Influence of the Parameters of Cluster Ions on the Formation of Nanostructures on the KTP Surface
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Formation of Nanostructures on the Surface of KTP Single Crystals
3.2. Power Spectral Density Functions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorokina, N.I.; Voronkova, V.I. Structure and properties of crystals in the potassium titanyl phosphate family: A review. Crystallogr. Rep. 2007, 52, 80–93. [Google Scholar] [CrossRef]
- Mamrashev, A.; Nikolaev, N.; Antsygin, V.; Andreev, Y.; Lanskii, G.; Meshalkin, A. Optical Properties of KTP Crystals and Their Potential for Terahertz Generation. Crystals 2018, 8, 310. [Google Scholar] [CrossRef] [Green Version]
- Pohl, K.; Bartelt, M.C.; de la Figuera, J.; Bartelt, N.C.; Hrbek, J.; Hwang, R.Q. Identifying the forces responsible for self-organization of nanostructures at crystal surfaces. Nature 1999, 397, 238–241. [Google Scholar] [CrossRef]
- Frost, F.; Ziberi, B.; Höche, T.; Rauschenbach, B. The shape and ordering of self-organized nanostructures by ion sputtering. Nucl. Instr. Meth. Phys. Res. B 2004, 216, 9–19. [Google Scholar] [CrossRef]
- El-Atwani, O.; Ortoleva, S.; Cimaroli, A.; Allain, J.P. Formation of silicon nanodots via ion beam sputtering of ultrathin gold thin film coatings on Si. Nanoscale Res. Lett. 2011, 6, 403. [Google Scholar] [CrossRef] [PubMed]
- Ziberi, B.; Frost, F.; Höche, T.; Rauschenbach, B. Ion-induced self-organized dot and ripple patterns on Si surfaces. Vacuum 2006, 81, 155–159. [Google Scholar] [CrossRef]
- Barth, J.V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, N.; Mashita, T.; Yamada, I. Nano structure formation by gas cluster ion beam irradiation at oblique incidence. Nucl. Instr. Meth. Phys. Res. B 2005, 232, 212–216. [Google Scholar] [CrossRef]
- Toyoda, N.; Tilakaratne, B.; Saalem, I.; Chu, W.-K. Cluster beams, nano-ripples, and bio applications. Appl. Phys. Rev. 2019, 6, 020901. [Google Scholar] [CrossRef]
- Zeng, X.; Pelenovich, V.; Xing, B.; Rakhimov, R.; Zuo, W.; Tolstogouzov, A.; Liu, C.; Fu, D.; Xiao, X. Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion. Beilstein J. Nanotech. 2020, 11, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Ieshkin, A.; Kireev, D.; Ozerova, K.; Senatulin, B. Surface ripple induced by gas cluster ion beam on copper surface at elevated temperatures. Mater. Lett. 2020, 272, 127829. [Google Scholar] [CrossRef]
- Korobeishchikov, N.G.; Nikolaev, I.V.; Roenko, M.A. Effect of argon cluster ion beam on fused silica surface morphology. Nucl. Instr. Meth. Phys. Res. B 2019, 438, 1–5. [Google Scholar] [CrossRef]
- Korobeishchikov, N.G.; Skovorodko, P.A.; Kalyada, V.V.; Shmakov, A.A.; Zarvin, A.E. Experimental and Numerical Study of High Intensity Argon Cluster Beams. AIP Conf. Proc. 2014, 1628, 885–892. [Google Scholar]
- Korobeishchikov, N.G.; Kalyada, V.V.; Skovorodko, P.A.; Shmakov, A.A.; Khodakov, M.D.; Shulzhenko, G.I.; Voskoboynikov, R.V.; Zarvin, A.E. Features of formation of gas cluster ion beams. Vacuum 2015, 119, 256–263. [Google Scholar] [CrossRef]
- Duparre, A.; Ferre-Borrull, J.; Gliech, S.; Notni, G.; Steinert, J.; Bennett, J.M. Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components. Appl. Opt. 2002, 41, 154–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, B.N.J.; Albohr, O.; Tartaglino, U.; Volokitin, A.I.; Tosatti, E. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 2005, 17, R1–R62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, J.F.G.; Nieto-Carvajal, I.; Abad, J.; Colchero, J. Nanoscale measurement of the power spectral density of surface roughness: How to solve a difficult experimental challenge. Nanoscale Res. Lett. 2012, 7, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bushunov, A.A.; Tarabrin, M.K.; Lazarev, V.A.; Karasik, V.E.; Korostelin, Y.V.; Frolov, M.P.; Skasyrsky, Y.K.; Kozlovsky, V.I. Fabrication of anti-reflective microstructures on chalcogenide crystals by femtosecond laser ablation. Opt. Mat. Express 2019, 9, 1689–1697. [Google Scholar] [CrossRef]
Treatment Mode | Roughness Parameter | Before | Incident Angle of Clusters | ||||
---|---|---|---|---|---|---|---|
0° | 30° | 45° | 60° | 70° | |||
Low-energy mode | ⟨Rq⟩, nm | 0.40 | 0.28 | 0.28 | 6.2 | 7.5 | 12.6 |
⟨σeff⟩, nm | 0.43 | 0.28 | 0.30 | 6.8 | 8.1 | 13.8 | |
High-energy mode | ⟨Rq⟩, nm | 0.40 | 0.30 | 0.56 | 0.75 | 1.7 | 2.8 |
⟨σeff⟩, nm | 0.43 | 0.30 | 0.60 | 0.83 | 1.8 | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaev, I.V.; Korobeishchikov, N.G. Influence of the Parameters of Cluster Ions on the Formation of Nanostructures on the KTP Surface. Appl. Nano 2021, 2, 25-30. https://doi.org/10.3390/applnano2010003
Nikolaev IV, Korobeishchikov NG. Influence of the Parameters of Cluster Ions on the Formation of Nanostructures on the KTP Surface. Applied Nano. 2021; 2(1):25-30. https://doi.org/10.3390/applnano2010003
Chicago/Turabian StyleNikolaev, Ivan V., and Nikolay G. Korobeishchikov. 2021. "Influence of the Parameters of Cluster Ions on the Formation of Nanostructures on the KTP Surface" Applied Nano 2, no. 1: 25-30. https://doi.org/10.3390/applnano2010003
APA StyleNikolaev, I. V., & Korobeishchikov, N. G. (2021). Influence of the Parameters of Cluster Ions on the Formation of Nanostructures on the KTP Surface. Applied Nano, 2(1), 25-30. https://doi.org/10.3390/applnano2010003