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Abstract: Electrochemical biosensors are valued for their sensitivity and selectivity in detecting
biological molecules. Having the advantage of generating signals that can be directly or indirectly
proportional to the concentration of the target analyte, these biosensors can achieve specificity by
utilizing a specific biorecognition surface designed to recognize the target molecule. Electrochemical
biosensors have garnered substantial attention, as they can be used to fabricate compact, cost-effective
devices, making them promising candidates for point-of-care testing (POCT) devices. This study
introduces a label-free electrochemical biosensor employing a gold screen-printed electrode (SPE)
to detect lysophosphatidic acid (LPA), a potential early ovarian cancer biomarker. We employed
the gelsolin–actin system, previously introduced by our group, in combination with fluorescence
spectrometry, as a biorecognition element to detect LPA. By immobilizing a gelsolin–actin complex
on an SPE, we were able to quantify changes in current intensity using cyclic voltammetry and
differential pulse voltammetry, which was directly proportional to the LPA concentration in the
solution. Our results demonstrate the high sensitivity of the developed biosensor for detecting LPA in
goat serum, with a limit of detection (LOD) and a limit of quantification (LOQ) of 0.9 µM and 2.76 µM,
respectively, highlighting its potential as a promising tool for early-stage diagnosis of ovarian cancer.

Keywords: electrochemical biosensor; screen-printed electrode; label-free detection; lysophosphatidic
acid; ovarian cancer

1. Introduction

Ovarian cancer is the most lethal gynecological cancer, with a 5 year survival rate of
50%. In 2020, ovarian cancer was one of the five leading causes of death from all cancers
in females aged 40–79 years [1]. Ovarian cancer has been named a “silent killer” due to
the lack of effective diagnostic methods available at the early stages when the disease is
treatable. If diagnosed in the first stage (localized), the 5 year survival rate can be as high as
92.4%, while in the regional and distant stages, it drops to 72.9 and 31.5%, respectively [1,2].
Cancer antigen 125 (CA125) is the only clinically approved biomarker for ovarian cancer
diagnosis; however, it is neither specific nor effective enough for early screening. In its
early stages, CA125 was found to be elevated in only 50% of patients with a confirmed
diagnosis. Moreover, false-positive results were observed in cases such as pregnancy [2].

Lysophosphatidic acid (LPA) is a promising biomarker for ovarian cancer. LPA is a
phospholipid involved in a number of cellular processes including cellular proliferation,
prevention of apoptosis, cell migration, and more [3,4]. In ovarian cancer cases, malignant
ovarian epithelium produces LPA to stimulate growth of cancer cells [5,6]. There has
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been an increasing interest in LPA as a prospective ovarian cancer biomarker. Not only
is it significantly elevated in the first stage of the disease, but it is also more specific and
selective than CA125 [6–8]. Studies have shown LPA elevation in 90% of patients at stage I
of ovarian cancer, as well as the dependency of its concentration on disease progression [3,8].
Notably, several studies found that LPA was not elevated in the cases of breast cancer and
leukemia, suggesting its specificity in regard to ovarian cancer [5,6]. While LPA levels do
not necessarily differ significantly between patients with benign and malignant tumors,
with a few contradicting studies, it holds great potential as an effective biomarker for
detecting the presence of ovarian cancer tumors and predicting the disease stage [3,7].
However, the lack of cost-effective and reliable standard techniques for LPA detection has
prevented mass clinical trials and clinical approval of LPA as an ovarian cancer biomarker.
Traditional analytical techniques like gas chromatography–mass spectrometry have been
employed to quantify LPA levels in serum. However, these methods have not been widely
used for large-scale screening due to their time-consuming nature, high cost, and the need
for specialized technicians [9–11].

Electrochemical biosensors have emerged as powerful tools for detecting biological
molecules, offering advantages in terms of selectivity, sensitivity, and specificity [9,12–18].
Their affordability and ease of use make them appealing in the context of point-of-care
testing (POCT) devices [19]. The main challenge in biosensor technology is the issue
of non-specific adsorption (NSA) when interacting with biological fluids [20,21]. This
issue becomes especially pronounced on gold surfaces. Thiol chemistry, which is used to
create a self-assembled monolayer (SAM) for bio-functionalization, can also contribute
to NSA, as any biomolecules containing thiol groups in biofluids may bind to the gold
electrode, causing false results [22]. To address the issue of NSA, we incorporated a
newly synthesized linker, 3-dithiothreitol propanoic acid (DTTCOOH), which our research
team recently introduced, demonstrating its promising antifouling properties using quartz
crystal microbalance (QCM) [22]. The formation of the SAM of this linker establishes
a “water barrier”, as the dithiol structure enhances the hydration network within the
SAM [23]. In this study, we examined the antifouling properties of DTTCOOH in developing
electrochemical biosensors. We employed the gelsolin–actin system, which was introduced
by our group, as the biorecognition element for detecting LPA [24]. This system was used
to develop a method based on fluorescence spectroscopy capable of detecting LPA with a
limit of detection (LOD) of 5 µM [24,25]. We also used this system to develop an affinity-
based electrochemical biosensor for LPA detection, achieving an LOD of 0.7 µM [26]. The
biosensor fabrication involved the use of medical-grade stainless steel as the working
electrode, an unconventional yet effective material choice, coupled with silane-based
interfacial chemistry [26].

In this study, we introduced a cost-effective strategy for immobilizing the gelsolin–
actin system through thiol-based interfacial chemistry using screen-printed electrodes (SPE).
The synthesis of the thiol-based linkers is simpler, and does not require specific precautions
compared to silane-based linkers. Silane-based linkers are sensitive to oxygen and water;
therefore, they require a glovebox to synthesize them. Using thiol-based chemistry has the
advantages of providing a more robust synthesis method, thereby reducing the cost and
time for developing the biosensor.

2. Materials and Methods
2.1. Materials and Reagents

All materials were purchased from Sigma-Aldrich, unless otherwise specified. Gelsolin
plasmids were provided by Professor Robert Robinson of the University of Singapore, and
the first three domains of gelsolin (gelsolin) were synthesized from plasmids, as reported
by Franier, D.L. et al. [24]. Actin from rabbit muscle was purchased from Alfa Aesar by
Thermo Fisher Scientific, United States. All the aqueous solutions were prepared using
Milli-Q water.
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2.2. Synthesis of the Linker

DTTCOOH was synthesized (Figure 1) by optimizing the procedure that was reported
by Spagnolo et al. [22]. To provide a mild chemical reaction instead of applying a tempera-
ture of 58–60 ◦C, the reaction was performed at room temperature for 96 h.
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An oven-dried flask was used to concentrate N-benzyltrimethylammonium hydroxide
(40% w/w in methanol, 600 µL, 3 mmol) under vacuum. After cooling to room tempera-
ture, a solution of ox–DTT (200 mg, 1.3 mmol) in acetonitrile (60 mL) was added to the
flask. The reaction mixture was stirred at room temperature for 15–30 min. Then, tert-
butyl acrylate (287 µL, 1.9 mmol) was added to the solution and stirred for 96 h at room
temperature under an inert atmosphere, and then was monitored with TLC (3:1 and 1:1
v/v hexane/ethyl acetate). TLC plates were run with various ratios of hexane and ethyl
acetate to choose the right conditions for subsequent flash chromatography analysis. It was
determined that the 3:1 v/v hexane/ethyl acetate was the optimal condition. Flash chro-
matography was performed using high-grade silica gel (60 Å pore size, 200–400 mesh) and
yielding 63.5% tert-butyl 3(DTT)propanoate (TBu–Ox–DTT) (127 mg, 453 µM). TBu–Ox–
DTT (127 mg, 453 µmol) was then mixed with trifluoroacetic acid (316.4 µL) and dissolved
dichloromethane (9 mL). The solution was then stirred for 60–90 min at room temperature.
The product was obtained by evaporating trifluoroacetic acid under reduced pressure
yielding 51% 3–(DTT) propanoic acid (Ox–DTTCOOH) (65 mg, 289.8 µmol).

Ox–DTTCOOH (32.5 mg, 144.9 µmol) was dissolved in a solution of 1% trifluoroacetic
acid in acetonitrile (12 mL) and mixed with zinc powder. The solution was stirred at
room temperature for 2 h, then centrifuged at 7500 RPM for 10 min. The supernatant was
concentrated under reduced pressure, yielding 81.8% 3–(DTT) propanoic acid (DTTCOOH)
(26.6 mg, 111.75 µmol). 13C NMR (Figure S1) and 1H NMR spectra were obtained to confirm
the structure of the final product.

2.3. Electrochemical Measurements

All electrochemical experiments were conducted using a CHI440A electrochemical
workstation (CH Instruments, Austin, TX, USA) and disposable screen-printed gold elec-
trodes (SPEs). The SPEs (220 AT), which employed gold nanotube inks and underwent
high-temperature curing, were purchased from DropSense Metrohm, Llanera (Asturias),
Spain. The electrode consisted of a gold working electrode (4 mm diameter), a gold
auxiliary electrode, and a silver reference electrode. The electrochemical measurements
were performed by immersing the electrodes in 10 mL aqueous solutions of 10 mM
K4[Fe(CN)6]/K3[Fe(CN)6] as redox probes containing 0.5 M KCl as a supporting elec-
trolyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed
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to monitor the current response as a function of applied potential. CV measurements
were started at the open circuit potential (OCP) with positive initial scan polarity and a
5 s quiet time. A scan rate of 0.3 V/s was applied, unless otherwise mentioned. The DPV
measurements were performed with the increment potential of 0.004 V, amplitude of 0.05 V,
pulse width of 0.05 s, and pulse period 0.5 s. DPV measurements started with negative or
positive initial scan polarity and 2 s quiet time with sensitivity of 5 × 10−4 A/V.

2.4. Surface Modification of Screen-Printed Electrodes

SPE modification was conducted by directly applying 10 µL of various reagents onto
the working electrode surface through an incubation process. Two different linkers, 11-
mercaptoundecanoic acid (MUA) and 3-dithiothreitol propanoic acid (DTTCOOH), were
used to immobilize the gelsolin–actin system on the SPE. The SPEs were modified by either
a 2 mM MUA aqueous solution containing 30% ethanol or a 3 mM DTTCOOH aqueous
solution containing 13% EtOH and 7 mM KOH. The SPEs were then allowed to incubate
overnight to form a SAM composed either of MUA or DTTCOOH, which functioned as
linkers. Then, electrodes were modified with an aqueous solution of N-hydroxysuccinimide
(NHS) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) (NHS/EDC: 20 mM
NHS and 50 mM EDC) for 35 min. Following this, electrodes were incubated in Nα,Nα-bis
(carboxymethyl)-L-lysine and NiCl2 (Ni-NTA) (2 mg/mL) in phosphate-buffered saline
buffer (PBS pH 7.4) overnight. Then, the modified SPEs were introduced to the gelsolin–
actin complex (0.01 mg/mL in PBS pH 7.4) for 1 h. Prior to this, the gelsolin–actin complex
was prepared by preincubating actin and gelsolin in a fridge for 1 hr. We use a polyhistidine-
tagged gelsolin that effectively binds to Ni-NTA via the imidazole rings of histidine residues.
This binding occurs due to the additional free coordination sites on the Ni2+ in Ni-NTA,
which are occupied by the imidazole ring of histidine acting as a ligand.

After this, the modified SPEs were exposed to LPA solution with concentration be-
tween 0.01 and 10 µM LPA in either PBS or goat serum. To remove all the unbounded and
loosely bound molecules from the surface after each step of the modification, SPEs were
first rinsed thoroughly with the compatible solvent. Then, they were rinsed with copious
amounts of Milli-Q water to remove any residual solvent. Finally, they were dried under
a nitrogen stream to ensure that they were completely dry before being used for further
modification or analysis.

2.5. Surface Characterization

Each step of SPE modification was monitored by performing CV and DPV using
10 mM K4[Fe(CN)6]/K3[Fe(CN)6] as an external redox probe containing 0.5 M KCl as
a supporting electrolyte. Successfully modified electrodes were then used to measure
LPA in either buffer or goat serum. In addition to electrochemical measurements, contact
angle goniometry was used for surface characterization. The contact angle goniometry
experiments were conducted to assess the hydrophobicity of the electrode surface following
each modification step. A KSV CAM 101 contact angle goniometer (KSV Instruments Ltd.,
Helsinki, Finland) was employed, with deionized water as the testing liquid in standard
atmospheric conditions. To prevent water evaporation, the angle between the droplet and
the electrode was measured immediately.

3. Results and Discussion

To fabricate the electrochemical biosensor, we used DTTCOOH, which was recently in-
troduced by our group and showed promising antifouling properties [23]. This novel thiol
linker is a derivative of DTT, with a modification that replaces one hydroxyl group with
propanoic acid. This alteration enables the immobilization of probes through NHS/EDC
reactions. The formation of SAM facilitates the creation of a “water barrier”, as the dithiol
structure enhances the hydration network by providing distance between the propanoic
acid chains within the SAM. As a result, the surface area available for interfacial water
molecules increases. The antifouling properties of DTTCOOH against untreated human
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serum were validated using the quartz crystal microbalance (QCM) [22]. In this study, we
compared the effectiveness of this new linker with the MUA, a linear thiol molecule, for de-
veloping a label-free electrochemical biosensor using gold SPEs. We showed that this linker
provides a comparable antifouling property compared to the silane-based linker that we
recently used to develop an affinity-based electrochemical biosensor for LPA detection [26].
The simplicity of synthesis and reduced requirements for thiol-based linkers compared
to silane-based linkers led to improvements in cost and time for biosensor development.
By taking an advantage of the affinity-based gelsolin–actin system, we engineered a label-
free electrochemical biosensor for precise LPA detection [23,25]. Unlike the fluorescence
methods that were reported before [24], this biosensor exhibits higher sensitivity and does
not require complex instrumentation. SPEs offer a unique set of features that make them
suitable for biosensor applications, including their affordability, user-friendliness, and
minimal sample volume requirements. Moreover, using SPE offers a miniaturized solution,
suitable for the fabrication of compact POCT devices [9,19,26]. These features position SPE
as an ideal candidate for mass production and commercialization [12–15,27].

3.1. Characterization of Biorecognition Surface

The key to constructing electrochemical biosensors lies in developing an effective
biorecognition surface. Figure 2 illustrates the layers of the surface modification to create an
effective biorecognition surface on the SPEs for LPA detection. To characterize the surface
at each stage of SPEs modification, we employed CV and DPV. Figure S2 illustrates the scan
rate study of the unmodified gold SPE which employed [Fe(CN)6]3−/4− as the redox probe.
Although the CN− may react with gold, forming Au(CN)2

− and causing some drift from
an ideal reversible redox reaction, this study indicates that the redox process is diffusion
controlled, confirming that the electrode’s surface is not involved in electron transfer.
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3.1.1. Study of the Effect of pH

Since the acidity of solution can significantly impact the molecular–surface interaction,
we studied the effect of pH on immobilization of DTTCOOH on the SPE surface. Figure 3
shows the changes in current after incubation of SPEs in DTTCOOH at pH 4, 7, and 10.
Carboxyl and thiol groups in DTTCOOH have pKa values of 4.8 and 8.6, respectively.
Therefore, at pH 10, both are deprotonated, forming carboxylate (COO−) and thiolate (S−)
ions, respectively. At pH 7, the carboxyl group is fully deprotonated, while the thiol group
may partially exist in its deprotonated form due to its higher pKa value. At pH 4, both
groups are fully protonated. The stronger binding affinity of thiolate ions (-S−) to the gold
surface, in comparison to that of protonated thiols (-SH), explains the minimal changes
in current observed after an overnight incubation at pH 4, indicating ineffective binding
under acidic conditions due to protonation of the thiol group. Consequently, the greater
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changes in current at pH 10 and, to a slightly lesser extent, at pH 7 can be attributed to
the deprotonation of the thiol group under these conditions, resulting in a more robust
covalent bond between the linker and the gold surface. The fact that deprotonated thiolate
ions form stronger and more stable bonds with the gold surface justify the preference for
pH 7, which is closer to physiological levels and exhibits a lower standard deviation (1.98%)
compared to pH 10 (3.60%), which indicates a more consistent interaction between the
linker and the surface. Therefore, we chose pH 7 for subsequent experiments. These results
align with those reported previously by Xue, Y. et al. [28].
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4 mM DTTCOOH at pH 10, 7, and 4 using DPV. Error bars represent the standard deviation of three
replicates.

3.1.2. Development of the Biorecognition Surface

The SPEs were initially modified with either MUA or DTTCOOH to create a SAM, acting
as the linker to immobilize NHS/EDC, followed by subsequent modifications with Ni-NTA,
and gelsolin–actin complex. The NHS/EDC are commonly used as cross-linking agents in
surface modification. EDC is a crosslinker that activates the terminal carboxyl groups of the
thiol linker to form reactive O-acylisourea intermediates. This intermediate is susceptive
to nucleophilic attack by NHS, and forms a stable amide bond with the original carboxyl
groups. The EDC by-product is a soluble urea derivative that can be easily removed from
the surface. The resulting semi-stable NHS ester facilities the immobilization of Ni-NTA on
the surface. Figure 4C shows the changes in current after modification with MUA, which is
a linear thiol-based linker. In contrast, the incubation with DTTCOOH (Figures 4 and S4)
displays a more reproducible surface modification. Our previous study, employing a quartz
crystal microbalance, demonstrated that DTTCOOH provides superior surface coverage and
antifouling properties compared to MUA, possibly due to the additional thiol group [23].
This structure could potentially prevent surface crowding when subsequent modifications
are introduced with larger molecules of gelsolin and actin.

The decrease in the current after linker modification provided substantial evidence
for the successful immobilization of the linker on the gold surface. Furthermore, using
a Randles–Sevcik equation (assuming all parameters in the equation except current and
surface area remain the same after modification) and the average oxidation peaks from
Figure 4A,C, we were able to estimate the surface coverage of DTTCOOH and MUA to
be 18.06% and 8.16%, respectively. As such, DTTCOOH has a better estimated surface
coverage by more than 10%, supporting the previous statement. Further modification with
Ni-NTA resulted in a slight decrease in the current, which is believed to be associated with
Ni-NTA’s potential participation in the redox process, and was previously observed on
the stainless steel electrode [25]. This hypothesis was confirmed though a CV scan rate
investigation (Figure S3), which showed a linear correlation between the current and both
the scan rate and the square root of the scan rate at scan rates above 0.2 V/s. This suggests
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that both diffusion and adsorption (see Figure S3B) are involved in the electron transfer
process.

Electrochem 2024, 5, FOR PEER REVIEW 7 
 

additional thiol group [23]. This structure could potentially prevent surface crowding 

when subsequent modifications are introduced with larger molecules of gelsolin and ac-

tin. 

 

Figure 4. (A,B) Biorecognition surface with DTTCOOH. (A) Bar chart of bare gold electrodes and after 

modification with DTTCOOH, Ni-NTA, gelsolin-actin. Error bars represent the standard deviation of 

three replicates. (B) Representative differential pulse voltammogram of bare SPEs, and after modi-

fication with DTTCOOH, Ni-NTA, and gelsolin–actin. (C,D) Biorecognition surface with MUA. (C) Bar 

chart of bare gold electrodes and after modification with MUA, Ni-NTA, gelsolin-actin. Error bars 

represent the standard deviation of three replicates. (D) Representative differential pulse voltam-

mogram of bare SPEs, and after modification with MUA, Ni-NTA, and gelsolin–actin. 

The decrease in the current after linker modification provided substantial evidence 

for the successful immobilization of the linker on the gold surface. Furthermore, using a 

Randles–Sevcik equation (assuming all parameters in the equation except current and sur-

face area remain the same after modification) and the average oxidation peaks from Figure 

4A,C, we were able to estimate the surface coverage of DTTCOOH and MUA to be 18.06% 

and 8.16%, respectively. As such, DTTCOOH has a better estimated surface coverage by 

more than 10%, supporting the previous statement. Further modification with Ni-NTA 

resulted in a slight decrease in the current, which is believed to be associated with Ni-

NTA’s potential participation in the redox process, and was previously observed on the 

stainless steel electrode [25]. This hypothesis was confirmed though a CV scan rate inves-

tigation (Figure S3), which showed a linear correlation between the current and both the 

scan rate and the square root of the scan rate at scan rates above 0.2 V/s. This suggests that 

both diffusion and adsorption (see Figure S3B) are involved in the electron transfer pro-

cess. 

Modification with the gelsolin–actin complex resulted in a slight current increase 

(Figure 4A). Although both gelsolin and actin are large proteins and have a higher cover-

age on the electrode surface, this increase is due to the redox activity of actin that has been 

previously observed in physiological and pathological conditions [29–31]. This redox 

Figure 4. (A,B) Biorecognition surface with DTTCOOH. (A) Bar chart of bare gold electrodes and after
modification with DTTCOOH, Ni-NTA, gelsolin-actin. Error bars represent the standard deviation
of three replicates. (B) Representative differential pulse voltammogram of bare SPEs, and after
modification with DTTCOOH, Ni-NTA, and gelsolin–actin. (C,D) Biorecognition surface with MUA.
(C) Bar chart of bare gold electrodes and after modification with MUA, Ni-NTA, gelsolin-actin.
Error bars represent the standard deviation of three replicates. (D) Representative differential pulse
voltammogram of bare SPEs, and after modification with MUA, Ni-NTA, and gelsolin–actin.

Modification with the gelsolin–actin complex resulted in a slight current increase
(Figure 4A). Although both gelsolin and actin are large proteins and have a higher coverage
on the electrode surface, this increase is due to the redox activity of actin that has been previ-
ously observed in physiological and pathological conditions [29–31]. This redox activity of
actin might arise from the direct oxidation or reduction in its amino acid constituents, such
as tyrosine, histidine, cysteine, tryptophan, and methionine [32,33]. The scan rate study
showed that adsorption is also involved in electron transfer, suggesting the participation
of actin on electron transfer (Figures 5 and S3C). This redox behavior on the modified
electrode was also reported before [26].
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Figure 5. The influence of scan rate based on the electrochemical response (CV) of the gold SPE
after modifications with DTTCOOH, Ni-NTA, and gelsolin–actin using 10 mM [Fe(CN)6]3−/4− as the
redox probe, which contained 0.5 M KCl as the supporting electrolyte. CV experiments started at
open circuit potential (OCP), with positive initial scan polarity and varying scan rate from 0.01 to
1.0 V/s. (A) Cyclic voltammograms at different scan rates, (B) graph of the peak potential separation
(∆EP = EP(ox) − EP(red)) vs. scan rate, (C) graph of iP(ox)/iP(red) vs. scan rate, and (D) graph of
current vs. square root of scan rate, with linear equation of y = 10.761x + 1.0018 and R2 = 0.9922 for
the oxidation signals (orange dots), and linear equation of y = −7.071x − 1.4545 and R2 = 0.9626
for reduction signals (blue dots). (E) Schematic illustration of a screen-printed electrode with a
gold working electrode (4 mm diameter), a gold auxiliary electrode, and a silver reference electrode
(EStandard Hydrogen Electrode (SHE) = EAg/AgCl + 0.197 V).

3.1.3. Study of the Hydrophobicity of the Biorecognition Surface

Surface hydrophobicity often changes through surface modifications, indicating how
much this surface repels water molecules, and can be used to observe the changes to the
surface chemistry. For that reason, the contact angles between a water droplet and a solid
surface were used as an indicator of surface hydrophobicity and modifications. The contact
angle measurement is a widely accepted method for studying surface wettability and
hydrophobicity. A higher contact angle indicates enhanced hydrophobicity, implying that
the surface is less wettable by water. Figure 6 illustrates the contact angles of the SPEs
following each modification step. Introduction of DTTCOOH to the surface resulted in a
slightly increased contact angle compared to the bare gold surface, which may be due to
the hydrophobic nature of the molecule. In contrast, the SPE modified with MUA exhibited
less hydrophobicity, indicating the linear immobilization of MUA and the exposure of
carboxylic acid groups on the surface (Figure 6F). Subsequent modification with NHS/EDC
and Ni-NTA led to a further reduction in the contact angle, likely due to the polarity
of NHS and the ionic charges on Ni-NTA. The gelsolin–actin complex on the surface
significantly increased its hydrophilicity, as evidenced by the decrease in contact angle
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(35.89 ± 4.98◦), confirming successful surface modification. Notably, the SPE surface
exhibited less hydrophilicity (Figure 3SB, contact angle 79.8 ± 1.13◦) when MUA was
employed as the linker for immobilizing gelsolin–actin. The higher contact angle observed
when using MUA compared to DTTCOOH may indicate lesser immobilization of gelsolin–
actin, leading to less hydrophilicity. This observation provides further confirmation of the
superior effectiveness of DTTCOOH in developing the biosensor compared to MUA.
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DTTCOOH, (C) NHS/EDC, (D) Ni-NTA, and (E) gelsolin–actin. (F) Bar chart shows the contact angle
of bare SPEs and after modification with DTTCOOH or MUA, NHS/EDC, Ni-NTA, and gelsolin–actin.
Error bars represent the standard deviation of three replicates.

3.2. Evaluation of the Electrochemical Biosensor Performance

The performance of the developed biosensor was evaluated by detecting different
concentrations of LPA in the buffer solution and goat serum. Figure 7A displays the
cyclic voltammograms of the developed biosensor upon exposure to LPA concentrations
ranging from 0.1 to 10 µM, under optimal experimental conditions in a PBS solution.
After incubation of the developed biosensor in the LPA solution, LPA displaces actin
in the gelsolin–actin complex due to its higher affinity toward gelsolin. Given that the
molecular weight of LPA (436 Da) is smaller than that of actin (42 kDa), it was expected
that binding LPA would result in a more efficient electron transfer between the solution
and the modified electrode. In CV and DPV, this would appear as an increase in the current.
Contrary to our belief, the results showed a decrease in the current after exposing the
developed biosensor to LPA. As was previously reported, actin can exhibit some redox
activity [26]. As such, participation of redox-active amino acids within the actin structure in
the electron transfer process at the electrode surface was validated through a scan rate study
(Figures 5 and S3C), as discussed in Section 3.1.2. It is also probable that LPA molecules,
upon binding to the biorecognition surface, may create a barrier or hinder access to active
sites essential for electron transfer. This interference could disrupt the efficient flow of
electrons between the solution and the electrode, thereby contributing to the observed
decrease in current intensity. This observation confirmed that the replacement of actin
by LPA, which lacks redox activity, could result in the decreased electroactivity and a
subsequent reduction in current intensity.
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Figure 7. Evaluation of the developed electrochemical biosensor using different LPA concentra-
tions in PBS. All electrochemical experiments were carried out in 10 mM [Fe(CN)6]3−/4− as the
redox probe, which contained 0.5 M KCl as the supporting electrolyte, using SPE with a gold
working electrode (4 mm diameter), a gold auxiliary electrode, and a silver reference electrode
(EStandard Hydrogen Electrode (SHE) = EAg/AgCl + 0.197 V). (A) Representative cyclic voltammogram of the
developed biosensor after incubation in 0.25 µM (blue line), 1 µM (grey line), 5 µM (yellow line), and
10 µM (orange line) LPA solution for 20 min at room temperature. (B) Changes in current intensity
obtained from CV were used to draw the calibration curve. The error bars represent three replicate
measurements.

In addition to the change in the current intensity, we also observed variations in
peak potentials (Figure 7A), which became more pronounced when the biosensor was
exposed to 10 µM LPA. This could be due to the displacement of actin by LPA, altering the
electrochemical behavior of the SPE. Such changes affect the electron transfer kinetics and,
consequently, the redox reaction of [Fe(CN)6]3−/4− occurring at the electrode interface,
leading to shifts in the peak potentials [33].

The decrease in current was also observed with increased LPA concentration, which
further confirmed the involvement of actin in the electron transfer process. Evaluation of
the biosensor with different concentrations of LPA revealed a negative correlation between
current intensity and LPA concentration (R2 = 0.9904) (Figure 7B). The estimated limit of
detection (LOD) was 0.99 µM, along with a limit of quantification (LOQ) of 3.0 µM (refer
to the SI for LOD and LOQ calculation), and a standard error of the predicted y-value for
each x in a regression (STEYX) of 0.3899. These data were determined through Regression
Analysis, with a maintained a 98% confidence level (Figure 7B).

Evaluation of the Performance of the Developed Biosensor in Goat Serum

One of the important factors in determining the effectiveness of a given biosensor is
its antifouling property in biofluidic samples. We assessed the antifouling of the devel-
oped biosensor by comparing the changes in current after modification with DTTCOOH
(Figure S5) and the developed biosensor in goat serum. Figure 8A illustrates the changes
in current after incubating the developed biosensor in goat serum for 15, 30, and 60 min at
room temperature. The results demonstrated that after 15 min, the intensity of the signal
dropped by 16.7% in the oxidation signal, but stayed constant for another 30 min with only
0.36% change. A more pronounced decrease was observed after 1 h, with the oxidation
signal dropping by 21.9%. The initial drop in the signal after 15 min of incubation could
be an indication of certain components of goat serum interacting with actin. While we
did not individually assess the effects of each interference, this observation suggests that
none of the interferences present in the serum significantly affected the current. This result
indicates a significant improvement in antifouling properties when DTTCOOH is used as
a linker.
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Figure 8. (A) Changes in cyclic voltammetry current intensity after incubation of the developed
biosensor in goat serum for 15, 30, and 60 min. (B) Evaluation of developed electrochemical biosensor
using different LPA concentrations (0.25, 1, 5, and 10 µM) in goat serum. Changes in current intensity
obtained using cyclic voltammetry were used to draw the calibration curve. The estimated LOD
of 0.9 µM and LOQ of 2.76 µM with STEYX (standard error of the predicted y-value for each x in a
regression) of 0.0378 were calculated using regression analysis with a 98% confidence level. The error
bars represent the standard deviation of three replicates.

The linear correlation between the oxidation current and the LPA concentration
(0.01–10 µM) is illustrated in Figure 8B. A linear regression coefficient of 0.9644 was reached,
and the limits of detection (LOD) and quantification (LOQ) were calculated to be 0.9 µM
and 2.76 µM, respectively (details on LOD and LOQ calculation can be found in the SI). The
standard error of the predicted y-value for each x in a regression (STEYX) was determined
to be 0.0378, based on a Regression Analysis with a 98% confidence level. Since these LOD
and LOQ values are close to those obtained for LPA in the buffer, this further confirms the
antifouling properties of the developed biosensor, making it a suitable screening alternative
for LPA in human serum. This result also indicates that the developed biosensor does not
show any response to other components of goat serum.

A study with 100 healthy volunteers found that LPA levels range from 0.14–1.64 µM [34].
Another study with 27 healthy volunteers and 51 patients with a benign ovarian tumor
found that their respective median LPA levels were 1.86 and 6.82 µM [3]. Separate research
indicates that, in cases of OC, LPA levels are significantly higher that these of healthy
individuals, ranging from 5.4 to 200 µM [35]. Given these findings, the obtained LOD and
LOQ fall within the range of LPA levels observed in healthy individuals and the early
stages of OC, confirming the potential of the developed biosensor for OC screening.

Interestingly, unlike the measurements conducted in the buffer solution, a positive
trend emerged in the presence of goat serum. We hypothesized that the presence of goat
serum altered the behavior of the SAM on the electrode surface, consequently reducing or
inhibiting the involvement of actin in the electron transfer process. This effect might be
attributed to the oxidative species present in the goat serum, which could potentially oxidize
amino acids, such as cysteine and methionine, that are known to be particularly vulnerable
residues in actin [31,32,36,37]. There is also a possibility that redox-active species present in
goat serum could influence the electrochemical properties of the electrode. Comparing the
current of the developed biosensor after exposing to the buffer solution and goat serum in
the absence of LPA (blank solutions) suggests that components of goat serum may directly
block the electrode, possibly due to hydrophobic components, despite the presence of the
“water barrier” introduced during the modification process. Given that LPA is a smaller
molecule compared to actin, its replacement within gelsolin–actin on the surface led to an
increase in current. Further studies need to be carried out to investigate the mechanism of
the electron transfer and the role of goat serum in this process.

Table 1 shows the previously reported assays for detecting LPA, indicating that the
developed biosensor has a comparable LOD with those of other methods. While the
demonstrated LOD values in serum are slightly higher than those of the electrochemical
biosensor that we developed before (Table 1), this method is more cost effective. With



Electrochem 2024, 5 254

the minimal amount of the sample required, and a low associated standard deviation, it
has a greater potential for miniaturization than the alternatives shown. This can open the
window for a quicker and more available preliminary ovarian cancer screening.

Table 1. Reported methods for LPA detection, their LOD, and linear range.

Assay for Detecting LPA LOD (µM) Linear Dynamic
Range (µM) Reference

Fluorescence assay 0.45 (in buffer) 5–30 in buffer [38]
Fluorescence assay 5 (in serum) --- [23]
Fluorescence assay 1.7 (in serum) --- [39]
Colorimetric assay 0.08 (in serum) --- [40]
Colorimetric assay 0.5 (in plasma) 0.5–0.8 (in plasma) [41]

Capillary Electrophoresis 1.2 (in buffer) 2.8–75 (in buffer) [11]
Electroluminescence 0.7 (in buffer) 2–75 (in buffer) [42]

Electrochemical biosensor 0.7 (in serum) 0.01–10 (in serum) [25]
Electrochemical biosensor 0.9 (in serum) 0.25–10 (in serum) This method

4. Conclusions

Electrochemical biosensors have a great potential to be used as effective clinical diag-
nosis tools due to their exceptional sensitivity, rapid response, and potential for miniatur-
ization. In this study, we developed a sensitive label-free electrochemical biosensor while
addressing the current challenges of NSA associated with gold surfaces. By using a new
linker, DTTCOOH, we successfully engineered a SAM on the gold surface less prone to foul-
ing compared to MUA, a linear thiol linker. Using an affinity-based gelsolin–actin system,
we developed a biorecognition surface tailored for LPA detection. Our developed biosensor
showed a higher sensitivity compared to the previously reported fluorescence method,
achieving the LOD and LOQ of 0.9 µM and LOQ of 2.76 µM in goat serum, which is within
the threshold of ovarian cancer diagnosis at early stages. Furthermore, the utilization of
thiol chemistry is less challenging compared to silane chemistry, which we previously used
to develop an electrochemical biosensor for LPA detection. Unlike silane-based linkers,
thiols are not sensitive to oxygen and water, presenting a more practical approach to surface
modification. Without the need of complex instrumentation and time-consuming sample
preparation, the miniaturized design of the developed biosensor further demonstrates its
potential for compact POCT device fabrication. This study presents a proof of concept of
using SPE to detect LPA. Future work will evaluate the selectivity and sensitivity of the
developed biosensor using human serum. It is crucial to examine the stability and shelf-life
of the developed biosensor in order to use it for clinical trials. While stability testing to
determine the shelf life was not conducted in this proof-of-concept work, the stability of
the modified SPE in an electrochemical environment was assessed by conducting at least
seven CV cycles after each modification step. Furthermore, prior research has suggested
that surfaces with a thiolate SAM bound to NTA can exhibit stability. This suggests that
we could pre-functionalize these surfaces in advance and then further modify them with
proteins just before detection, potentially reducing the overall preparation time. It is worth
mentioning that understanding the surface chemistry of modified electrodes can open a
new direction for designing new electrochemical biosensors with better performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electrochem5020015/s1, Figure S1: Carbon-13 Nuclear Magnetic
Resonance (13C NMR) spectra of 3-(DTT)propanoic acid (DTTCOOH). 13C NMR (126 MHz, CDCl3):
δ 171.85 (C7), 81.66 (C2), 77.36 (C1), 65.59 (C5), 40.59 (DCM), 35.91 (C6), 29.84 (C3), and 28.21 (C4).
Figure S2: Evaluation of performance of a screen-printed gold electrode using 10 mM [Fe(CN)6]3−/4−

as the redox probe containing 0.5 M KCl as the supporting electrolyte. (A–D) Study the influence of
scan rate on the CV electrochemical response of the bare electrode. CV experiments started at open
circuit potential (OCP), with positive initial scan polarity and varying scan rate from 0.01 to 1.0 V/s.
(A) Cyclic voltammograms and (B) graph of the peak potential separation (∆EP = EP(ox) − EP(red))
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vs. scan rate, (C) graph of iP(ox)/iP(red) vs. scan rate, and (D) graph of current vs. square root
of scan rate with linear equation of y = 12.71x + 0.6208 and R2 = 0.9977 for the oxidation signals
and linear equation of y = −11.321x − 0.7698 and R2 = 0.9952. Figure S3: The influence of scan
rate based on the electrochemical response (CV) of the gold SPE after modifications with DTTCOOH,
Ni-NTA, and gelsolin–actin using 10 mM [Fe(CN)6]3−/4− as the redox probe containing 0.5 M KCl
as the supporting electrolyte, plotted as a function of scan rate. CV experiments started at open
circuit potential (OCP), with positive initial scan polarity and varying scan rate from 0.01 to 1.0 V/s.
(A) DTTCOOH, (B) Ni-NTA, and (C) gelsolin–actin.
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