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Abstract: Flexible nanocomposite sensors hold significant promise in various applications, such
as wearable electronics and medical devices. This research aims to tailor the flexibility and sensi-
tivity of 3D-printed piezoresistive nanocomposite pressure sensors through geometric design, by
exploring various simple cellular structures. The geometric designs were specifically selected to
be 3D printable with a flexible material, allowing evaluation of the impact of different structures
on sensor performance. In this study, we used both experimental and finite element (FE) methods
to investigate the effect of geometric design on piezoresistive sensors. We fabricated the sensors
using a flexible resin mixed with conductive nanoparticles via a Stereolithography (SLA) additive
manufacturing technique. Electromechanical testing was carried out to evaluate the performance
of four different sensor designs. Finite element (FE) models were developed, and their results were
compared with experimental data to validate the simulations. The results demonstrated that auxetic
structure exhibited the highest sensitivity and lowest stiffness both in experimental and FE analysis,
highlighting its potential for applications requiring highly responsive materials. The validated FE
model was further used for a parametric study of one of the promising simple designs, revealing
that variations in geometric parameters significantly impact piezoresistive sensitivity. These findings
provide valuable insights for advancing the development of pressure sensors with tailored sensitivity
characteristics.

Keywords: additive manufacturing; flexible pressure sensors; cellular structures; piezoresistivity;
polymer nanocomposite

1. Introduction

Polymer nanocomposites are widely recognized for combining the advantageous
properties of polymers and nanomaterials. By incorporating nanoparticles such as silver
nanowires, graphene, carbon nanotubes, and metal nanoparticles into a polymer matrix,
these composites achieve performance levels that surpass those of the individual compo-
nents [1–3]. The high surface area of nanoparticles relative to their volume contributes to
enhanced properties like electrical conductivity, thermal stability, and mechanical strength.
In addition to these traditional improvements, polymer nanocomposites exhibit distinc-
tive functionalities, such as piezoresistivity. This unique property allows the materials to
alter their electrical resistance in response to mechanical strain, making them suitable for
advanced applications in sensor technology [4–6] and smart materials [7].

Flexible polymer nanocomposite sensors are particularly notable for their integra-
tion of piezoresistive behavior with mechanical flexibility, which is ideal for applications
requiring both flexibility and sensitivity, such as wearable technology [8–10] and health
monitoring systems [11–14]. These sensors surpass conventional rigid sensors by offering
improved sensitivity and stretchability, leading to better skin conformity and more accurate
health data [15]. A recent study has explored hierarchical structures by replicating the lotus
leaf, which significantly enhances both sensitivity and linearity in pressure sensors and
addresses the challenges of saturation and nonlinear response under high pressure [16].
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Unlike traditional healthcare devices, which often lack portability and wearability, elec-
tronic skin (E-skin) sensors excel at detecting subtle pressure changes and are well suited
for personal health monitoring. Xuewen Wang et al. [11] developed a pressure sensor using
microstructured PMDS thin film with high-quality silk as a mold, resulting in E-skins with
rapid response times and notable durability. Haiyu et al. [17] developed an E-skin sensor
that has a sensitivity of 4.4 kPa−1, a response time under 10 ms, and a minimum detection
limit of 0.5 Pa. It has the ability to withstand over 11,000 usage cycles. Their fabrication
process is also noted for being cost-effective and time-efficient.

The growing use of flexible sensors in wearable electronics highlights their ability
to be integrated into items like stockings and gloves or directly on the skin to monitor
body signals effectively [18,19]. These sensors provide superior flexibility and stretchability
compared to traditional wearables, making them essential for tracking real-time movements.
For example, a flexible sensor developed using carbon nanotubes exhibited over 900%
stretchability, rapid response, high sensitivity, and durability. A graphene-based flexible
sensor, developed with stretchable yarns and polyvinyl alcohol (PVA), demonstrated high
sensitivity and stretchability up to 150%, detecting both large human movements and
subtle actions such as speaking and breathing [20].

Recent advancements in multifunctional sensors have focused on developing adapt-
able sensors that offer wide-ranging utility. Wang et al. [21] introduced a multifunctional
sensor inspired by natural skin that detects compressive, bending, and twisting strains
with high gauge factors and can sense humidity and pressure with a fast response time.
Zhen Lou et al. [12] developed a pressure sensor combining P(VDF-TrFe) with conductive
rGO, capable of monitoring physiological signals and detecting light forces. Additionally,
the adoption of advanced piezoresistive materials like MXenes and multilayered graphene
has led to the development of highly sensitive sensors, making them suitable for wearable
applications [16]. Yu et al. [8] developed a flexible pressure sensor using polylactic acid
(PLA) with tissue paper impregnated with porous MXene, providing high sensitivity, a
large sensing range (up to 30 kPa), and durability. These sensors are ideal for biomoni-
toring, synthetic skins, and human–machine interfacing technologies. Zhang et al. [22]
created a flexible nanocomposite sensor using a PVA hydrogel matrix incorporated with
2D Mxenes, which provide high sensitivity and strong adhesion. This is suitable for
health monitoring systems because of the adhesion and self-healing properties. Because of
the high sensitivity and rapid response times, flexible piezoresistive sensors are suitable
for various biomedical applications like the detection of pressure fluctuation and sound
variation. Wang et al. [13] developed miniaturized piezoresistive pressure sensors using
poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) composite films
incorporated with graphene oxide (GO) on a flexible substrate.

The development of functional polymer nanocomposites with optimized piezoresis-
tive response has largely focused on material-centric approaches. The approaches typically
include the manipulation of nanoparticles’ structures [23,24], concentrations [10], and poly-
mer matrix morphologies [25–27]. Though these strategies have led to improvements in
piezoresistive performance, they are often empirical, and because of the complex interac-
tions within the material systems, they lack efficiency [27]. Therefore, there has been a need
for a more universal and systematic methodology in materials engineering. Recent studies
have explored sensor topology as a critical factor in enhancing performance. For example,
Yun-An Lin et al. [28] developed a wearable strain sensor by integrating graphene-coated
kinesiology tape (K-Tape) to create a highly sensitive and self-adhering sensor. The sensor
enables detailed spatial strain sensing by exploring mesh topologies. The piezoresistive
responses can also be varied using different structures such as serpentine, auxetic, and
kirigami [29]. Long Wang et al. [27] presented a design methodology to manipulate the
piezoresistive effect of nanocomposites and achieved varied strain sensitivities without
altering the material system. Their study demonstrated that stress-concentrating topologies
enhance strain sensitivity while stress-releasing topologies significantly suppress bulk film
piezoresistivity. Similarly, the sensitivity of the flexible pressure sensors can be tailored
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by adjusting the infill patterns during additive manufacturing. James Bank et al. [30]
used common infill patterns that showed notable variations in sensitivities under varying
pressure conditions.

Despite these advances, the potential of topological design to enhance piezoresistive
performance is still not well understood. Recognizing the gap, this study investigates
how different topological configurations can affect the piezoresistive sensitivity of flexible
pressure sensors without altering the material system. First, we fabricated piezoresis-
tive composite pressure sensors with four 3D printable topological configurations, namely
square, diamond, ellipse, and auxetic. These topologies were subjected to electromechanical
testing to characterize the piezoresistive sensitivity. Second, the experimental data collected
were used to determine the material properties in finite element analysis (FEA) and then
compared with the results from the experiments to validate the FEA model. Last, a para-
metric study was conducted on the ellipse structure using the validated FEA model. The
parametric study enabled us to systematically investigate the influence of different design
parameters of a single structure on piezoresistive sensitivity. This comprehensive analysis
not only supported our experimental findings but also provided more profound insights
into how topological variations can be strategically used to enhance sensor performance.

2. Theoretical Background
2.1. Cellular Structure for Additive Manufacturing Subsection

Cellular structural design has a significant impact on additive manufacturing (AM)
in engineering applications. The advent of additive manufacturing has extended the
possibilities for designing cellular materials beyond the traditional forms and enabled
greater design freedom. However, it has also introduced new complexities in decision-
making to achieve the optimal design. Several factors should be considered to bring out the
optimal design for specific applications, such as the best unit cells, optimal cell parameters,
integration of cells with larger forms, etc.

Cellular solids can be classified [31] into four types: honeycomb, open-cell foam,
closed-cell foam, and lattice structures. The classification of cellular solids is important for
selecting appropriate structures for specific applications.

These types of structures have geometrical features or discontinuities that cause
increased stress in a localized area. The degree of stress concentration is measured by
the stress concentration factor (Kt) [32]. The application of stress leads to a change in
the material’s electrical properties (resistance) in piezoresistive pressure sensors. As the
piezoresistive material has conductive nanoparticles, the localized conductive region gets
affected by compression or tensile forces. For example, when the material is subjected
to tensile forces, the distance between individual nanoparticles or their groups increases
because of the deformation in the structure. Thus, the number of inter-nanoparticle con-
nections decreases, and this phenomenon reduces the conductive pathways for electricity
inside the composite [27]. As a result, there is an increase in the electrical resistance of the
overall structure.

2.2. Piezoresistivity

Polymers are typically poor electrical conductors due to the lack of free electrons.
However, when conductive nanofillers are added to the polymer matrix, the composite
materials become suitable for piezoresistive applications. The application of compressive
force to the matrix causes the nanoparticles to move closer to each other as shown in
Figure 1.
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3. Experimental Section
3.1. Material Selection

The development of flexible sensors requires meticulously balancing the properties of
various materials. These materials are classified into metallic, carbon-based, and polymer
materials [15].

Metals are frequently used for their high conductivity and versatility. The common
choices include copper, silver, zinc, and gold, which are often used in films, nanowires,
and nanoparticles [33]. One of the most utilized materials is silver nanowires. They offer
excellent conductivity and antibacterial properties but are prone to entanglement under
stress, which reduces sensitivity. Copper nanowires are more affordable, but they oxidize
easily [34]. Gold nanowires are more stable but expensive [35]. Liquid metals like Eutectic
Gallium Indium (EGaIn) have shown promise in biomedical applications because of their
biocompatibility and flexibility, but the handling challenges remain [36]. Metal oxides
such as zinc oxide (ZnO) nanowires enhance durability and sensitivity [37]. Lee et al. [38]
developed a strain sensor with zinc oxide nanowires, which demonstrated that the gauge
factors reached 7.64 when combined with reduced graphene oxide (RGO).

Carbon-based materials such as carbon black, carbon nanotubes (CNTs), and graphene
are commonly used in flexible pressure sensors. As these materials provide excellent
conductivity and adaptability, they are mixed with polymer matrices for the fabrication
of sensors. Carbon black is an economical choice that enhances the conductivity and
stretchability of the composite [39]. Carbon nanotubes (CNTs) are frequently used for
pressure sensor applications. The single wall CNTs offer higher sensitivity and uniformity
than multi-walled CNTs but face durability issues over extended use [40]. Graphene has a
high aspect ratio and good conductivity, making it an exceptional choice for piezoresistive
sensors [41,42].

Polymers are used as matrix materials to manufacture the sensors. Polydimethylsilox-
ane (PDMS), polyurethane (PU), polyimide, etc., are the most common flexible polymers.
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They are often combined with conductive fillers like graphene or metallic nanoparticles
to achieve the piezoresistive effect. For example, poly-methyl methacrylate (PMMA) inte-
grated with graphene creates sensors with high sensitivity and durability [42]. However,
ensuring homogeneous dispersion of fillers in the polymer matrix is crucial to prevent
inconsistencies in performance.

The materials used in this study include photopolymer flexible resin (3Dresyn TFA70) [43]
and conductive graphene nanoparticles [44]. Graphene has been used due to its excep-
tional electrical and mechanical properties. As one of the thinnest materials known, it
demonstrates a linear change in resistance with strain, making it an excellent candidate for
piezoresistive sensor applications [42,45–47]. The properties of materials used in this study
are listed in Table 1.

Table 1. Properties of materials.

Properties of TFA70 [43] Properties of Graphene Nanoparticles [32]

• Tensile strength < 10 MPa
• Flexural strength < 10 MPa
• Soft and elastic (Young modulus < 10 MPa)
• Elongation > 50%

• Lateral sizes are approximately
100 nm

• Sheet resistance > 150 kΩ/square
• Resistivity > 40 Ω.m
• Conductivity < 30 mS/m

3.2. Design of Sensors

Four different structures, along with a reference sample, were designed using Solid-
Works 2024, as shown in Figure 2, and fabricated through SLA additive manufacturing
techniques. Each structure measures 10.5 mm in height, width, and depth. The selection of
these cellular structures was based on their distinct mechanical behaviors. For instance,
the structure with square holes was chosen for its load-bearing capability. The stress con-
centrates around the edges of the holes and leads to localized buckling or bending under
load conditions [48]. This stress concentration can cause significant changes in resistance
in piezoresistive material [27]. The diamond (rhombus) lattice structure is studied for its
mechanical properties like elastic modulus and critical buckling load [49]. This structure is
also known for its self-supporting properties [49]. The elliptical structure was chosen due
to its absence of sharp edges or corners, which affects stress concentration differently com-
pared to the diamond holes. The auxetic structure has unique mechanical properties like
having a negative Poisson’s ratio [50] which offers high flexibility and a reduced propensity
to buckle compared to conventional cellular structures.

3.3. Fabrication of Sensors

The SLA 3D printer used in this study was Anycubic Photon D2. The digital light
projection (DLP) technique was used in this 3D printer, and UV-LED base light sources
provided the wavelength at 405 nm. The photopolymer resin was heated to 40 ◦C to
reduce the viscosity. This increased the flowability and made the resin easier to mix with
nanoparticles. Conductive nanoparticles were incorporated into the flexible resin for the
3D printing of piezoresistive material. The optimum quantity of conductive nanoparticles
in composite resin is important for forming a continuous conductive path and preventing
nanoparticle agglomeration. The resin was mixed with 2%wt graphene nanoparticles, and
the mixture was placed in a vortex mixer to ensure an even distribution of the nanoparticles.
The sample containing 2%wt of graphene, as recommended by 3Dresyn [44], showed a
significantly low resistance range, measuring below 0.5 MΩ.
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The mixture was sonicated in an ultrasonic bath to break down any nanoparticle
agglomerates and disperse them uniformly in the resin, resulting in a more homogenous
mixture. The mixtures were brought into a vacuum chamber to remove trapped air bub-
bles that could cause defects in the final product. Degassing is crucial for ensuring the
mechanical strength and integrity of the material. The prepared resin was further warmed
before printing. Printing parameters play key roles in SLA additive manufacturing because
unoptimized printing parameters affect the printed parts’ quality, accuracy, and mechanical
properties. These parameters include layer thickness, build-plate lift speed, and curing
time (Figure S1). The print speed can vary depending on the layer thickness. Thicker layers
can reduce print time but lower quality, while thinner layers ensure quality but increase
print time. The lift speed of the build plate significantly affects the printing of flexible
materials. A slower lift speed allows for adequate bonding time, thus improving layer
adhesion. It also allows the material to settle into the desired shape, ensuring accuracy
and precision. Lowering lift speed reduces the peeling force, which prevents damage to
the flexible resins when detaching from the FEP film. Thus, the lift speed is crucial for
preserving the structural integrity and dimensional accuracy of printed objects. Figure 3
shows the flowchart of the manufacturing process.
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The curing time determines how long the resin is exposed to the light source to
be cured. A shorter curing time can reduce the printing time but might lead to under-
cured parts, which can affect the mechanical properties and accuracy. On the other hand,
longer curing times bring out better quality but increase the printing time. Thus, finding
the optimum curing time is necessary to achieve optimal printed part quality. As the
nanoparticle blocks the UV light, the curing time is much longer than that of the neat
resin. Table 2 shows the optimum printing parameters used in this study for the flexible
neat resin.

Table 2. Printing parameters for composite resin.

Printing Layers Layer Thickness
(mm) Curing Time (s) Build Plate Lift

Speed (mm/min)

Bottom layers 0.05 90 120
Normal layers 0.05 40 60

The printing process was followed by postprocessing, which included cleaning of
uncured resin and post-curing. Post-curing involved additional exposure to UV light to
ensure complete curing and optimal material properties.

The cellular structures were designed to maintain a consistent void fraction of 28.44%
so that the topological variations only affect the results. There were slight variations in the
weight in the SLA 3D-printed samples. The weights of these printed cellular structures
were measured to range from 0.90 g to 0.92 g. This variation can be attributed to the
resolution of the 3D printer. Higher resolution results in greater printing accuracy.

Finally, the printed structures were annealed at 100 ◦C for 20 min in an oven. This
process can help to increase the electrical conductivity of the composite structures. An-
nealing reduces defects and residual stresses [51] within the material, which results in
a more stable and uniform structure. It also increases the degree of crystallinity in the
polymer matrix [52], which leads to better alignment of polymer chains and improved
charge carrier pathways. In addition, annealing improves the distribution and networking
of conductive fillers, creating continuous conductive pathways [53]. This thermal treatment
also enhances interfacial adhesion [54] and reduces the resistance between the polymer
matrix and conductive nanoparticles. The resistance of the reference sample was measured
before and after the annealing process and was found to have decreased by 10–20% through
the two-point probe method.

3.4. Electromechanical Testing Setup

When piezoresistive materials are compressed, there is a change in the resistance as
the distances between the conductive nanoparticles change. A specialized experimental
setup is necessary to measure the resistance of piezoresistive material under compression.
In Figure 4, an overview of the experimental setup is demonstrated.
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software is labeled as A in the figure. The ADMET Universal Testing Machine (UTM) used



Appl. Nano 2024, 5 265

to obtain the experimental results is labeled as B, the UTM control box is labeled as C, and
the digital multimeter (DMM) is labeled as D.

The compression platens were wrapped with copper film to measure the change
in conductivity during the compression test. Copper films were used due to their high
conductivity. These copper films were connected with DMM to measure the change in
resistance of the test sample.

The UTM sends an analog voltage on a scale from 0–10V corresponding to the maxi-
mum force and maximum position in MttestQuattro (version 7.01.04) software which are
defined by the user.

For multimeter options in NI LabVIEW 2021 software, the maximum resistance is
self-explanatory. This is the highest resistance one expects to measure. The sample rate is
dependent upon the integration time of the DMM. While faster sample rates can improve
data resolution, they may also introduce more noise and reduce measurement precision.
The accuracy of measurements can be influenced by the displacement rate and the DMM’s
capability to handle high-frequency data.

4. Finite Element Analysis
4.1. Material Model

The Mooney–Rivlin and Yeoh models are widely used hyperelastic material models
for finite element analysis. Both are constitutive models for rubber-like materials suitable
for large-strain elastic problems. The Mooney–Rivlin model for incompressible materi-
als is defined by a strain energy density function, which is described by the following
equation [55]:

U = C10
(

I1 − 3
)
+ C01

(
I2 − 3

)
(3)

where U is strain energy density, I1 and I2 are the first and second strain invariants, and C10
and C01 are empirical material parameters. The Yeoh model for incompressible materials
expands the Mooney–Rivlin model by incorporating a quadratic term to address nonlinear
effects [56]. The following equation represents this model and can be used to better capture
the material behavior under large deformations.

U = C10
(

I1 − 3
)
+ C20

(
I1 − 3

)2
+ C30

(
I1 − 3

)3 (4)

where C10, C20, and C30 are empirical material parameters.
The relationship between resistivity and stress had been derived from empirical results

obtained from the electromechanical testing of solid cubic materials. An empirical model
was fitted to the experimental results and was used to define the electrical properties in
the finite element model (FEM). Resistivity was modeled as a function of stress along
the applied load using the USDFLD subroutine. As a result, any induced stress caused
corresponding changes in resistivity. These properties were applied across the different
samples to study the effect of cellular geometries on the piezorestivity of these sensors.

4.2. Boundary Condition

The test samples, which include four different topologies and a reference sample,
were analyzed under a uniformly increasing pressure, ramping linearly from 0 to 30 kPa,
applied to the top surface of a rectangular plate. The objective was to observe the potential
difference at the top surface of the reference sample. Zero voltage was applied to the bottom
surface, while a constant current was applied to the top surface of the sample. To prevent
slippage, all rotational and translational movements of the bottom rectangular plate were
restricted in all directions, whereas the top plate used for compression was directed only
along the Y-axis (Figure S2). The compression plates were made of steel with Young’s
modulus of 210 GPa and a Poisson’s ratio of 0.3, representing the rigid plates (relative to
flexible samples) used for compressing the samples. Minor sliding in the contact area was
accounted for with a coefficient of friction of 0.3.
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4.3. Mesh

The FEA is based on the hybrid formulation of structural and electrical analysis. The
mesh element type selected for this analysis is Q3D8H which is a hexagonal element
type with eight nodes and compatible for hybrid analysis. As the results vary with mesh
element size, the FEA is conducted using three different element sizes. Initially, analysis
was performed on the cellular structures with an element’s length size of 1.05 mm. Later,
we refined the mesh by reducing the mesh element size to 0.53 mm to get better results. We
determined the stress value with respect to mesh element size for each structure. For this
comparison, we chose an analytical rigid body (Figure 5a) to compress the sample and a
steel plate as a substrate. As the analytical rigid body has no material properties, it has no
impact other than uniform compression. Then, we designed two steel plates: one for the
substrate and another one for compression instead of the analytical rigid body (Figure 5b).
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The stress value of the steel plate is comparatively higher due to its material properties.
After that, we refined the mesh element size to investigate the stress values. The finer we
refined the mesh the better results we got. In other words, the stress values converged as
we increased the element number. Figure 5c demonstrates the stress values with respect to
the number of elements for each topology.

5. Results and Discussion
5.1. Mechanical Behavior
5.1.1. Experimental Results

The stress and strain curves of the topologies (Figure 6) show the mechanical behavior
of samples under compression. The sample with the highest stiffness is the reference
sample, which has a solid cubic geometry with no porosity which represents the mechanical
behavior of the nanocomposite material used in this study. The auxetic structure exhibits
the highest flexibility for the given stress. The order of stiffness based on the experimental
analysis is reference > diamond > square > ellipse > auxetic structure.
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5.1.2. Finite Element Analysis Results

The mechanical behaviors of 3D-printed samples were analyzed by fitting the refer-
ence sample’s experimental stress–strain data with two hyperelastic material models, the
Mooney–Rivlin and Yeoh models. This evaluation aimed to compare their performance by
assessing how well they fit the experimental data.

The experimental stress–strain data were analyzed using nonlinear regression tech-
niques to fit both models and determine the best-fit parameters. The fitting process re-
sulted in the following parameters: for the Mooney–Rivlin model, C10 = −0.0234 MPa
and C01 = 44.44 MPa; for the Yeoh model, C10 = 0.0883 MPa, C20 = 29.60 MPa, and
C30 = 443.21 MPa. Figure 7 presents the stress–strain curves for the Mooney–Rivlin and
Yeoh models in comparison with the experimental results. The Mooney–Rivlin model failed
to accurately capture the experimental data, indicating that the material’s behavior is more
complex than the model can represent. In contrast, the Yeoh model provided a good fit up
to strain values exceeding 2%, due to the inclusion of the quadratic term and a cubic term,
which address nonlinear effects. This comparison helps in selecting the material model that
best captures the deformation behavior for a more accurate FEA using Abaqus (version
2023) software.
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Figure 7. Hyperelastic material models.

Each structure was subjected to the same uniform pressure, and a finite element
analysis was conducted to observe how the stress concentrates along the structures. Figure 8
demonstrates the localized stress concentration areas.
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The porous sections experienced more stress concentration due to their reduced cross-
section area. Pressure and engineering strain data were collected to compare the structural
behavior. The node at the middle of the top surface was selected to measure the average
displacement and strain in the pressure sensor. Figure 9 shows the stress–strain curve
results obtained from FEA for different structures.

1 

 

 
Figure 9. Finite element analysis results for all topologies.

Figure 10 shows the comparison between FEA and experimental results for different
structures. These results validate the use of FEA in evaluating the mechanical behavior of
various architectured samples for design optimization.
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Figure 10. Stress vs. strain curves from experimental and FEA of (a) reference sample, (b) square
structure, (c) diamond structure, (d) ellipse structure, (e) auxetic structure.

Minor discrepancies that can be observed, particularly in the square and ellipse struc-
tures, might be attributed to imperfections in the 3D-printed samples. These imperfections
include trapped air bubbles that were not fully eliminated in the degassing steps during
resin preparation for the 3D printing.

5.2. Electrical Behavior
5.2.1. Experimental Results

The composite piezoresistive structures showed significant sensitivity characteristics
under different stress levels. Figure 11 illustrates the absolute value of normalized resis-
tance change (∆R/R0) as a function of stress for various topologies. A preload of 0.1 N
was applied before initiating the electromechanical testing to establish adequate contact
between the compression platens and the sensor, resulting in the initial offset observed
in all the curves. This figure indicates that the composite structures had high sensitivity
at very low pressures. The sensitivity can be divided into two distinct regions. The first
region, up to 5 kPa, is marked by a steep curve for each topology, which indicates higher
piezoresistive sensitivity. Figure 11a demonstrates these two sensitive regions, and the
stress-free resistances are shown in Figure 11b. In the high-sensitive region, the order of
sensitivity was auxetic > ellipse > square > diamond > reference sample. This ranking
highlighted the superior performance of the auxetic structure, likely due to its unique
geometric configuration that enhances deformation under stress.
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Figure 11. (a) ∆R/R0 vs. stress curves for each topology, (b) initial resistance.

As pressure increased beyond 5 KPa and went up to 25 KPa, the rate of change of
resistance decreased, which indicated a lower sensitivity. The curves in this range were less
steep, showing reduced responsiveness of the structures to stress. Figure 12 highlights the
higher sensitivity region. The auxetic structure maintained the highest sensitivity in this
range, while the ellipse structure also showed significant sensitivity. The square structure
exhibited higher average sensitivity than the diamond structure in both regions.
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Figure 12. (a) Highly sensitive region, (b) average sensitivity at highly sensitive region.

The sensitivity was nonlinear in both sensitive regions. The average sensitivity for
the lower sensitive region is shown in Figure 13. The formation of a conductive network
between nanoparticles significantly influences the material’s resistance change. When the
piezoresistive material undergoes stress, the formation of the conductive network among
nanoparticles may change in a nonlinear manner [57]. A small change in the topology can
lead to significant alterations in the formation of the conductive network at lower stress
levels, resulting in a rapid decrease in resistance [58]. In addition, as the topology has a
significant impact on stress distribution, it can contribute to nonlinear resistance changes at
different stress levels [59].
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5.2.2. Finite Element Analysis Results

Since all samples were made from the same batch of nanocomposite resin, their
mechanical and electrical properties were consistent across all topologies. Any variations
in electrical properties are attributed to the different topological designs.

An empirical resistivity–stress model was developed to simulate the behavior of the
nanocomposite sensor in FEA. A power-law equation was fitted to the highly sensitive
region (first portion) of the curve shown in Figure 14, while a third-order polynomial
equation was fitted to the less sensitive region (second portion).
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Figure 14. Resistivity vs. stress curve fitting.

The power equation effectively captured the behavior in the higher sensitivity region.
This equation is represented as ρ = 17.442·σ1

−0.599, where R2 = 0.9854, ‘ρ’ denotes resistivity,
and ‘σ1’ denotes stress along the compression direction, as illustrated in Figure 15 (left).
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Figure 15. First equation fitting (Left), second equation fitting (Right).

A third-order polynomial equation was fitted for the lower sensitivity region. This
equation is expressed as ρ = −4,600,000·σ1

3 + 377,000·σ1
2 − 10,500·σ1 + 342.39, where

R2 = 0.9917, as shown in Figure 15 (right).
The polynomial equation provided a more detailed fit for the data in this region,

capturing the subtle changes in resistivity under stress.
Figure 16a shows the results of the FEA results for the ∆R/R0 vs. stress curve across

all topologies. The sensitive region in the FEA results reflects the variation in sensitivity
among the different topologies. However, unlike the experimental study, the lower sensitive
region in the FEA results did not show a distinguishable order of sensitivity. In the lower
sensitive region, the variation in stress was not significant enough (Figure 16b) to create
distinguishable differences in the plots for the different topologies. Consequently, the FEA
simulations did not demonstrate a clear differentiation in sensitivity in this range, which
reflected the inherent limitations of the model in capturing the nuanced behavior observed
in experimental setups.
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Figure 16. (a) ∆R/R0 vs. stress curves for all topologies (FEA), (b) maximum stress for cellular
structures.

In real-world samples, factors like material inhomogeneity, contact resistance, and
environmental factors can all affect resistivity measurements and may not be accurately
captured in FEA. Figure 17 (left) highlights the sensitivity for the higher sensitivity region
of the topologies. Figure 17 (right) shows the maximum recorded sensitivity of the cellular
structures, aligning with results in the sensitive region from the experimental study.
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Figure 17. ∆R/R0 vs. stress curves at high-sensitivity region (left), maximum sensitivity for each
topology (right).

The FEA results closely matched the experimental results in the higher sensitivity
region, confirming the accuracy of the FEA model in capturing the fundamental sensitivity
trends. However, in the higher stress range, the differences highlighted the complexity
of real-world factors that FEA simulations might not fully account for. Despite these
variations, the FEA offered valuable insights into the behavior in the higher sensitivity
region, reinforcing the experimental findings and providing an additional perspective on
the performance of the different topological configurations.

6. Parametric Study

Parametric studies can play a significant role in developing flexible sensors [60] by
analyzing how specific geometric parameters influence the sensitivity and flexibility of
the sensors. This approach helps to determine which configurations provide the best
performance by systematically changing the design parameters of cellular structures. In
this study, we selected the ellipse and diamond structure for a parametric study to explore
the effects of varying its parameters while maintaining the mass constant across all designs.

Firstly, six different ellipse structures were designed (Figure S3), each with unique
aspect ratios of the semi-major axis ‘a’ and the semi-minor axis ‘b’ (Table 3).
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Table 3. Ellipse structure with varying parameters.

Ellipse Structure Parameters

ES01 a = 1.5b
ES02 a = 2b
ES03 a = 2.5b
ES04 2.5a = b
ES05 1.5a = b
ES06 a = b

The study aimed to determine how changes in the ellipse’s geometry with varying
ratios of a to b influence its piezoresistive sensitivity. Maintaining consistent mass across
all designs ensured that any observed changes in sensitivity were solely due to geometric
variations.

The stress–strain graph (Figure 18a) for the six ellipse structures demonstrates distinct
differences in their mechanical behavior. The curve for ES03 was notably different with
the lowest stiffness. ES01 shows moderate stiffness while ES04 has the highest stiffness.
Figure 18b illustrates the ∆R/R0 vs. stress curves for each topology, extending up to
around 40 kPa and highlighting the most sensitive region up to 7 kPa in Figure 18c.
This higher sensitivity region was critical, as it demonstrated the material’s response
to lower stress levels where significant changes in resistance occurred. The order of
piezoresistive sensitivity followed the opposite order of stiffness, with ES03 showing the
highest sensitivity, followed by ES02, ES01, ES05, ES06, and ES04 (Figure 18d).
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This order highlighted the impact of the semi-major axis length (a) on sensitivity. As
the ratio of (a) to (b) increased, the piezoresistive sensitivity also increased. Specifically,
ES03, with the largest value of semi-major axis (a) relative to (b), exhibited the highest
sensitivity, while ES04, with the smallest ratio, showed the lowest sensitivity.

The hierarchy of stiffness from lowest to highest was ES03, ES02, ES01, ES05, ES06, and
ES04. This order demonstrated how changes in the aspect ratios of the ellipse structures
impacted their mechanical and piezoresistive performance. In materials with lower stiffness,
stress tends to localize in specific regions, leading to concentrated areas of mechanical
deformation. This localization enhances the piezoresistive response, as changes in electrical
resistance are more pronounced where stress is concentrated. Structures like ES03, which
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exhibited the lowest stiffness, also showed the highest piezoresistive sensitivity due to these
localized stress areas (Figure S5). This correlation suggested that by optimizing structural
design to enhance stress concentration in targeted zones, the sensor’s sensitivity can be
improved significantly.

To further validate the findings from the ellipse structure, we designed five different
diamond structures (Figure S4) with different diagonal lengths (‘p’ and ‘q’) (Table 4) and
analyzed them.

Table 4. Diamond structure with varying parameters.

Diamond Structure Parameters

DS01 p = 3q
DS02 p = 2q
DS03 p = q
DS04 2p = q
DS05 3p = q

These structures exhibited a similar trend in the relationship between stiffness and
sensitivity (Figure 19). Specifically, the order of stiffness was DS01 > DS02 > DS03 > DS04 >
DS05 (Figure S6), while the order of piezoresistivity followed the reverse trend, which was
DS01 < DS02 < DS03 < DS04 < DS05.

Appl. Nano 2024, 5, FOR PEER REVIEW 18 
 

 

 
Figure 19. (a) Stress vs. strain curves for different diamond structures. (b) ΔR/R0 vs. stress curves, 
(c) ΔR/R0 vs. stress curves at highly sensitive regions, (d) the average sensitivities of the topologies 
in the higher sensitivity region. 

The hierarchy showed a consistent correlation between reduced stiffness and 
enhanced sensitivity, which we also observed in the ellipse structures. This consistency 
strengthens the conclusion that geometric parameters significantly influence mechanical 
behavior and piezoresistive performance. 

The parameters of the structures directly impacted how mechanical stress affected 
electrical resistance. The material’s sensitivity can be increased and made to be more 
responsive to external forces by adjusting these parameters strategically. This parametric 
study helped us understand how their shape and size affected the sensitivity, which is 
vital for creating efficient sensor designs. 

7. Conclusions 

In this paper, we investigated how different topological configurations affected the 
piezoresistive sensitivity of nanocomposite pressure sensors. We designed four 3D 
printable cellular structures, namely square, diamond, ellipse, and auxetic, and fabricated 
those with SLA additive manufacturing techniques. The electromechanical testing 
showed a comparative analysis of both the mechanical and piezoresistive properties of 
the topologies. The auxetic structure showed the lowest stiffness and highest sensitivity 
among the tested configurations. The nonlinear sensitivity was significantly higher in low-
stress regions. The hyperelastic Yeoh model demonstrated a beĴer fit for capturing the 
material’s nonlinear behavior in the experimental study and was used as the material 
model for the FE model. The FE model was validated by the experimental results for the 
higher sensitivity region from the sensitivity order auxetic > ellipse > square > diamond > 
reference. FEA provided insights into stress concentration and distribution within the 
structures. Minor discrepancies in the square and ellipse structures were aĴributed to 
imperfections in the 3D-printed samples. Though the material system and void fraction 
were consistent for all cellular structures, the piezoresistivity varied significantly with the 
topological designs, highlighting the importance of topological design-centric approaches 
in tailoring piezoresistive performance. 

To further leverage the topological design-centric approach, we conducted a detailed 
parametric study on the ellipse structure to explore how specific design parameters within 
the cellular structure affect piezoresistivity. Specifically, the ES03 structure, with the 
largest aspect ratio, exhibited the highest sensitivity, while the ES04 structure, with the 

0

5

10

15

20

25

30

35

40

45

50

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

S
tr

es
s(

kP
a)

Strain

DS01
DS02
DS03
DS04
DS05

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

Δ
R

/R
0

Stress(kPa)

DS04

DS03

DS05

DS02

DS01

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

Δ
R

/R
0

Stress(kPa)

DS04

DS03

DS05

DS02

DS01

0.09

0.095

0.1

0.105

0.11

0.115

0.12

DS01 DS02 DS03 DS04 DS05

A
ve

ra
ge

 S
en

si
ti

vi
ty

(k
P

a-1
)

Topologies

(c) (d)

Figure 19. (a) Stress vs. strain curves for different diamond structures. (b) ∆R/R0 vs. stress curves,
(c) ∆R/R0 vs. stress curves at highly sensitive regions, (d) the average sensitivities of the topologies
in the higher sensitivity region.

The hierarchy showed a consistent correlation between reduced stiffness and enhanced
sensitivity, which we also observed in the ellipse structures. This consistency strengthens
the conclusion that geometric parameters significantly influence mechanical behavior and
piezoresistive performance.

The parameters of the structures directly impacted how mechanical stress affected
electrical resistance. The material’s sensitivity can be increased and made to be more
responsive to external forces by adjusting these parameters strategically. This parametric
study helped us understand how their shape and size affected the sensitivity, which is vital
for creating efficient sensor designs.
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7. Conclusions

In this paper, we investigated how different topological configurations affected the
piezoresistive sensitivity of nanocomposite pressure sensors. We designed four 3D print-
able cellular structures, namely square, diamond, ellipse, and auxetic, and fabricated those
with SLA additive manufacturing techniques. The electromechanical testing showed a
comparative analysis of both the mechanical and piezoresistive properties of the topologies.
The auxetic structure showed the lowest stiffness and highest sensitivity among the tested
configurations. The nonlinear sensitivity was significantly higher in low-stress regions. The
hyperelastic Yeoh model demonstrated a better fit for capturing the material’s nonlinear
behavior in the experimental study and was used as the material model for the FE model.
The FE model was validated by the experimental results for the higher sensitivity region
from the sensitivity order auxetic > ellipse > square > diamond > reference. FEA provided
insights into stress concentration and distribution within the structures. Minor discrepan-
cies in the square and ellipse structures were attributed to imperfections in the 3D-printed
samples. Though the material system and void fraction were consistent for all cellular
structures, the piezoresistivity varied significantly with the topological designs, highlight-
ing the importance of topological design-centric approaches in tailoring piezoresistive
performance.

To further leverage the topological design-centric approach, we conducted a detailed
parametric study on the ellipse structure to explore how specific design parameters within
the cellular structure affect piezoresistivity. Specifically, the ES03 structure, with the largest
aspect ratio, exhibited the highest sensitivity, while the ES04 structure, with the smallest
ratio, showed the lowest sensitivity. The stress–strain and resistivity–stress curves indicated
that higher aspect ratios led to greater piezoresistive response.

Overall, the research highlighted the importance of topological design-centric ap-
proaches in tailoring piezoresistive performance and provided a systematic approach to
understanding and optimizing the piezoresistive sensitivity of composite pressure sensors.
This approach showed significant promise for developing highly sensitive, customized
sensors in areas such as healthcare monitoring and wearable electronics, where precision
and adaptability are crucial.
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