
Supplementary 1 - Methods 
 
Current-voltage curves measurement 
The voltammetric characteristics of the membranes were obtained using the rotating 

membrane disk method, which allows for setting a constant thickness of the diffusion layer while 

simultaneously determining the effective (Hittorf) transport numbers. Voltammetric 

measurements were performed in ternary solutions of CaCl2 (0.015 mol-eq/L) + NaCl (0.015 mol-

eq/L). The current density was varied stepwise. The flow rate of the solution into the cathode 

chamber was 7.5±0.1 ml/min. The composition of the initial solution in the anode chamber was 

kept constant. 

The concentrations of Ca2+ and Na+ cations in the cathode and anode chambers of the 

rotating membrane disk were determined using the Aquilon Stayer liquid ion chromatograph. 

The transport numbers of ions were determined using the formula: 𝑇௜ = (𝑐௜ − 𝑐௜଴)𝑣௜𝐹𝐼  (1) 

where 𝑇௜ is an effective transport number; 𝑐௜ is an electrolyte concentration in the studied chamber, 

mol-eq/L; 𝑐௜଴ is an initial concnetration, mol-eq/L; 𝑣௜ is a volume flow rate, L/s; I is a polarizing 

current, A; F is the Faradey constant, C/mol-eq.  

Permselectivity coefficients were calculated based on effective transport numbers: 𝑃ଵ,ଶ = 𝑇ଵ𝑐ଶ଴𝑇ଶ𝑐ଵ଴ (2) 

where 1 refers to sodium ion, 2 refers to calcium ion.  

 

Determination of Thermodynamic Equilibrium Constants 
Membranes, converted to Ca2+ and Na+ forms and rinsed with deionized water, were placed 

in solutions with different ratios of Ca2+ and Na+ ion concentrations. The total ion concentration 

was maintained constant at 0.03 mol-eq/L. Once equilibrium was established, the equilibrium ionic 

composition of the solution was determined. By analyzing the changes in ion concentrations in the 

solution, the equilibrium concentrations of Ca2+ and Na+ ions in the PFSA and MA-1 membranes 

were determined. Equilibrium ion concentrations in the solution were normalized to the total ion 

concentration in the solution, while ion concentrations in the membranes were normalized to the 

membrane exchange capacity. 

The obtained relationships between the equivalent fraction of calcium ions in the 

membrane 𝛩തଵ and the modifying film 𝛩෨ଵ, and the fraction of calcium ions in the solution 𝛩ଵ, were 

used to construct the ion exchange isotherms (3) and Donnan sorption isotherms (4). 



𝛩തଵଵ ௭భൗ𝛩തଶଵ ௭మൗ = 𝑘തଵ,ଶ 𝛩ଵଵ ௭భൗ𝛩ଶଵ ௭మൗ    (3) 

𝛩෨ଵଵ ௭భൗ𝛩෨ଶଵ ௭మൗ = 𝑘෨ଵ,ଶ 𝛩ଵଵ ௭భൗ𝛩ଶଵ ௭మൗ  
(4) 

where,  𝛩෨௝ , 𝛩ത௝ and 𝛩௝ are the ratios of ions of j-type in the modifying layer, membrane-substrate 

and solution; 𝑧ଵ and 𝑧ଶ are ions charges. 

 
Determination of Ion Diffusion Coefficients in Membranes 
For cation-exchange PFSA films the diffusion coefficients of Ca2+ and Na+ ions were 

calculated using the specific conductivity values of the membranes in Ca2+ and Na+ forms. The 

specific conductivity of the membranes, κത୨ (j = Ca2+, Na+), was determined by analyzing the 

electrochemical impedance spectra obtained in a mercury-contact cell. Membrane resistance was 

determined by extrapolating the measured complex impedance to infinite frequency. Frequency 

spectra of electrochemical impedance were acquired using a "Parstat 4000" potentiostat-

galvanostat-impedance meter over the frequency range of 1 Hz – 500 kHz. 

Based on the specific conductivity values of the studied membranes in monoionic forms 

and the membrane exchange capacity Q, the diffusion coefficients (𝐷ഥ௝) of calcium and sodium 

were calculated using Nernst-Einstein relation. 𝐷ഥ௝ = 𝜅̅௝𝑅𝑇𝑄ത𝐹ଶ𝑧௝ (5) 

The integral (Pi) and then the differential (𝑃௝∗) diffusion permeability coefficients of the 

anion-exchange films were calculated from the experimentally obtained concentration dependence 

of the diffusion flux (j). The diffusion coefficients of co-ions in the modifying layer were 

determined using the equation: 𝐷௜∗ = ൤ 𝑃௜∗(1 + 𝑧௜)൨௖ୀ௖బ (6) 

The diffusion coefficients of Na+ and Ca2+ ions in the MA-1 membrane were determined 

at a concentration of c0 = 0.03 mol-eq/L. 

  



Supplementary 2 – Four-layer mathematical model 
 

The system includes Ca2+ (1), Na+ (2) and Cl– (3) ions (j = 1,2,3). Two diffusion boundary 

layers (I and IV), modifying layer (II) and membrane (III). 

We can formulate a boundary value problem, considering that the competing ions function 

as counterions with respect to the initial membrane matrix and as co-ions in the modifying layer. 

Transport equations are formulated as Nernst– Planck equations in the steady state form. It is 

assumed that the electroneutrality condition holds and that thermodynamic equilibrium is 

maintained locally, i.e., at the interfaces. The effects that manifest at high current densities, 

dissociation of water molecules, appearance of space charge layer near the interfaces, and the 

exaltation effect, were not considered. Let the electrical current with density i flow normally to the 

surface of the modified membrane that is interposed between two identical electrolyte solutions I 

and IV with ion concentrations 𝑐௝ூ = 𝑐௝ூ௏ = 𝑐௝଴. Let us choose a space coordinate system so that its 

origin coincides with the left boundary of diffusion layer I (x = 0). The width of the entire system 

is indicated by 𝑙 = 𝛿 + 𝑑ሚ + 𝑑̅ + 𝛿.+ 

A boundary value problem for three ions 𝑗 = 1, 2, 3 with concentrations 𝑐ଵ(𝑥), 𝑐ଶ(𝑥) and 𝑐ଷ(𝑥) in four layers 𝑚 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉 is formulated in a scaled form. The Nernst–Planck equation 

holds in all four layers: 𝑗௝ = ቂ−𝐷௝ ቀௗ௖ೕௗ௫ + ௭ೕிோ் 𝑐௝ ௗఝௗ௫ቁቃ௠,  𝑗 = 1, 2, 3,  𝑚 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉         (1) 

along with electroneutrality condition 

൥෍ 𝑧௜𝑐௜ଷ
௜ୀଵ ൩௠ + 𝑄௠ = 0, 𝑚 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉 (2) 

For the diffusion layers, 𝑄ூ = 𝑄ூ௏ = 0, and for the modifying film and the membrane, 𝑄෨ =𝑄ூூ and 𝑄ത = 𝑄ூூூ. For the whole system, the condition for the flow of electrical current is 

෍ 𝑧௝𝑗௝ = 𝑖𝐹 ଷ
௝ୀଵ  (3) 

Local thermodynamic equilibrium is assumed to be maintained at the interfaces. The 

imposition of condition of local thermodynamic equilibrium (continuity of the electrochemical 

potential) for all the interfaces in the electromembrane system leads to six boundary conditions. 

For the first diffusion layerI/modifying layer II boundary, we write 

ቌсଵଵ ௭ೕൗс௝ଵ ௭೔ൗ ቍ௠ୀூூ = 𝑘ଵ,௝ூ,ூூ ቌсଵଵ ௭ೕൗс௝ଵ ௭೔ൗ ቍ௠ୀூ , 𝑗 = 2, 3 (4) 

 



For the modifying layer II/membrane III boundary, 

ቌ𝑐ଵଵ ௭ೕൗ𝑐௝ଵ ௭೔ൗ ቍ௠ୀூூூ = 𝑘ଵ,௝ூூ,ூூூ ቌ𝑐ଵଵ ௭ೕൗ𝑐௝ଵ ௭೔ൗ ቍ௠ୀூூ , 𝑗 = 2, 3 (5) 

 

For the membrane III/second diffusion layer IV, 

ቌ𝑐ଵଵ ௭ೕൗ𝑐௝ଵ ௭೔ൗ ቍ௠ୀூூூ = 𝑘ଵ,௝ூ௏,ூூூ ቌ𝑐ଵଵ ௭ೕൗ𝑐௝ଵ ௭೔ൗ ቍ௠ୀூ௏ , 𝑗 = 2, 3 (6) 

where (𝑐௝)௠ is the ion concentration at the interfaces; and а  𝑘ଵ,௝ூ,ூூ, 𝑘ଵ,௝ூூ,ூூூ and 𝑘ଵ,௝ூூூ,ூ௏ are local 

thermodynamic equilibrium constants at the diffusion layer I/modifying layer II, modifying layer 

II/substrate membrane III, and substrate  membrane III/diffusion  layer  IV interfaces, respectively. 

The thermodynamic equilibrium constant at the modifying layer II/membrane III interface 

is expressed through two other equilibrium constants: 𝑘ଵ,௝ூூ,ூூூ = 𝑘ଵ,௝ூ,ூூ𝑘ଵ,௝ூூூ,ூ௏            (7) 

For counterions j = 1 and j = 2, boundary conditions (4)–(6) are described with an ion-

exchange constant; and for counterion j = 1 and coion j = 3, they are described by the Donnan 

equation. 

The concentrations of all ionic species are defined at the outer boundaries of diffusion 

layers I (x = 0) and IV (x = l), which is a consequence of constancy of the ion concentrations in 

the solution bulk: 𝑐௝(0) = 𝑐௝଴, 𝑐௝(𝑙) = 𝑐௝଴. (8) 

In Eqs. (1)–(8), 𝑐௝଴is the molar concentration of the j-th ionic species in the bulk of the 

solution on the left and right boundaries of the considered system; jj is flux density of the j-th ionic 

species; ൣ𝑐௝൧௠ are the boundary concentrations of the j-th ionic species in the m-th layer; 𝑧௝ is the 

charge number of the j-th ionic species; ൣ 𝐷௝൧௠ are the diffusion coefficients of the j-th ionic species 

in the m-th layer; is the electric potential; 𝑙 = 2𝛿 + 𝑑ሚ + 𝑑̅ is the length of a multilayer system; 

δ is the thickness of diffusion layers; 𝑑ሚ is the thickness of the modifying layer; 𝑑̅  is the thickness 

of the substrate membrane; F, R, and T have their conventional meaning. 

Simultaneous Eqs. (1) with additional conditions (2) and (3) and boundary value conditions 

(4)–(8) make up a boundary value problem describing a four-layer membrane system. 

ϕ



This boundary value problem has a physical meaning if the current does not exceed its 

limiting value (𝑖 ≤ 𝑖௟௜௠). For thickness of modifying layer 𝑑ሚ = 0 this problem transforms into a 

boundary value problem describing a three-layer system with an isotropic membrane. 

 

 


