Transfer of Cobalt Nanoparticles in a Simplified Food Web: From Algae to Zooplankton to Fish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particles and Soluble Salt
2.2. Particle Size and Morphology at Dry Conditions
2.3. Solutions
2.4. Exposure of Co NPs to the Different Trophic Levels, i.e., Algae, Zooplankton and Fish
2.5. Algae and Biomolecule Adsorption Studies
2.6. Zeta Potential and Particle Size
2.7. Dissolution of Co NPs (Metal Release Measurements)
2.8. Chemical Analysis of Released Co in Solutions
2.9. Heteroagglomeration between Au NPs and Algae
2.10. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of the Co Nanoparticles (NPs)
3.2. Trophic Level 1: Algae
3.2.1. Interactions between Co NPs and Aqueous Colloids (Algae and Excreted Biomolecules)
3.2.2. The Fate of Co NPs in the First Trophic Level
Co NP Dissolution
Interactions between Released Co Ions and Algae
Co NPs in Solution and Heteroagglomeration between Co NPs and Algae
3.3. Trophic Level 2: Daphnia Magna
3.4. Trophic Level 3: Crucian Carp
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiesner, M.R.; Lowry, G.V.; Jones, K.L.; Hochella, J.M.F.; Di Giulio, R.T.; Casman, E.; Bernhardt, E.S. Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009, 43, 6458–6462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochella, M.F.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M.; et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019, 363, eaau8299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Holden, P.A.; Nisbet, R.M.; Lenihan, H.S.; Miller, R.J.; Cherr, G.N.; Schimel, J.P.; Gardea-Torresdey, J.L. Ecological Nanotoxicology: Integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc. Chem. Res. 2013, 46, 813–822. [Google Scholar] [CrossRef]
- Gagné, F.; Gagnon, C.; Blaise, C. Aquatic nanotoxicology: A review. Curr. Top. Toxicol. 2007, 4, 51–64. [Google Scholar]
- Tangaa, S.R.; Selck, H.; Winther-Nielsen, M.; Khan, F.R. Trophic transfer of metal-based nanoparticles in aquatic environments: A review and recommendations for future research focus. Environ. Sci. Nano 2016, 3, 966–981. [Google Scholar] [CrossRef] [Green Version]
- Skjolding, L.M.; Sørensen, S.N.; Hartmann, N.B.; Hjorth, R.; Hansen, S.F.; Baun, A. Aquatic ecotoxicity testing of nanoparticles—The quest to disclose nanoparticle effects. Angew. Chem. Int. Ed. 2016, 55, 15224–15239. [Google Scholar] [CrossRef] [Green Version]
- Gophen, M.; Geller, W. Filter mesh size and food particle uptake by Daphnia. Oecologia 1984, 64, 408–412. [Google Scholar] [CrossRef]
- Khan, F.R.; Kennaway, G.M.; Croteau, M.-N.; Dybowska, A.; Smith, B.D.; Nogueira, A.J.A.; Rainbow, P.S.; Luoma, S.N.; Valsami-Jones, E. In Vivo retention of ingested Au NPs by Daphnia magna: No evidence for trans-epithelial alimentary uptake. Chemosphere 2014, 100, 97–104. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Zhang, X.; Chang, Y.; Chen, Y. Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 2010, 79, 928–933. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Han, X.; Wei, X. Transmission and accumulation of nano-TiO2 in a 2-step food chain (Scenedesmus obliquus to Daphnia magna). Bull. Environ. Contam. Toxicol. 2015, 95, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Lammel, T.; Thit, A.; Mouneyrac, C.; Baun, A.; Sturve, J.; Selck, H. Trophic transfer of CuO NPs and dissolved Cu from sediment to worms to fish—A proof-of-concept study. Environ. Sci. Nano 2019, 6, 1140–1155. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Gibb, H.J.; Howe, P.D.; World Health Organization Chemical Safety Team; International Programme on Chemical Safety. Cobalt and Inorganic Cobalt Compounds/Prepared by James H. Kim, Herman J. Gibb, Paul D. Howe; World Health Organization: Geneva, Switzerland, 2006; ISBN 9789241530699. [Google Scholar]
- Furberg, A.; Arvidsson, R.; Molander, S. Environmental life cycle assessment of cemented carbide (WC-Co) production. J. Clean. Prod. 2019, 209, 1126–1138. [Google Scholar] [CrossRef]
- Barton, L.E.; Therezien, M.; Auffan, M.; Bottero, J.-Y.; Wiesner, M.R. Theory and methodology for determining nanoparticle affinity for heteroaggregation in environmental matrices using batch measurements. Environ. Eng. Sci. 2014, 31, 421–427. [Google Scholar] [CrossRef]
- Geitner, N.K.; Marinakos, S.M.; Guo, C.; O’Brien, N.; Wiesner, M.R. Nanoparticle surface affinity as a predictor of trophic transfer. Environ. Sci. Technol. 2016, 50, 6663–6669. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, L.; Zhao, J.; Xing, B. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environ. Sci. Nano 2016, 3, 240–255. [Google Scholar] [CrossRef]
- Ekvall, M.T.; Hedberg, J.; Odnevall Wallinder, I.; Hansson, L.-A.; Cedervall, T. Long-term effects of tungsten carbide (WC) nanoparticles in pelagic and benthic aquatic ecosystems. Nanotoxicology 2018, 12, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Nasser, F.; Constantinou, J.; Lynch, I. Nanomaterials in the environment acquire an “eco-corona” impacting their toxicity to Daphnia magna—A call for updating toxicity testing policies. Proteomics 2020, 20, 1800412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, N.; Hedberg, J.; Odnevall Wallinder, I.; Blomberg, E. Influence of biocorona formation on the transformation and dissolution of cobalt nanoparticles under physiological conditions. ACS Omega 2019, 4, 21778–21791. [Google Scholar] [CrossRef] [Green Version]
- Doane, T.L.; Chuang, C.-H.; Hill, R.J.; Burda, C. Nanoparticle ζ-potentials. Acc. Chem. Res. 2012, 45, 317–326. [Google Scholar] [CrossRef]
- Pradhan, S.; Hedberg, J.; Blomberg, E.; Wold, S.; Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 2016, 18, 285. [Google Scholar] [CrossRef] [Green Version]
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.-J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Hu, Y.; Zhang, L.; Yang, K.; Lin, D. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae. Sci. Rep. 2016, 6, 32998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.; Suarez, D.L. In situ infrared speciation of adsorbed carbonate on aluminum and iron oxides. Clays Clay Miner. 1997, 45, 814–825. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. In Handbook of Vibrational Spectroscopy; Chalmers, J.M., Griffiths, P.R., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Pradhan, S.; Hedberg, J.; Rosenqvist, J.; Jonsson, C.M.; Wold, S.; Blomberg, E.; Odnevall Wallinder, I. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles—A tentative exposure scenario. PLoS ONE 2018, 13, e0192553. [Google Scholar] [CrossRef] [PubMed]
- Kačuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Barth, A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 2000, 74, 141–173. [Google Scholar] [CrossRef]
- Nasser, F.; Lynch, I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J. Proteom. 2016, 137, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Hay, M.B.; Myneni, S.C.B. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 3518–3532. [Google Scholar] [CrossRef]
- Barth, A.; Zscherp, C. What vibrations tell about proteins. Q. Rev. Biophys. 2002, 35, 369–430. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Gonzalez-Pech, N.I.; Grassian, V.H. Displacement reactions between environmentally and biologically relevant ligands on TiO2 nanoparticles: Insights into the aging of nanoparticles in the environment. Environ. Sci. Nano 2019, 6, 489–504. [Google Scholar] [CrossRef]
- Mudunkotuwa, I.A.; Minshid, A.A.; Grassian, V.H. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media. Analyst 2014, 139, 870–881. [Google Scholar] [CrossRef]
- Quigg, A.; Chin, W.-C.; Chen, C.-S.; Zhang, S.; Jiang, Y.; Miao, A.-J.; Schwehr, K.A.; Xu, C.; Santschi, P.H. Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustain. Chem. Eng. 2013, 1, 686–702. [Google Scholar] [CrossRef]
- Hedberg, J.; Blomberg, E.; Odnevall Wallinder, I. In the search for nanospecific effects of dissolution of metallic nanoparticles at freshwater-like conditions: a critical review. Environ. Sci. Technol. 2019, 53, 4030–4044. [Google Scholar] [CrossRef] [PubMed]
- Lead, J.R.; Batley, G.E.; Alvarez, P.J.J.; Croteau, M.-N.; Handy, R.D.; McLaughlin, M.J.; Judy, J.D.; Schirmer, K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects—An updated review. Environ. Toxicol. Chem. 2018, 37, 2029–2063. [Google Scholar] [CrossRef]
- Misra, S.K.; Dybowska, A.; Berhanu, D.; Luoma, S.N.; Valsami-Jones, E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 2012, 438, 225–232. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, X.; Liu, X.; Wang, Z.; Zhang, C.; White, J.C.; Xing, B. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: Adhesion, uptake, and toxicity. Nanotoxicology 2016, 10, 1297–1305. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, K.; Yang, K.; Lin, D. Heteroagglomeration of oxide nanoparticles with algal cells: effects of particle type, ionic strength and pH. Environ. Sci. Technol. 2015, 49, 932–939. [Google Scholar] [CrossRef]
- Yue, Y.; Li, X.; Sigg, L.; Suter, M.J.F.; Pillai, S.; Behra, R.; Schirmer, K. Interaction of silver nanoparticles with algae and fish cells: A side by side comparison. J. Nanobiotechnol. 2017, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasser, F.; Lynch, I. Updating traditional regulatory tests for use with novel materials: Nanomaterial toxicity testing with Daphnia magna. Saf. Sci. 2019, 118, 497–504. [Google Scholar] [CrossRef]
- Hedberg, J.; Ekvall, M.T.; Hansson, L.-A.; Cedervall, T.; Odnevall Wallinder, I. Tungsten carbide nanoparticles in simulated surface water with natural organic matter: Dissolution, agglomeration, sedimentation and interaction with Daphnia magna. Environ. Sci. Nano 2017, 4, 886–894. [Google Scholar] [CrossRef] [Green Version]
- van den Brink, N.W.; Jemec Kokalj, A.; Silva, P.V.; Lahive, E.; Norrfors, K.; Baccaro, M.; Khodaparast, Z.; Loureiro, S.; Drobne, D.; Cornelis, G.; et al. Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms. Environ. Sci. Nano 2019, 6, 1985–2001. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.; Nasser, F.; Lead, J.R.; Shi, Z. Development and application of a ratiometric nanosensor for measuring pH inside the gastrointestinal tract of zooplankton. Environ. Sci. Nano 2020, 7, 1652–1660. [Google Scholar] [CrossRef]
- Blust, R. 6—Cobalt. In Fish Physiology; Wood, C.M., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Waltham, MA, USA, 2011; Volume 31, pp. 291–326. [Google Scholar]
- Zhang, Z.; Tian, X.; Li, D. Tissue pH and gut ecomorphology in six freshwater teleosts occupying different trophic levels. Turk. J. Zool. 2016, 40, 713–719. [Google Scholar] [CrossRef]
- Miller, J.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 4th ed.; Pearson Education Limited: Harlow, UK, 2000. [Google Scholar]
Algae Only | Excreted Biomolecules Only | Co NPs in TW | Co NPs in TW + Algae | Co NPs in TW + Excreted Biomolecules | Co NPs in TW +Algae + Excreted Biomolecules | Peak Assignments |
---|---|---|---|---|---|---|
1635 | 1644 | 1670 | 1664 | 1672 | Amide I [34,35] | |
1544 | 1588 | 1582 | 1562 | 1568 | 1564 | Amide II/asymmetric COO−/asymmetric CO32− [26,34,35] |
1454 | 1500 | 1494 | CH2 bending [34] | |||
1425 | CH2 Bending/asymmetric CO32− [26] | |||||
1392 | 1385 | 1384 | 1385 | 1387 | Symmetric COO−/Amide III/asymmetric CO32− [26,34] | |
1075, 1047, 1028 | 1147, 1063, 1001 | 1043 | 1032 | 1046 | C–O–C, C–OH, C–O, C–C stretching [29] | |
1060 | 1060 | 1060 | 1060 | Symmetric CO32− [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, N.; Hedberg, J.; Ekvall, M.T.; Kelpsiene, E.; Hansson, L.-A.; Cedervall, T.; Blomberg, E.; Odnevall, I. Transfer of Cobalt Nanoparticles in a Simplified Food Web: From Algae to Zooplankton to Fish. Appl. Nano 2021, 2, 184-205. https://doi.org/10.3390/applnano2030014
Mei N, Hedberg J, Ekvall MT, Kelpsiene E, Hansson L-A, Cedervall T, Blomberg E, Odnevall I. Transfer of Cobalt Nanoparticles in a Simplified Food Web: From Algae to Zooplankton to Fish. Applied Nano. 2021; 2(3):184-205. https://doi.org/10.3390/applnano2030014
Chicago/Turabian StyleMei, Nanxuan, Jonas Hedberg, Mikael T. Ekvall, Egle Kelpsiene, Lars-Anders Hansson, Tommy Cedervall, Eva Blomberg, and Inger Odnevall. 2021. "Transfer of Cobalt Nanoparticles in a Simplified Food Web: From Algae to Zooplankton to Fish" Applied Nano 2, no. 3: 184-205. https://doi.org/10.3390/applnano2030014
APA StyleMei, N., Hedberg, J., Ekvall, M. T., Kelpsiene, E., Hansson, L. -A., Cedervall, T., Blomberg, E., & Odnevall, I. (2021). Transfer of Cobalt Nanoparticles in a Simplified Food Web: From Algae to Zooplankton to Fish. Applied Nano, 2(3), 184-205. https://doi.org/10.3390/applnano2030014