface were identified using energy-
dispersive X-ray spectroscopy (EDS; EMAX Evolution, HORIBA, Kyoto, Japan) equipped
in the SEM. The crystal structures were identified using an X-ray diffractometer (XRD;
Ultima IV, Rigaku, Tokyo, Japan).

The electrical resistivity was evaluated using a digital multimeter (CDM-27, CUSTOM,
Tokyo, Japan) at room temperature. The two test probes of the digital multimeter were
placed on the Ni-P/UHMW-PE filaments 10 mm apart to measure the electrical resistivity.
Each specimen was measured five times. For the rolling test, the Ni-P metallized filaments
were rolled around a cylinder with a 6 mm diameter, and the electrical resistivity was
evaluated after unrolling the filaments.

3. Results and Discussion

The as-received UHMW-PE filaments were colorless and transparent, as depicted in
Figure 2a. Following the scCO2 catalyzation at 80 ◦C, the filaments exhibited an orange
color, as shown in Figure 2b. The color of the as-received Pd(hfa)2 lies between yellow and
dark orange. Therefore, it is suggested that the observed orange color in the scCO2 catalyzed
filaments originated from the Pd(hfa)2. As the catalyzation temperature increased to 100 ◦C
and 120 ◦C, the color of the filaments gradually darkened, as shown in Figure 2c,d. It is
reported that the thermal degradation of Pd(hfa)2 to metallic Pd occurs in the temperature
range of 90 ◦C to 150 ◦C at ambient pressure [27]. Small-sized metallic particles, such as
small-sized Pd, appear black in color. Hence, the observed color change in the filaments
catalyzed at higher temperatures is suggested to be due to the formation of metallic Pd
from the Pd(hfa)2. After the Ni-P deposition, all catalyzed UHMW-PE filaments exhibited a
metallic luster, indicating successful Ni-P metallization of the scCO2-catalyzed UHMW-PE
filaments, as illustrated in Figure 2e–g.

SEM images of the UHMW-PE filaments catalyzed at different temperatures are de-
picted in Figure 3. In Figure 3a,b, agglomerations were observed on the surfaces of the
filaments catalyzed at 80 ◦C. Considering the orange color observed in the scCO2-catalyzed
filaments, it is suggested that the agglomeration is Pd(hfa)2. In Figure 3c,d, as the catalyza-
tion temperature increased to 100 ◦C, the sizes of the agglomerations became smaller and
more uniform. The filaments treated at 120 ◦C showed little or no agglomeration, as shown
in Figure 3e,f.

Table 1 presents the results of the EDS analysis conducted on the filament surface
following the scCO2 catalyzation. The fluorine content was utilized as an indicator of
the presence of Pd(hfa)2 on the catalyzed filament surfaces, with EDS analysis performed
at 10 different locations. The mean and standard deviation of the fluorine content were
calculated. An observed decrease in the fluorine content was noted as the catalyzation
temperature increased. At a catalyzation temperature of 120 ◦C, the fluorine content reached
0%, indicating a reduction in the amount of Pd(hfa)2 on the filament surface. To further
investigate the relationship between Pd(hfa)2 reduction and catalyzation temperature,
residue from the reaction cell after the scCO2 catalyzation was analyzed using XRD. In
Figure 4a,b, the (111) plane of the face-centered cubic (FCC) structure was observed in the
residue treated at 100 ◦C, indicating the presence of Pd(111). The X-ray diffraction (XRD)
results confirmed the formation of metallic Pd after catalyzation at 100 ◦C, supported by
reference JCPDS Card No. 46-1043.
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Figure 3. SEM images of the UHMW-PE filaments catalyzed at (a,b) 80 ◦C, (c,d) 100 ◦C, and
(e,f) 120 ◦C.

Table 1. Fluorine content on surfaces of the UHMW-PE filaments after scCO2 catalyzation.

Catalyzation Temperature 80 ◦C 100 ◦C 120 ◦C

Fluorine content 4.95 wt.% 1.29 wt.% 0 wt.%
Standard deviation 4.69 wt.% 2.30 wt.% 0 wt.%

The scCO2 catalyzation method is potentially scalable and cost-effective for industrial
applications [28,29]. The use of non-toxic CO2 and the elimination of hazardous chemicals
enhance the safety and environmental friendliness of the process. The equipment and mate-
rials, including the high-pressure CO2 apparatus and palladium catalyst, are commercially
available and can be scaled up, making this method suitable for the large-scale production
of metallized UHMW-PE filaments.
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Figure 4. XRD patterns of the residue after scCO2 catalyzation at (a) 80 ◦C and (b) 100 ◦C.

The SEM images in Figure 5 display the Ni-P-metallized UHMW-PE filaments cat-
alyzed at varying temperatures. It is evident that all metallized filaments exhibit uniform
surface conditions, regardless of the catalyzation temperature. No charging effect or defects
were observed in any of the samples, indicating complete Ni-P metallization of the UHMW-
PE filaments treated by scCO2 catalyzation. Furthermore, the EDS analysis (Figure 6)
confirmed that the entire surfaces were covered with a layer of Ni-P, with a Ni content and
P content of 94.8 wt% and 5.2 wt%, respectively.
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Figure 6. (a) SEM image and EDS mappings, and (b) Ni content and (c) P content on surfaces of the
UHMW-PE filaments catalyzed at 80 ◦C with 1 h of the Ni-P deposition.

The enhancement in Ni-P deposition rate and durability at higher catalyzation tem-
peratures can be attributed to the more efficient reduction of Pd(hfa)2 to metallic Pd, which
serves as the catalyst for the Ni-P deposition. Higher temperatures facilitate the formation
of well-dispersed Pd catalyst seeds, improving the uniformity and adhesion of the Ni-P
coating. This results in a thicker, more consistent metal layer, thereby reducing electrical
resistivity and increasing durability. The improved interactions between the metal coating
and the polymer substrate at higher temperatures also contribute to the enhanced perfor-
mance. The electrical resistivity values of Ni-P-metallized UHMW-PE are presented in
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Figure 7. Two main effects can be observed from Figure 7a: the effects of catalyzation tem-
perature and Ni-P deposition time. Firstly, a significant decrease in the electrical resistivity
is observed with an increase in the catalyzation temperature, accompanied by a decrease in
standard deviation of the electrical resistivity. The formation of Pd catalyst seeds on the
surfaces of UHMW-PE filaments is crucial for initiating the deposition of Ni-P, which is
achieved through the reduction of Pd(hfa)2. This reduction can occur during the scCO2
catalyzation step at high temperatures, or during the Ni-P deposition step using a reducing
agent in the electroless plating solution. The results suggest that lower electrical resistivity
is achieved when a high catalyzation temperature is used, indicating that the formation of
Pd catalyst seeds in the scCO2 catalyzation step is more effective.
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the UHMW-PE with 1 h of deposition time before and after the rolling test.

Regarding the effect of Ni-P deposition time, a decreasing trend in electrical resistivity
is observed with prolonged deposition time. This trend is expected as a lower electrical
resistivity is obtained with more Ni-P deposited on the surfaces. The lowest electrical
resistivity of 48.0 Ω was achieved in the filaments catalyzed at 120 ◦C with 3 h of Ni-P
deposition time.

The durability of Ni-P-metallized UHMW-PE filaments is demonstrated by the elec-
trical resistivity after the rolling test. As shown in Figure 7b, both the electrical resistivity
and the standard deviation increased after the rolling test, indicating deterioration of the
Ni-P coatings due to the test. However, the deterioration was less severe when a higher
catalyzation temperature was used. The electrical resistivity only slightly increased after
the rolling test for the filaments catalyzed at 120 ◦C. These results highlight the advantages
of the scCO2 catalyzation with a high temperature in enhancing interactions between the
metal coating and the polymer substrate.

Compared to other metallization methods, such as vacuum thermal evaporation and
chemical fluid deposition, the scCO2-assisted method provides significant advantages [30,31].
Traditional methods often require hazardous chemicals and complex equipment, whereas
scCO2 catalyzation uses non-toxic CO2 and eliminates the need for a vacuum environment,
making it safer and more environmentally friendly. Additionally, the efficient reduction of
Pd(hfa)2 and the subsequent formation of a uniform Ni-P coating at higher temperatures result
in lower electrical resistivity and greater durability. These benefits underscore the practical
applicability and superior performance of the scCO2-assisted metallization process.

The impact of catalyzation temperature on the Ni-P-metalized filaments was further
examined through cross-sectional SEM images, as illustrated in Figure 8a,b. The thickness
of the Ni-P layer reached 0.34 µm for the filaments catalyzed at 80 ◦C after 1 h of the Ni-P
deposition. Upon increasing the catalyzation temperature to 120 ◦C, the thickness escalated
to 1.44 µm. This outcome confirms that the lower electrical resistivity observed in the metal-
ized filaments catalyzed at higher temperatures is primarily due to a greater deposition of
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Ni-P on the filament surface. Thus, a higher catalyzation temperature effectively enhances
the rate of Ni-P deposition.
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4. Conclusions

In this study, the Ni-P metallization of UHMW-PE filaments was achieved by conduct-
ing the catalyzation step in supercritical CO2 and using palladium hexafluoroacetylaceto-
nate as the source of the Pd catalyst seeds. Both optical microscopy observation and EDS
analysis revealed changes in the surface conditions of the UHMW-PE filaments after the
scCO2 catalyzation step. The filament surfaces exhibited an orange color at a catalyzation
temperature of 80 ◦C, which was attributed to the presence of Pd(hfa)2. A dark color was
observed on the surfaces at a catalyzation temperature of 120 ◦C, believed to be due to the
presence of reduced Pd(hfa)2. The change in the fluorine content on the surfaces and the
XRD results further supported the reduction of Pd(hfa)2 and the formation of metallic Pd
at high catalyzation temperatures.

The Ni-P layer thickness increased from 0.34 µm to 1.44 µm with 1 h of the Ni-P
deposition time when the catalyzation temperature increased from 80 ◦C to 120 ◦C. The
high Ni-P deposition rate resulted in low electrical resistivity in filaments catalyzed at
a high temperature. The high catalyzation temperature also improved the durability, as
evidenced by the electrical resistivity after the rolling test. Also, a longer Ni-P deposition
time caused a decrease in the electrical resistivity. The lowest electrical resistivity of 48.0 Ω
was obtained in the UHMW-PE filaments catalyzed at 120 ◦C with 3 h of Ni-P deposition
time. The improved Ni-P deposition rate and enhanced durability at high catalyzation
temperature demonstrate the advantages of the scCO2 catalyzation in the metallization of
UHMW-PE filaments for the design of weavable devices.

These findings have significant implications for weavable device technology, particu-
larly in enhancing the performance and reliability of weavable devices. Achieving uniform
and durable metal coatings with low electrical resistivity is essential for the development
of advanced wearable electronics and smart textiles. This work significantly contributes to
the field by providing a scalable and environmentally friendly method for the metallization
of UHMW-PE filaments through scCO2 catalyzation.

Future research could explore different metal coatings to further enhance the electrical
and mechanical properties of metallized UHMW-PE filaments and optimize the scCO2
catalyzation process for other polymer substrates. Potential applications based on these
findings include medical sensors, smart textiles, and protective clothing, where durable
and conductive filaments are crucial. The demonstrated effectiveness of scCO2 catalyzation
in achieving durable and conductive coatings marks a significant advancement in the
development of reliable and efficient weavable devices.
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Eskişeh. Osman. Üniversitesi Mühendis. Mimar. Fakültesi Derg. 2019, 27, 130–155. [CrossRef]

21. Hu, W.; Zeng, Z.; Wang, Z.; Liu, C.; Wu, X.; Gu, Q. Facile Fabrication of Conductive Ultrahigh Molecular Weight Polyethylene
Fibers via Mussel-Inspired Deposition. J. Appl. Polym. Sci. 2013, 128, 1030–1035. [CrossRef]

22. Gao, Q.; Hu, J.; Yang, Y.; Wang, M.; Zhang, M.; Tang, Z.; Zhang, M.; Liu, W.; Wu, G. Fabrication of New High-Performance
UHMWPE-Based Conductive Fibers in a Universal Process. Ind. Eng. Chem. Res. 2019, 58, 935–943. [CrossRef]

23. Zhang, K.; Li, W.; Zheng, Y.; Yao, W.; Zhao, C. Compressive Properties and Constitutive Model of Semicrystalline Polyethylene.
Polymers 2021, 13, 2895. [CrossRef]

24. Higashi, H.; Iwai, Y.; Miyazaki, K.; Ogino, Y.; Oki, M.; Arai, Y. Measurement and Correlation of Solubilities for Trifluoromethyl-
benzoic Acid Isomers in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2005, 33, 15–20. [CrossRef]

25. Shimoyama, Y.; Sonoda, M.; Miyazaki, K.; Higashi, H.; Iwai, Y.; Arai, Y. Measurement of Solubilities for Rhodium Complexes and
Phosphine Ligands in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2008, 44, 266–272. [CrossRef]

26. Tenorio, M.J.; Cabañas, A.; Pando, C.; Renuncio, J.A.R. Solubility of Pd(Hfac)2 and Ni(Hfac)2·2H2O in Supercritical Carbon
Dioxide Pure and Modified with Ethanol. J. Supercrit. Fluids 2012, 70, 106–111. [CrossRef]

27. Zhao, X.; Hirogaki, K.; Tabata, I.; Okubayashi, S.; Hori, T. A New Method of Producing Conductive Aramid Fibers Using
Supercritical Carbon Dioxide. Surf. Coat. Technol. 2006, 201, 628–636. [CrossRef]

28. Seifzadeh, D.; Mohsenabadi, H.K.; Rajabalizadeh, Z. Electroless Ni–P Plating on Magnesium Alloy by Innovative, Simple and
Non-Toxic Oxalate Pretreatment and Its Corrosion Protection. RSC Adv. 2016, 6, 97241–97252. [CrossRef]

29. Hernandha, R.F.H.; Rath, P.C.; Umesh, B.; Patra, J.; Huang, C.-Y.; Wu, W.-W.; Dong, Q.-F.; Li, J.; Chang, J.-K. Supercritical
CO2-Assisted SiOx/Carbon Multi-Layer Coating on Si Anode for Lithium-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2104135.
[CrossRef]

30. Bozbag, S.E.; Sanli, D.; Erkey, C. Synthesis of Nanostructured Materials Using Supercritical CO2: Part II. Chemical Transformations.
J. Mater. Sci. 2012, 47, 3469–3492. [CrossRef]

31. Romang, A.H.; Watkins, J.J. Supercritical Fluids for the Fabrication of Semiconductor Devices: Emerging or Missed Opportunities?
Chem. Rev. 2010, 110, 459–478. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.31796/ogummf.537704
https://doi.org/10.1002/app.38228
https://doi.org/10.1021/acs.iecr.8b05059
https://doi.org/10.3390/polym13172895
https://doi.org/10.1016/j.supflu.2004.03.006
https://doi.org/10.1016/j.supflu.2007.09.028
https://doi.org/10.1016/j.supflu.2012.06.014
https://doi.org/10.1016/j.surfcoat.2005.12.021
https://doi.org/10.1039/C6RA19984D
https://doi.org/10.1002/adfm.202104135
https://doi.org/10.1007/s10853-011-6064-9
https://doi.org/10.1021/cr900255w

	Introduction 
	Materials and Methods 
	ScCO2-Assisted Ni-P Metallization of UHMW-PE Filament 
	Analyses of Surface and Physical Properties 

	Results and Discussion 
	Conclusions 
	References

