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Abstract: The field of cardio-oncology is an expanding frontier within cardiovascular medicine, and
the need for evidence-based guidelines is apparent. One of the emerging focuses within cardio-
oncology is the concomitant use of medications for cardioprotection in the setting of chemotherapy
regimens that have known cardiovascular toxicity. While clinical trials focusing on cardioprotection
during chemotherapy are sparse, an inaugural trial exploring the prophylactic potential of Sodium-
Glucose Cotransporter-2 inhibitors (SGLT2is) for anthracycline (ANT)-induced cardiotoxicity has
recently commenced. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, though less
studied in this oncology demographic, have exhibited promise in preclinical studies for conferring
cardiac protection during non-ischemic toxic insults. While primarily used to reduce low-density
lipoprotein, PCSK9 inhibitors exhibit pleiotropic effects, including the attenuation of inflammation,
reactive oxygen species, and endothelial dysfunction. In ANT-induced cardiotoxicity, these same
processes are accelerated, resulting in premature termination of treatment, chronic cardiovascular
sequelae, heart failure, and/or death. This review serves a dual purpose: firstly, to provide a concise
overview of the mechanisms implicated in ANT-induced cardiotoxicity, and, finally, to summarize
the existing preclinical data supporting the theoretical possibility of the cardioprotective effects of
PCSK9 inhibition in ANT-induced cardiotoxicity.
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1. Introduction

Anthracyclines (ANT), including doxorubicin (DOX), daunorubicin, epirubicin, and
idarubicin, are chemotherapeutic drugs that have been widely effective in the treatment of
various hematologic and solid malignancies since their introduction into clinical oncology
in the 1960s. In the early stages of their therapeutic utilization, ANT-induced cardiotoxicity
became a well-documented adverse effect that occurs in a single- and cumulative-dose-
dependent manner [1].

Even after several decades of research, dexrazoxane (DZR) remains the only Food
and Drug Administration (FDA)-approved cardioprotective medication for ANT-induced
cardiac toxicity. It is exclusively approved for a narrow demographic, specifically adults
with advanced metastatic breast cancer with ≥300 milligrams per square meter (mg/m2)
of lifetime doxorubicin exposure, yet requiring additional ANT maintenance therapy [2].
Current cardio-oncology guidelines and expert recommendations regarding prophylactic
interventions lack compelling evidence from properly powered clinical trials. Notably, con-
ventional heart failure medications, including angiotensin-converting enzyme inhibitors,
beta-blockers, angiotensin receptor blockers, and statins, demonstrate negative or conflict-
ing results [3,4].
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In patients both with and without type two diabetes mellitus, Sodium-Glucose Cotrans
porter-2 inhibitors (SGLT2is) exert numerous cardiovascular benefits and have been shown
to reduce the incidence of cardiovascular death and heart failure exacerbations leading
to hospitalizations [5]. The Empagliflozin in the Prevention of Cardiotoxicity in Cancer
Patients Undergoing Chemotherapy Based on Anthracyclines (EMPACT; NCT05271162) [6]
is an inaugural randomized, multi-center, placebo-controlled, double-blind clinical study
investigating the use of prophylactic empagliflozin for ANT-induced cardiotoxicity. Though
less studied in this oncology demographic, proprotein convertase subtilisin/kexin type 9
(PCSK9) inhibitors have produced promising results in preclinical studies for conferring
cardiac protection in the setting of non-ischemic toxic insults.

PCSK9 is a proprotein convertase that binds to, and subsequently degrades low-
density lipoprotein (LDL) receptors on the surface of hepatocytes. Evolocumab and
alirocumab are monoclonal antibodies that inhibit the normal function of PCSK9. This
inhibition increases the presence of LDL receptors in the liver, allowing for increased uptake
of LDL from the systemic and portal circulation, making it an effective drug for treating hy-
percholesteremia. While primarily used for its LDL-reducing capacities, PCSK9 inhibitors,
much like SGLT2is, exhibit pleiotropic effects, including the attenuation of inflammation,
reactive oxygen species (ROS), and endothelial dysfunction.

In ANT-induced cardiotoxicity, these same processes are accelerated, resulting in
premature termination of treatment, chronic cardiovascular sequelae, heart failure, and/or
death. Recent evidence [7–9] suggests that PCSK9 inhibitors may play a role in prophylactic
cardioprotection in patients undergoing ANT-based chemotherapies. However, presently
no clinical trials involving PCSK9 inhibitors are being conducted for oncology patients that
have been exposed to anthracyclines. This review aims to succinctly describe the mech-
anisms involved in ANT-induced cardiotoxicity, followed by a summary of the existing
preclinical data on the cardioprotective effects of PCSK9 inhibition.

2. Mechanisms of ANT-Induced Cardiotoxicity

ANT induce their cardiotoxic effects through several distinct yet related mech-
anisms (Figure 1), namely the production of ROS, mitochondrial dysfunction, bind-
ing to deoxyribonucleic acid (DNA) and topoisomerase II (Top2), as well as inducing
innate inflammation.
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Figure 1. Mechanisms of Anthracycline-induced Cardiotoxicity. Anthracyclines are known to
induce mitochondrial dysfunction directly via calcium dysregulation in addition to other toxic
mechanisms. Anthracyclines are also capable of generating increased reactive oxygen species
and non-specific, innate-mediated inflammation. These mechanisms consolidate into increased
lipid peroxidation, affecting cardiomyocytes and microvasculature, resulting in chemotherapy-
induced cardiomyopathy. Abbreviations: Ca2+—calcium; DOX—doxorubicin; ETC—electron trans-
port chain; mitDNA—mitochondrial DNA; mPTP—mitochondrial permeability transition pore;
NLRP3—nucleotide oligomerization domain-like receptor protein inflammasome; NF-κB—nuclear
Factor kappa-light-chain-enhancer of activated B cells; ROS—reactive oxygen species; TLR—toll-like
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receptor. Illustrations utilized with permission from Microsoft (Word, Version 2408 Build
16.0.17928.20114) for academic/educational purposes.

2.1. Reactive Oxygen Species

The primary cardiotoxic mechanism associated with DOX is the production of free
radicals and ROS. ANT causes free radical production through two distinct redox cycling
pathways: an enzymatic pathway involving reduced nicotinamide adenine dinucleotide
phosphate (NADPH)-Cytochrome P-450 reductase within the mitochondrial respiratory
chain, and a non-enzymatic pathway dependent on iron and the Fenton reaction [10].
These radicals surpass the heart’s antioxidant defense systems, resulting in cardiomyocyte
damage. Cardiomyocytes operate predominately via oxidative metabolism, necessitating a
higher density of mitochondria compared to other cell types. DOX-induced free radical
generation induces mitochondrial dysfunction, which leads to a cycle of organelle damage,
oxidative stress, and ultimately myocyte apoptosis [1].

2.2. ANT-Induced Mitochondrial Dysfunction
2.2.1. ANT-Induced Oxidative Stress

DOX is a cationic complex molecule with a high affinity for forming a DOX-cardiolipin
complex. Cardiolipin is an anionic phospholipid within the inner mitochondrial membrane,
and the DOX-cardiolipin complex impairs mitochondrial functioning [11,12]. In addition,
DOX has a propensity to accumulate within mitochondria and nuclei, resulting in mito-
chondrial toxicity through various mechanisms. DOX can directly affect the respiratory
chain by inhibiting complex I and other enzymes necessary for oxidative phosphoryla-
tion [13]. The overwhelming production of ROS, in part due to disruption of the respiratory
chain, further propagates mitochondrial damage and results in lipid peroxidation. Cardi-
olipin peroxidation from ROS stimulates apoptotic pathways and subsequent myocyte cell
death [14,15].

2.2.2. Mitochondrial Permeability Transition Pore

The mitochondrial permeability transition pore (mPTP) is localized to the inner mito-
chondrial membrane and is regulated by intramitochondrial calcium (Ca2+) accumulation
and redox imbalance [16]. Studies have shown that in conditions of mitochondrial calcium
overload, the mPTP opens and permits the entrance of small molecular weight cofactors
and cations, causing disruption of metabolic gradients between the mitochondria and
cytosol, leading to mitochondrial swelling and eventual rupture of the outer membrane.
In the context of myocardial tissue damage from DOX, intramitochondrial Ca2+ increases
concomitantly with mitochondrial dysfunction, causing the mPTP to release pro-apoptotic
proteins that activate apoptotic and necrotic cell death pathways [17]. The amphipathic
properties of DOX facilitate its easy passage across organelle membranes, resulting in
substantial accumulation in the mitochondria at concentrations exceeding 100 times that
of normal plasma levels [18]. DOX significantly disrupts oxidative phosphorylation, as
described above, and this stress can trigger the opening of the mPTP and subsequently
lead to cell apoptosis or necrosis.

2.3. Doxorubicin-DNA Complexes and Topoisomerase II Inhibition

DOX plays a crucial role in inhibiting Top2, which is vital for DNA replication and
chromosome structure maintenance. DOX targets two distinct isozymes of Top2: Top2a
and Top2b. Top2a is only expressed in proliferating and tumor cells, and plays a role in
DNA replication, chromosome degradation, condensation, and segregation. Top2b, on the
other hand, is expressed in all healthy cells, including non-mitotic cells and contributes
to transcriptional regulation [19]. DOX targets the Top2a isozyme creating a Top2-DOX-
DNA cleavage complex that leads to lethal double-strand DNA breaks, initiating cardiac
cell death cascades. This cleavage complex also stimulates ROS production, as well as
dysfunction of mitochondrial biogenesis, further promoting cardiac cellular disruption [20].
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The mechanism of dexrazoxane with respect to cardioprotection from DOX is hypothesized
to reside within iron chelation, as well as depletion of Top2a and Top2b [21], the latter
mitigating DNA damage.

2.4. ANT-Induced Inflammation

The culmination of DOX-induced ROS formation, mitochondrial dysfunction, and
myocyte DNA damage manifests as innate-mediated inflammation of the myocardium.

2.4.1. Toll-like Receptors and NF-κB

When ANT damages cardiac myocytes, a continuous release of damage-associated
molecular patterns such as the high-mobility group protein B1 [22] ensues. This protein is
capable of binding to toll-like receptors (TLRs) on myeloid cells, resulting in the recruitment
of the adaptor protein molecule myeloid differentiation primary response 88 (MyD88) to
the receptor-ligand complex [23]. Through signal transduction, the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) induces pro-inflammatory cytokines.
TLR2 and TLR4 are MyD88-mediated signaling pathways implicated in the pathogenesis
of DOX-induced cardiomyopathy in mice [24,25], myocardial inflammation, ischemia-
reperfusion (I/R) injury, and heart failure [23]. The transcription factor GATA-4 regulates
cardiac myocyte gene expression as well as apoptosis and cell survival [26]. DOX-mediated
activation of the TLR4 receptor down-regulates GATA4 activity and subsequently induces
myocyte apoptosis [25,26].

2.4.2. NOD-like Receptor Protein Inflammasome

The nucleotide oligomerization domain (NOD)-like receptor protein (NLRP3) inflam-
masome has been aggressively studied due to its implication in numerous inflammatory-
related disorders [27]. The inflammasome is activated by harmful stimuli such as pathogens
and/or cellular stress, which causes the activation of caspase-1 and which results in the up-
regulation of proinflammatory cytokines Interleukin (IL)-1β/IL-18 [27,28]. These cytokines
activate cardiomyocyte apoptosis pathways, resulting in adverse cardiac remodeling and
impaired contractility. DOX has been shown to enhance the activation of the NLRP3 inflam-
masome, with previous studies demonstrating dose-dependent increases in IL-1β levels in
patients treated with ANT regimens [29].

2.5. Emerging Research and Clinical Perspectives

DZR was approved by the FDA in 1997 for its cardioprotective effects against ANT-
induced cardiotoxicity, based on the findings of two multicenter, double-blind studies
(Multicenter Trials 088001 and 088006). It has long been hypothesized that DZR mitigates
cardiotoxicity by chelating iron, thereby reducing ROS production through the Fenton reac-
tion. Recent evidence also indicates that DZR depletes Top2a and Top2b isoforms, further
helping to mitigate cardiomyocyte DNA damage. In 534 patients with advanced breast
cancer, DOX with DZR showed a significant reduction in left ventricular ejection fraction
(LVEF) decline from baseline, as well as new onset congestive heart failure during treatment
when compared to DOX and a placebo treatment arm [30]. Clinical trials involving statins,
angiotensin II receptor antagonists, beta blockers [31], and angiotensin-converting enzyme
inhibitors [32] have shown no significant differences between treatment arms at worst,
and only transient protective effects with conflicting results at best, with no reduction in
heart failure incidence. Clinically, this positions DZR as the only proven cardioprotective
medication for patients receiving ANT-based treatments. It is specifically recommended
for the prevention of toxicity in a select group of adults classified as high and very high
risk, particularly those with exposure levels of ≥300 mg/m2 [33]. Zheng and Zhan present
a compelling clinical perspective, asserting that DZR has the strongest evidence for cardio-
protection and should be considered for appropriate patients. They recommend continuing
neurohormonal antagonists for other cardiovascular indications, and suggest initiating
statins in higher-risk patients, given some benefits observed in clinical trials [31].



Hearts 2024, 5 379

The various mechanisms underlying ANT-induced cardiotoxicity highlight the neces-
sity of targeting multiple pathways while addressing their self-perpetuating nature and
how they propagate one another. These mechanisms likely explain why DZR can attenuate
cardiotoxicity but not completely prevent it. Similar to guideline-directed medical therapy,
polypharmacy modulates pathologic pathways, and emerging research and perspectives
are suggesting polypharmacy assists with cardioprotection synergistically. The eagerly
anticipated results of the inaugural EMPACT trial will shed light on how the known anti-
inflammatory and metabolic effects, as well as the cardioprotective properties of SGLT2is,
may benefit patients receiving ANT treatments.

3. PCSK9 Inhibitors in ANT-Induced Cardiotoxicity
3.1. Protection from Oxidative Stress

For the past five decades, the leading hypothesis explaining ANT-induced cardiotoxi-
city has focused on redox cycling pathways and the iron-mediated formation of cardiac
oxidative stress [1,34]. Despite achieving some success in cellular studies and acute ani-
mal models [35], the mitigation of ANT-induced cardiotoxicity using established antiox-
idants has proven underwhelming with regard to preventing cardiac damage in both
chronic-exposure animal models and oncology patients [36]. Preclinical leads with strong
promise to mitigate ANT-induced cardiotoxicity have yet to translate to effective clinical
medicine. Clinical trials investigating the protective and reversal effects of antioxidants
on cardiotoxicity have examined various substances, including N-acetylcysteine [37,38],
oral glutathione [39], vitamin E [40], flavonoids [41] (Table 1), as well as candesartan
and carvedilol [42–44]. Results have varied, with some showing negative outcomes or
conflicting results, particularly regarding the effectiveness of carvedilol.

Table 1. Antioxidants Evaluated for Cardioprotection from Anthracycline-induced Toxicity. Four
major antioxidants are highlighted with the relevant associated references. The mechanism of action
is described as well as the hypothesized cardioprotective effect. Finally, the result is described; none
of the four antioxidants had clinically significant effects with regard to ANT-induced cardiotoxicity.
Abbreviations: ANT = anthracycline; LDL = low-density lipoprotein; ROS = reactive oxygen species;
iNOS = inducible nitric oxide synthase.

Compound
[Reference #] Basic Mechanism of Action Speculated Cardioprotective

Effect Result

N-acetylcysteine
[37,38]

Precursor of L-cysteine, stimulates
intracellular glutathione synthesis,

and prevents activation of
pro-inflammatory cytokines

Increases glutathione
production, enhances

antioxidant activity, and
mitigates myocyte damage

N-acetylcysteine did not reverse
ANT-induced cardiotoxicity in

disease-free sarcoma patients and
showed no change in heart

failure incidence

Glutathione
[39]

Reduces cellular damage and
oxidative stress by directly

interacting with free radicals and
intracellular processes via ROS

scavenging, regenerating
antioxidants, and acting as a redox
buffer to maintain cellular balance

Decreases the amount of
oxidative stress/free radical
formation triggered by acute
and chronic cardiac disease

processes such as
myocardial infarction,

ischemia/reperfusion injury,
toxin-mediated damage, and

heart failure

Oral glutathione did not protect
against local or systemic oxidative
stress induced by ANT in women

with breast cancer

Vitamin E
[40]

Interrupts the destruction mediated
by free radicals as well as

lipid oxidation

Decreased oxidation of LDL in
coronary vasculature

Vitamin E is ineffective in
preventing ANT-induced

cardiotoxicity

Flavonoids
[41]

Blocks certain intracellular
ROS-generating enzymes and reduces

inflammation via inhibition of
prostaglandin synthesis and iNOS

Reduction of oxidative stress
during cardiomyocyte injury

High-dose flavonoids potentially
worsen ANT-induced

cardiotoxicity
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Exhaustive literature searches reveal no publicly available studies examining
the antioxidant potential of PCSK9 inhibitors in the context of ANT-induced car-
diotoxicity. However, the non-LDL receptor-based mechanisms of PCSK9 antago-
nism likely overlap with the known pathways that mediate ANT-induced cardiotox-
icity. This suggests a potential prophylactic use of PCSK9 inhibitors in preventing
chemotherapy-mediated cardiotoxicity.

PCSK9′s non-LDL receptor-mediated pathways have yet to be elucidated in detail
regarding the mechanisms underlying oxidative stress and inflammation, yet their asso-
ciations are not lacking evidence. Studies have implicated PCSK9s in the generation of,
and cross-talk between, oxidative stress and chronic inflammation, especially concerning
atherosclerosis formation [45,46]. Ding et al. showed compelling evidence that there is bidi-
rectional crosstalk between PCSK9 and ROS generation. Under low shear stress conditions,
vascular smooth muscle and endothelial cells increased PCSK9 expression as well as the
generation of ROS [47].

Interestingly, specific NADPH oxidase inhibitors (diphenylene-iodonium chloride
and apocynin) caused a significant reduction in PCSK9 expression. Conversely, PCSK9
knockdown significantly decreased the generation of ROS while PCSK9 overexpression
increased ROS generation in a dose-dependent manner [47]. Another study found that
prophylactic administration of evolocumab to human umbilical vein endothelial cells
exposed to H2O2 had antioxidant and cytoprotective effects, evidenced by significantly
decreased hydroperoxide concentrations, decreased lipid peroxidation caused by ROS, and
increased ferric-reducing antioxidant power [48]. Inhibition of PCSK9 with alirocumab in
rats with alcohol-mediated liver damage attenuated 4-hydroxy-2-nonenal (a byproduct
of lipid peroxidation leading to cellular apoptosis of hepatocytes), showing antioxidant
certainty of these drugs. Myeloperoxidase-positive neutrophils that generate ROS were
also significantly decreased in the liver when treated with alirocumab, compared to control
groups [49].

3.2. Protection from Mitochondrial Dysfunction

A detrimental positive-feedback loop ensues as ANT induces mitochondrial damage,
while compromised mitochondria produce ROS, contributing to chronic cardiotoxicity.
Fission-fusion dynamics maintain mitochondrial health during physiologic and environ-
mental stress [50]. Myocytes are heavily reliant on oxidative metabolism for energy gener-
ation, with mitochondria comprising approximately 36% of cardiac cellular volume [51].
The heart’s high mitochondrial density and reliance on proper mitochondrial function
render it particularly susceptible to damage when ANT causes widespread mitochondrial
dysfunction [1]. Data support the view that inhibiting PCSK9 offers the promise of mitigat-
ing mitochondrial malfunction, which may be extrapolated to prophylactically alleviate
ANT-induced cardiotoxicity.

PCSK9 overexpression has been linked to mitochondrial dysfunction. Elevated PCSK9
levels in vascular smooth muscle have been associated with mitochondrial apoptosis, as
well as mitochondrial fission and subsequent mitochondrial dysfunction [52]. There is
a bidirectional cross-talk between PCSK9 and mitochondrial DNA (mitDNA) damage,
wherein inhibiting PCSK9 reduces mitDNA damage, while inducing mitDNA damage
increases PCSK9 levels, ultimately causing cellular apoptosis [53]. In a murine model, Li
et al. demonstrated that PCSK9 inhibition alleviated the deleterious effects of oxidized (ox)-
LDL by decreasing dynamin-related protein 1-mediated mitochondrial fission, ROS, and
cardiomyocyte apoptosis. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1)
knockdown also decreased ox-LDL/LOX-1 myocardial damage and PCSK9 expression,
which is overexpressed in the presence of ox-LDL [54]. PCSK9 also regulates pyroptosis
through mitDNA damage and activation of the NLRP3 inflammasomes [55]. Interest-
ingly, PCSK9 inhibits ubiquinol-cytochrome c reductase core protein 1 protein expression
(mitochondrial respiratory chain complex III subunit necessary for proper mitochondrial
function), resulting in mitochondrial dysfunction and increased oxidative stress [56].
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I/R injury shares mechanisms similar to those driving ANT-induced cardiotoxicity. In
Sprague-Dawley rats (10–12 weeks old) undergoing cardiac I/R injury, elevated PCSK9
levels triggered mitophagy through the Bcl-2/adenovirus E1B 19-kDa interacting protein
pathway in cardiomyocytes [57]. This overexpression also induced autophagy in cardiomy-
ocytes, exacerbating the progression of myocardial infarction. Additionally, heightened
PCSK9 expression worsened reperfusion injury, leading to increased myocardial scarring
and cardiac dysfunction. However, prophylactic administration of evolocumab resulted in
decreased mitophagy and autophagy, ultimately alleviating both I/R injury and cardiac
dysfunction [57].

3.3. Protection from Inflammation

Inflammatory insults to cardiac tissue and ineffective reparative responses set the stage
for chronic inflammation that culminates in progressive cardiovascular disease [58]. Both
animal and clinical studies indicate that PCSK9 levels correlate with increased vascular
and systemic inflammation, which can be mitigated by PCSK9 deficiency or inhibition [59].
Although the mechanisms have not been fully elucidated, the Canakinumab Antiinflamma-
tory Thrombosis Outcome Study (CANTOS; NCT01327846) trial demonstrated that chronic
inflammation of the myocardium plays a significant role in heart failure pathophysiology.
When compared to placebo, patients with previous myocardial infarction and who were
given canakinumab, a monoclonal antibody directed against IL-1β, had a significantly
lower incidence of recurrent cardiovascular events, as well as significantly lower high
sensitivity C-reactive protein [60].

Studies have demonstrated that PCSK9 stimulates the NLRP3 inflammasome path-
way [55,61,62] and that NLRP3 activation increases PCSK9 secretion, predominantly
through IL-1β/IL-18 cytokine signaling [63]. Overexpression of PCSK9 is associated with
the transformation of cardiac fibroblasts into myofibroblasts and cardiac fibrosis [64], as
well as vascular and systemic inflammation [59]. Interestingly, the cardiovascular outcomes
in the CANTOS trial through blocking IL-1β were similar to outcomes seen in landmark
studies that investigated clinical outcomes with PCSK9 inhibition [65,66].

DOX upregulates the IL-1 signaling pathway and increases local and systemic in-
flammation, which are responsible for its dose-dependent adverse effects [67]. A study
involving a murine model was conducted, which utilized a recombinant human IL-1 re-
ceptor antagonist, and it showed significant improvements in LVEF, decreased markers of
cardiotoxicity (troponin I and malondialdehyde), and decreased myofibrillar loss in mice
injected with DOX [68]. Another study was conducted utilizing a direct NLRP3 inflam-
masome inhibitor (JC121), which showed similar efficacy in limiting myocardial fibrosis
and left ventricular systolic dysfunction in DOX-injected mice [69]. This demonstrates the
pivotal role that the NLRP3 inflammasome plays in the cardiotoxic effects of anthracycline
regimens. Given their activation by PCSK9, it also offers insight into PCSK9 inhibition as a
potential therapy that can mitigate these inflammatory effects.

Quagliariello et al. [7] exposed a human fetal cardiomyocyte cell line to DOX alone or
in sequence with trastuzumab, followed by ± co-incubation with evolocumab. They found
that evolocumab enhanced cell viability by 35–43% (p < 0.05) in both DOX ± trastuzumab
groups compared to the groups that did not receive evolocumab. Pro-inflammatory studies
showed that evolocumab mitigated the cardiotoxicity of DOX alone and with trastuzumab.
A similar study found that human fetal cardiomyocytes exposed to DOX, trastuzumab, and
nivolumab ± evolocumab co-incubation improved cell viability from 38 to 59% (p < 0.05),
and downregulated cardiotoxic pro-inflammatory pathways [8].

Another study proposed that the cardioprotective effects of SGLT2is may be due,
in part, to PCSK9 pathways. In mice treated with DOX and dapagliflozin for 10 days,
there was a statistically significant reduction in PCSK9 levels, IL-1β, and CRP levels
compared to the DOX group alone, suggesting that there may be SGLT2/PCSK9 cross-talk
pathways [9]. The dapagliflozin + DOX-treated group showed decreased myocardial and
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hepatic NLRP3 inflammasome expression compared to the DOX group alone, which could
also be attributed to deceased PCSK9 expression.

4. Discussion

This review aimed to: (1) describe the mechanisms involved in ANT-induced car-
diotoxicity, and (2) summarize the existing preclinical data on the potential cardioprotective
effects of PCSK9 inhibition for ANT-induced cardiotoxicity. Cardiotoxicity induced by ANT,
illustrated primarily via DOX exposure, manifests primarily via induction of non-specific
inflammation via the innate immune system [11–13], increased generation of free radicals
and subsequent ROS, mitochondrial dysfunction via disruptions in aerobic respiration,
cation handling, and mitochondrial DNA damage [16,25,26]. These processes ultimately
lead to the induction of cardiomyocyte apoptosis, contributing to the clinical manifes-
tation of heart failure. Additionally, they induce lipid peroxidation that accelerates the
atherosclerosis burden and increases the risk of ischemic cardiovascular disease.

Although limited, preclinical and clinical data demonstrate that PCSK9 inhibition
holds theoretical promise as a potential avenue for treatment of anthracycline-induced
cardiotoxicity (Figure 2). In both animal models and human studies, the quantity of
PCSK9 correlated positively with the degree of granulocyte-mediated and pathologic
ROS [47], inflammation [59], and mitDNA damage [53]. Inhibition of PCSK9 or induced
deficiency of PCSK9 has been found to mitigate the aforementioned consequences, and has
been associated with improved aerobic cellular respiration [56] as well as cytoprotective
effects. These findings, although yet to be formally evaluated in a properly run clinical
study, are drawing the attention of physicians and patients alike. With the average life
expectancy of oncology patients continuing to rise, novel challenges are emerging for cancer
survivors who require evidence-based interventions. It is important to note that no known
contraindications exist regarding the co-administration of any common chemotherapy
agent and PCSK9 inhibitors.
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Figure 2. Pleiotropic effect of PCSK9 antagonism. PCSK9 inhibitors primarily reduce LDL-C but
also exhibit several pleiotropic effects. Most notably, they stabilize atherosclerotic plaques, decrease
pro-inflammatory cytokines, improve cardiomyocyte function, reduce mitochondrial dysfunction,
and enhance smooth muscle cell function. These multiple pleiotropic effects may be particularly
cardioprotective against anthracycline-induced cardiotoxicity. Abbreviations: ECM—extracellular
matrix; IL—interleukin; I/R—ischemia-reperfusion; LDL-C—low-density lipoprotein cholesterol;
mitDNA—mitochondrial DNA; NLRP3—nucleotide oligomerization domain-like receptor protein
inflammasome; Ox—oxidized; PCSK9—proprotein convertase subtilisin/kexin type 9; SMC—smooth
muscle cell; TLR—toll-like receptor. Illustrations utilized with permission from Microsoft (Word,
Version 2408 Build 16.0.17928.20114) for academic/educational purposes.
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Current gaps in preclinical and clinical investigations that will be necessary prior to the
therapeutic use of PCSK9 inhibitors for cancer patients are: (1) the validation of the mecha-
nism of action and/or theurapetic index in an animal model of ANT-induced cardiotoxicity
with strong clinical correlation and similar propensity to mitochondrial dysfunction, (2) an
improved understanding of the short-, medium-, and long-term side-effects or unintended
consequences of PCSK9 inhibition in patients with acquired cardiovascular disease, and
(3) a preliminary proof-of-concept clinical cohort trial to illustrate the non-inferiority of
PCSK9 inhibitor efficacy for preventing ANT-induced cardiotoxicity when compared to the
current medical standard DZR.

Statins have been investigated in clinical trials due to their pleiotropic effects, similar
to PCSK9 inhibitors, with conflicting results. Two clinical trials, namely the Preventing
Anthracycline Cardiovascular Toxicity with Statins (PREVENT) trial and the Statins for
the Primary Prevention of Heart Failure in Patients Receiving Anthracycline Pilot Study
(SPARE-HF), administered 40 mg of atorvastatin to patients with various malignancies
and undergoing anthracycline-based treatments. Both trials evaluated LVEF using cardiac
magnetic resonance (cMR) imaging at 24 months and within 4 weeks of anthracycline
completion, respectively, to assess significant changes from the baseline between treatment
groups. However, neither found any significant difference. On the other hand, the Statins
to Prevent the Cardiotoxicity of Anthracyclines (STOP-CA) trial found a significantly lower
incidence of anthracycline-induced cardiotoxicity, as measured by cMR-measured LVEF, in
statin groups compared to the placebo group. Interestingly, despite administering a higher
median dose of anthracyclines (300 mg/m2) compared to the PREVENT and SPARE-HF
trials (240 mg/m2), the STOP-CA trial showed cardioprotection. This finding is not consis-
tent with the expected dose-dependent cardiotoxicity of anthracyclines. These divergent
results may be explained by factors such as underpowered studies, high dropout rates, the
inclusion of other neurohormonal antagonists, and variations in statin treatment duration.
This suggests that the non-LDL-based mechanisms of statins, as well as PCSK9 antago-
nism, may possess important cardioprotective properties that warrant further investigation.
Based on the findings of the STOP-CA trial and clinical perspectives, it is reasonable to
consider initiating statins in higher-risk patients [31].

Other pharmacologic agents have shown promise with regard to preventing ANT-
induced cardiotoxicity, in addition to PCSK9 inhibitors. Cyclosporine A has been shown
in preclinical studies to decrease the influx of Ca2+ into the mitochondria via inhibition of
mPTP formation. A murine study [70] investigating acute and sub-chronic DOX exposure
revealed decreased mitochondrial fragmentation and improved adenosine triphosphate
production with treatment of cyclosporine A. Additional studies have shown that targeting
other parts of oxidative phosphorylation (cytochrome C oxidase, cardiolipin, Sirtuin-1),
may have benefits for reducing mitochondrial damage induced by DOX [71]. Though
the likelihood of safety with cyclosporine A is high, its therapeutic potential has not
been thoroughly explored in human trials. A reasonable next step in the evaluation
of cyclosporine A’s efficacy for the prevention of cardiovascular toxicity secondary to
doxorubicin would be to perform a small time-limited trial with serologic markers to
assess generalized inflammation and cardiac-specific markers. It is also possible that
PCSK9 inhibitors and cyclosporine A may one day be used in conjunction to synergistically
provide optimal cardiovascular protection in the setting of ANT-induced cardiotoxicity.

Interestingly, PCSK9 inhibitors have also been postulated to provide cardioprotection
from immune-related atherosclerotic vascular events secondary to immune checkpoint in-
hibitors (ICIs) [72]. ICIs are associated with a more than threefold increase in atherosclerotic
cardiovascular events and accelerated progression of aortic plaques, likely due to height-
ened systemic inflammation [73]. Drobnis et al. showed that patients receiving statins
along with ICI treatment experienced a ~50% reduction in plaque progression compared
to those receiving ICI therapy alone [73]. PCSK9 inhibitors stabilize plaques and induce
significant regression to a greater extent than statins [74,75]. Corroborating their known
pleiotropic effects, preclinical studies have demonstrated that PCSK9 inhibition synergisti-
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cally enhances immunotherapy’s anti-tumor effects through LDL-receptor-independent
pathways [76,77]. These medications not only have the potential to provide cardioprotec-
tion through immunotherapy-based regimens against cardiovascular events, but also to
enhance treatment response rates.

In the present era of cardiovascular medicine where high-quality evidence is used
to justify patient care guidelines, it is sobering to realize that only 3% of cardio-oncology
Class I recommendations are supported by Level A evidence [78]. This suggests that the
majority of cardio-oncology patient management decisions are not founded on literature-
supported evidence, though this is likely confounded by the highly personalized nature
of oncologic treatment plans. This low percentage of Level A evidence of Class I cardio-
oncology recommendations is contrasted with 8.5% for the general American College of
Cardiology/American Heart Association guidelines and 14.3% for European Society of
Cardiology guidelines [79]. As researchers and clinicians strive to enhance evidence-based
clinical reasoning in the evolving field of cardio-oncology and improve cancer patient care,
the evidence presented in this review may inspire further exploration of pharmaceuticals
that can mitigate ANT-induced cardiotoxicity.

5. Conclusions

Anthracyclines such as doxorubicin, though useful in the management of oncologic
phenomena, have well-known cardiovascular complications. Heightened inflammation,
reactive oxygen species, nucleic acid damage, and cellular respiration dysfunction are the
primary vehicles that lead to cardiac dysfunction and accelerated vascular disease. PCSK9
inhibitors work on similar molecular targets, and exhibit strong potential to serve as useful
prophylactic cardioprotective agents for patients undergoing chemotherapy regimens that
include anthracyclines. Additional clinical investigation is needed to elucidate the full
potential of PCSK9 inhibitors or other similar pharmacologic agents.
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ANT Anthracycline
Ca2+ Calcium
DNA Deoxyribonucleic acid
DOX Doxorubicin
ETC Electron Transport Chain

EMPACT
Empagliflozin in the Prevention of Cardiotoxicity in Cancer
Patients Undergoing Chemotherapy Based on Anthracyclines

ECM Extracellular matrix
ICIs Immune checkpoint inhibitors
IL Interleukin
I/R Ischemia-reperfusion
LOX-1 Lectin-like oxidized low-density lipoprotein receptor-1
LDL Low-density lipoprotein
mg/m2 Milligrams per square meter
mitDNA Mitochondrial DNA
mPTP Mitochondrial Permeability Transition Pore
MyD88 Myeloid Differentiation primary response gene 88
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NADPH Nicotinamide adenine dinucleotide phosphate
NOD Nucleotide oligomerization domain
NLRP3 NOD-like Receptor Protein Inflammasome
NF-κB Nuclear Factor kappa-light-chain-enhancer of activated B cells
Ox Oxidized
PCSK9 Proprotein convertase subtilisin/kexin type 9
ROS Reactive oxygen species
SGLT2is Sodium-Glucose Cotransporter-2 inhibitors
CANTOS The Canakinumab Antiinflammatory Thrombosis Outcome Study
TLRs Toll-like receptors
Top2 Topoisomerase II
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