Formation of Advanced Nanomaterials by Gas-Phase Aggregation
Author Contributions
Conflicts of Interest
References
- Becker, E.W.; Bier, K.; Henkes, W. Strahlen aus kondensierten Atomen und Molekeln im Hochvakuum. Eur. Phys. J. A 1956, 146, 333–338. [Google Scholar] [CrossRef]
- Hagena, O.F. Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas. J. Chem. Phys. 1972, 56, 1793. [Google Scholar] [CrossRef]
- De Heer, W.A. The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611–676. [Google Scholar] [CrossRef]
- Haberland, H. (Ed.) Experimental methods. In Clusters of Atoms and Molecules; Springer: Berlin, Germany, 1994; pp. 207–252. [Google Scholar]
- Milani, P.; Iannotta, S. Cluster Beam Synthesis of Nanostructured Materials; Springer: Berlin, Germany, 1999. [Google Scholar]
- Yamada, I. Historical milestones and future prospects of cluster ion beam technology. Appl. Surf. Sci. 2014, 310, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Popok, V.N.; Campbell, E.E.B. Beams of atomic clusters: Effects on impact with solids. Rev. Adv. Mater. Sci. 2006, 11, 19–45. [Google Scholar]
- Kylián, O.; Popok, V.N. Applications of polymer films with gas-phase aggregated nanoparticles. Front. Nanosci. 2020, 15, 119–162. [Google Scholar] [CrossRef]
- Huttel, Y. (Ed.) Gas-Phase Synthesis of Nanoparticles; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Cai, R.; Cao, L.; Griffin, R.; Chansai, S.; Hardacre, C.; Palmer, R.E. Scale-up of cluster beam deposition to the gram scale with the matrix assembly cluster source for heterogeneous catalysis (propylene combustion). AIP Adv. 2020, 10, 025314. [Google Scholar] [CrossRef]
- Melinon, P. Principles of Gas Phase Aggregation. In Gas-Phase Synthesis of Nanoparticles; Huttel, Y., Ed.; Wiley-VCH: Weinheim, Germany, 2017; pp. 23–38. [Google Scholar]
- Polonskyi, O.; Ahadi, A.M.; Peter, T.; Fujioka, K.; Abraham, J.W.; Vasiliauskaite, E.; Hinz, A.; Strunskus, T.; Wolf, S.; Bonitz, M.; et al. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. Eur. Phys. J. D 2018, 72, 93. [Google Scholar] [CrossRef]
- Milani, P.; Sowwan, M. (Eds.) Cluster Beam Deposition of Functional Nanomaterials and Devices; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Popok, V.N.; Kylián, O. Gas-Phase Synthesis of Functional Nanomaterials. Appl. Nano 2020, 1, 25–58. [Google Scholar] [CrossRef]
- Skotadis, E.; Aslanidis, E.; Kainourgiaki, M.; Tsoukalas, D. Nanoparticles Synthesised in the Gas-Phase and Their Applications in Sensors: A Review. Appl. Nano 2020, 1, 70–86. [Google Scholar] [CrossRef]
- Soler-Morala, J.; Jefremovas, E.M.; Martínez, L.; Mayoral, Á.; Sánchez, E.H.; De Toro, J.A.; Navarro, E.; Huttel, Y. Spontaneous Formation of Core@shell Co@Cr Nanoparticles by Gas Phase Synthesis. Appl. Nano 2020, 1, 87–101. [Google Scholar] [CrossRef]
- Milana, E.; Santaniello, T.; Azzini, P.; Migliorini, L.; Milani, P. Fabrication of High-Aspect-Ratio Cylindrical Micro-Structures Based on Electroactive Ionogel/Gold Nanocomposite. Appl. Nano 2020, 1, 59–69. [Google Scholar] [CrossRef]
- Prysiazhnyi, V.; Dycka, F.; Kratochvil, J.; Stranak, V.; Popok, V.N. Effect of Ag Nanoparticle Size on Ion Formation in Nanoparticle Assisted LDI MS. Appl. Nano 2020, 1, 3–13. [Google Scholar] [CrossRef]
- Nikolaev, I.V.; Korobeishchikov, N.G. Influence of the Parameters of Cluster Ions on the Formation of Nanostructures on the KTP Surface. Appl. Nano 2020, 2, 25–30. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popok, V.N.; Kylián, O. Formation of Advanced Nanomaterials by Gas-Phase Aggregation. Appl. Nano 2021, 2, 82-84. https://doi.org/10.3390/applnano2010007
Popok VN, Kylián O. Formation of Advanced Nanomaterials by Gas-Phase Aggregation. Applied Nano. 2021; 2(1):82-84. https://doi.org/10.3390/applnano2010007
Chicago/Turabian StylePopok, Vladimir N., and Ondřej Kylián. 2021. "Formation of Advanced Nanomaterials by Gas-Phase Aggregation" Applied Nano 2, no. 1: 82-84. https://doi.org/10.3390/applnano2010007
APA StylePopok, V. N., & Kylián, O. (2021). Formation of Advanced Nanomaterials by Gas-Phase Aggregation. Applied Nano, 2(1), 82-84. https://doi.org/10.3390/applnano2010007