Clinical Pathophysiology and Research Highlights of Cardiac Angiosarcoma: Obligation for Immunogenetic Profiling to Understand Their Growth Pattern and Tailor Therapies
Abstract
:1. Introduction
2. Assimilating the Idiosyncratic Growth Traits of Cardiac Angiosarcoma Entails Excavating into Its Immunogenetic Profile
3. Pathological Hallmarks of Cardiac Angiosarcoma
3.1. Macroscopic Appearance
3.2. Microscopic Appearance
4. Case Summaries
5. Treatment
5.1. Surgery
5.2. Chemotherapy
5.3. Radiation Therapy
5.4. Cardiac Transplantation
5.5. Antiangiogenic, Tyrosine Kinase Inhibitor Therapy, and Targeted Therapies Based on Immunogenetic Studies
6. Future Research
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MRI | Magnetic Resonance Imaging |
CT | Computed Tomography |
VEGF | Vascular endothelial growth factor, |
KDR | Kinase inserts domain receptor |
MDM4 | Negative modulator of P53 |
MDM4 | Negative modulator of P53 or P53 binding protein |
DNMT3A | DNA (cytosine-5)-methyltransferase 3A |
POT1 | Protection of Telomeres 1 |
N-RAS | NRAS Proto-Oncogene, GTPase |
KRAS | KRAS Proto-Oncogene |
KIT | Proto-oncogene, receptor tyrosine kinase |
PLGC1 | Phospholipase C, gamma 1 |
PDL1 | Programmed death-ligand-1 |
CDKN2 | Cyclin-dependent kinase inhibitor 2A |
Ki-67 | Nuclear protein |
WT-1 | Wilms’s tumor gene |
P53 | Tumor suppressor gene |
EMA | Epithelial membrane antigen 31 |
ERG | ETS-related gene |
FLI-1 | Friend leukemia integration 1 transcription factor |
CD31 | Cluster of differentiation 31 |
CD34 | Cluster of differentiation 34 |
VEGF-A | Vascular endothelial growth factor-A |
VEGF-C | Vascular endothelial growth factor-C |
VEGFR-1 | Vascular endothelial growth factor receptor 1 |
VEGFR-2 | Vascular endothelial growth factor receptor 2 |
VEGFR-3 | Vascular endothelial growth factor receptor 3 |
TP53 | Tumor suppressor gene |
KMT2D | Lysine-specific methyltransferase 2D |
CIC | Capicua transcriptional repressor |
FLT4 | FMS related receptor tyrosine kinase 4 |
MYC | Proto-oncogene |
PI3 | Phosphoinositide 3 |
MMP | Matrix metalloproteinase |
PI3K | Phosphoinositide 3-kinases |
AKT | Protein Kinase b |
PLCG1 | Phospholipase C gamma 1 |
PKC | Protein Kinase C |
RAS | Proto-oncogene |
P13K | Phosphoinositide 3-kinases |
mTOR | mammalian target of rapamycin |
HPF | High power field |
References
- Paraskevaidis, I.A.; Michalakeas, C.A.; Papadopoulos, C.H.; Anastasiou-Nana, M. Cardiac tumors. ISRN Oncol. 2011, 2011, 208929. [Google Scholar] [CrossRef]
- Gupta, R.; Meghrajani, V.; Desai, R.; Gupta, N. Primary Malignant Cardiac Tumors: A Rare Disease with an Adventurous Journey. J. Am. Heart Assoc. 2020, 9, e016032. [Google Scholar] [CrossRef]
- Rahouma, M.; Arisha, M.J.; Elmously, A.; El-Sayed Ahmed, M.M.; Spadaccio, C.; Mehta, K.; Baudo, M.; Kamel, M.; Mansor, E.; Ruan, Y.; et al. Cardiac tumors prevalence and mortality: A systematic review and meta-analysis. Int. J. Surg. 2020, 76, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Silverman, N.A. Primary cardiac tumors. Ann. Surg. 1980, 191, 127–138. [Google Scholar] [CrossRef]
- Elmusa, E.; Raza, M.W.; Zhang, H.; Naddaf, N.; Muneeb, A. Primary Cardiac Angiosarcoma Presenting as Cardiac Tamponade. Cureus 2022, 14, e29033. [Google Scholar] [CrossRef]
- Fang, X.; Zheng, S. Primary cardiac angiosarcoma: A case report. J. Int. Med. Res. 2021, 49, 3000605211033261. [Google Scholar] [CrossRef]
- Hammami, M.B.; Al-Wawi, M.Z.; Fazel, H.; Oudih, M. Incidence, prognostic significance, and survival outcomes of primary cardiac sarcoma: An updated population-based retrospective study. Anatol. J. Cardiol. 2021, 25, 104–110. [Google Scholar] [CrossRef]
- Reardon, M.J.; Walkes, J.C.; Benjamin, R. Therapy insight: Malignant primary cardiac tumors. Nat. Clin. Pract. Cardiovasc. Med. 2006, 3, 548–553. [Google Scholar] [CrossRef]
- Ramlawi, B.; Leja, M.J.; Abu Saleh, W.K.; Al Jabbari, O.; Benjamin, R.; Ravi, V.; Shapira, O.M.; Blackmon, S.H.; Bruckner, B.A.; Reardon, M.J. Surgical Treatment of Primary Cardiac Sarcomas: Review of a Single-Institution Experience. Ann. Thorac. Surg. 2016, 101, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, J.; He, C.; Fang, M. Angiosarcoma: A review of diagnosis and current treatment. Am. J. Cancer Res. 2019, 9, 2303–2313. [Google Scholar] [PubMed]
- Ahmed, I.; Hamacher, K.L. Angiosarcoma in a chronically immunosuppressed renal transplant recipient: Report of a case and review of the literature. Am. J. Dermatopathol. 2002, 24, 330–335. [Google Scholar] [CrossRef]
- Casha, A.R.; Davidson, L.A.; Roberts, P.; Nair, R.U. Familial angiosarcoma of the heart. J. Thorac. Cardiovasc. Surg. 2002, 124, 392–394. [Google Scholar] [CrossRef]
- Young, R.J.; Brown, N.J.; Reed, M.W.; Hughes, D.; Woll, P.J. Angiosarcoma. Lancet Oncol. 2010, 11, 983–991. [Google Scholar] [CrossRef]
- Plichta, J.K.; Hughes, K. Radiation-Induced Angiosarcoma after Breast-Cancer Treatment. N. Engl. J. Med. 2017, 376, 367. [Google Scholar] [CrossRef]
- Alves, I.; Marques, J.C. Radiation-induced angiosarcoma of the breast: A retrospective analysis of 15 years’ experience at an oncology center. Radiol. Bras. 2018, 51, 281–286. [Google Scholar] [CrossRef]
- Tran Minh, M.; Mazzola, A.; Perdigao, F.; Charlotte, F.; Rousseau, G.; Conti, F. Primary hepatic angiosarcoma and liver transplantation: Radiological, surgical, histological findings and clinical outcome. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Adem, C.; Aubry, M.-C.; Tazelaar, H.D.; Myers, J.L. Metastatic Angiosarcoma Masquerading as Diffuse Pulmonary Hemorrhage: Clinicopathologic Analysis of 7 New Patients. Arch. Pathol. Lab. Med. 2001, 125, 1562–1565. [Google Scholar] [CrossRef]
- Yamashita, H.; Higashida, T.; Huchioka, A.; Asakawa, Y.; Nambu, A.; Ohyatsu, S.; Kohyama, T.; Takahashi, M.; Hayashi, T.; Tago, M. Cardiac angiosarcoma with metastatic to lung, brain, and bone. Radiol. Case Rep. 2024, 19, 473–478. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, J.; Shim, J.W.; Kim, E.Y.; Moon, J.; An, J.; Jeon, Y.B.; Lee, K.C.; Ahn, H.K. Primary cardiac angiosarcoma: A prolonged response to surgical resection followed by concurrent chemoradiotherapy with docetaxel. Springerplus 2016, 5, 648. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.; Katakami, N.; Fujita, S.; Kokubo, M.; Imai, Y. Angiosarcoma arising from right atrium: Remarkable response to concurrent chemoradiotherapy with carboplatin and paclitaxel. J. Thorac. Oncol. 2011, 6, 970–971. [Google Scholar] [CrossRef]
- Fehr, M.; Kuhn, M.; Mayer, K.; Padberg, B.; Ulmer, U.; Cathomas, R. Metastatic angiosarcoma arising from the right atrium: Unusual presentation and excellent response to treatment in a young patient. J. Thorac. Oncol. 2010, 5, 1301–1302. [Google Scholar] [CrossRef]
- Nakamura-Horigome, M.; Koyama, J.; Eizawa, T.; Kasai, H.; Kumazaki, S.; Tsutsui, H.; Koiwai, K.; Oguchi, K.; Kinoshita, O.; Ikeda, U. Successful treatment of primary cardiac angiosarcoma with docetaxel and radiotherapy. Angiology 2008, 59, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Suderman, D.; Cooke, A.; Wong, R.; Klein, J. Treatment of cardiac angiosarcoma with radiation and docetaxel: A case report with partial response and prolonged stable disease. J. Thorac. Oncol. 2011, 6, 834–835. [Google Scholar] [CrossRef]
- Antonuzzo, L.; Rotella, V.; Mazzoni, F.; Doni, L.; Bianchini, D.; Garbini, F.; Maio, V.; Di Costanzo, F. Primary cardiac angiosarcoma: A fatal disease. Case Rep. Med. 2009, 2009, 591512. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Ro, J.Y.; Kim, D.; Kim, C.H.; Reardon, M.J.; Blackmon, S.; Zhai, J.; Coffey, D.; Benjamin, R.S.; Ayala, A.G. Clinicopathologic and immunohistochemical characteristics of adult primary cardiac angiosarcomas: Analysis of 10 cases. Ann. Diagn. Pathol. 2011, 15, 262–267. [Google Scholar] [CrossRef]
- Herrmann, M.A.; Shankerman, R.A.; Edwards, W.D.; Shub, C.; Schaff, H.V. Primary cardiac angiosarcoma: A clinicopathologic study of six cases. J. Thorac. Cardiovasc. Surg. 1992, 103, 655–664. [Google Scholar] [CrossRef]
- Kim, C.H.; Dancer, J.Y.; Coffey, D.; Zhai, Q.J.; Reardon, M.; Ayala, A.G.; Ro, J.Y. Clinicopathologic study of 24 patients with primary cardiac sarcomas: A 10-year single institution experience. Human. Pathol. 2008, 39, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Leduc, C.; Jenkins, S.M.; Sukov, W.R.; Rustin, J.G.; Maleszewski, J.J. Cardiac angiosarcoma: Histopathologic, immunohistochemical, and cytogenetic analysis of 10 cases. Human. Pathol. 2017, 60, 199–207. [Google Scholar] [CrossRef]
- Look Hong, N.J.; Pandalai, P.K.; Hornick, J.L.; Shekar, P.S.; Harmon, D.C.; Chen, Y.-L.; Butrynski, J.E.; Baldini, E.H.; Raut, C.P. Cardiac Angiosarcoma Management and Outcomes: 20-Year Single-institution Experience. Ann. Surg. Oncol. 2012, 19, 2707–2715. [Google Scholar] [CrossRef]
- Donsbeck, A.V.; Ranchere, D.; Coindre, J.M.; Le Gall, F.; Cordier, J.F.; Loire, R. Primary cardiac sarcomas: An immunohistochemical and grading study with long-term follow-up of 24 cases. Histopathology 1999, 34, 295–304. [Google Scholar] [CrossRef]
- Bhaludin, B.N.; Thway, K.; Adejolu, M.; Renn, A.; Kelly-Morland, C.; Fisher, C.; Jones, R.L.; Messiou, C.; Moskovic, E. Imaging features of primary sites and metastatic patterns of angiosarcoma. Insights Imaging 2021, 12, 189. [Google Scholar] [CrossRef] [PubMed]
- Yahata, S.; Endo, T.; Honma, H.; Ino, T.; Hayakawa, H.; Ogawa, M.; Hayashi, H.; Kumazaki, T. Sunray appearance on enhanced magnetic resonance image of cardiac angiosarcoma with pericardial obliteration. Am. Heart J. 1994, 127, 468–471. [Google Scholar] [CrossRef]
- Bruna, J.; Lockwood, M. Primary heart angiosarcoma detected by computed tomography and magnetic resonance imaging. Eur. Radiol. 1998, 8, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Janigan, D.T.; Husain, A.; Robinson, N.A. Cardiac angiosarcomas. A review and a case report. Cancer 1986, 57, 852–859. [Google Scholar] [CrossRef]
- Nitta, R.; Sakomura, Y.; Tanimoto, K.; Hidai, T.; Kasanuki, H.; Aomi, S.; Nishikawa, T. Primary cardiac angiosarcoma of the right atrium undiagnosed by transvenous endocardial tumor biopsy. Intern. Med. 1998, 37, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Bhandari, S.; Ishfaq, A.; Butt, S.R.R.; Ekhator, C.; Karski, A.; Kadel, B.; Altayb Ismail, M.A.; Sherpa, T.N.; Al Khalifa, A.; et al. Primary Cardiac Angiosarcoma: A Review. Cureus 2023, 15, e41947. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, J.; Liu, H.; Chen, Y.; Wang, Y.; Wang, W.; Zhang, L. Clinical and diagnostic features of angiosarcoma with pulmonary metastases: A retrospective observational study. Medicine 2017, 96, e8033. [Google Scholar] [CrossRef]
- Yeh, J.-K.; Tsai, Y.-S.; Chen, Y.-P.; Roan, J.-N.; Chang, H.-Y. Right atrium angiosarcoma with feeding vessels from right coronary artery: A case report. Eur. Heart J. Case Rep. 2022, 6, ytac025. [Google Scholar] [CrossRef]
- Heath, D. Pathology of cardiac tumors. Am. J. Cardiol. 1968, 21, 315–327. [Google Scholar] [CrossRef]
- Talebi, A.; Zeraatian Nejad Davani, S.; Saberi Shahrbabaki, A.; Gholizadeh Mesgarha, M.; Pour Mohammad, A.; Zare-Mirzaie, A. A case report of an extremely rare type of cardiac tumor: Primary cardiac angiofibroma. J. Card. Surg. 2022, 37, 688–692. [Google Scholar] [CrossRef]
- Sørlie, D.; Myhre, E.S.; Stalsberg, H. Angiosarcoma of the heart. Unusual presentation and survival after treatment. Br. Heart J. 1984, 51, 94–97. [Google Scholar] [CrossRef]
- Zakaria, Z.; Tambirajoo, K.; Sattar, M.T.; Farrell, M.A. Rapid Clinical Course of Multiple Metastatic Cerebral Angiosarcoma. Turk. Neurosurg. 2015, 25, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Farzin, A.O.; Nejad, S.S. Cardiac angiosarcoma: A case report. J. Int. Med. Res. 2023, 51, 3000605231211772. [Google Scholar] [CrossRef]
- El-Osta, H.E.; Yammine, Y.S.; Chehab, B.M.; Fields, A.S.; Moore, D.F., Jr.; Mattar, B.I. Unexplained hemopericardium as a presenting feature of primary cardiac angiosarcoma: A case report and a review of the diagnostic dilemma. J. Thorac. Oncol. 2008, 3, 800–802. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.; Greulich, S.; Schumm, J.; Backes, M.; Kaufmann, M.; Bode-Erdmann, S.; Ott, G.; Hebart, H.; Mahrholdt, H. Favorable Course of Pericardial Angiosarcoma Under Paclitaxel Followed by Pazopanib Treatment Documented by Cardiovascular Magnetic Resonance Imaging. Circulation 2012, 126, e279–e281. [Google Scholar] [CrossRef] [PubMed]
- Poole-Wilson, P.A.; Farnsworth, A.; Braimbridge, M.V.; Pambakian, H. Angiosarcoma of pericardium. Problems in diagnosis and management. Br. Heart J. 1976, 38, 240–243. [Google Scholar] [CrossRef]
- Sharma, A.; DeValeria, P.A.; Scherber, R.M.; Sugrue, G.; McCullough, A.E.; Panse, P.M.; Mookadam, F. Angiosarcoma Causing Cardiac Constriction Late after Radiation Therapy for Breast Carcinoma. Tex. Heart Inst. J. 2016, 43, 81–83. [Google Scholar] [CrossRef]
- Masauzi, N.; Ichikawa, S.; Nishimura, F.; Yoshino, Y.; Mihara, J.; Hayama, Y.; Shimazaki, E.; Kawase, I.; Toyama, M.; Kokubo, T. Primary angiosarcoma of the right atrium detected by magnetic resonance imaging. Intern. Med. 1992, 31, 1291–1297. [Google Scholar] [CrossRef]
- Rodrigues, A.G.; Tardif, J.C.; Petitclerc, R.; Mercier, L.A.; Paquet, E.; Leung, T.K.; Delorme, F. Angiosarcomas of the interatrial septum mimicking atrial myxomas. J. Am. Soc. Echocardiogr. 1996, 9, 209–212. [Google Scholar] [CrossRef]
- Li, X.; Lan, L.; Hu, H. Case report: Primary cardiac angiosarcoma with multiple metastases. Front. Cardiovasc. Med. 2022, 9, 941967. [Google Scholar] [CrossRef]
- Luke Glancy, D.; Morales, J.B.; Roberts, W.C. Angiosarcoma of the heart. Am. J. Cardiol. 1968, 21, 413–419. [Google Scholar] [CrossRef]
- Do, T.H.; Le, X.D.; Vu, T.T.; Ngo, T.A.; Thi, M.H.N.; Tran, Q.T.; Dinh, H.D.; Nguyen, H.G.; Lam, K. Primary cardiac epithelioid angiosarcoma: A case report. Radiol. Case Rep. 2022, 17, 3349–3354. [Google Scholar] [CrossRef] [PubMed]
- Fury, M.G.; Antonescu, C.R.; Van Zee, K.J.; Brennan, M.F.; Maki, R.G. A 14-year retrospective review of angiosarcoma: Clinical characteristics, prognostic factors, and treatment outcomes with surgery and chemotherapy. Cancer J. 2005, 11, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Centofanti, P.; Di Rosa, E.; Deorsola, L.; Dato, G.M.; Patanè, F.; La Torre, M.; Barbato, L.; Verzini, A.; Fortunato, G.; di Summa, M. Primary cardiac tumors: Early and late results of surgical treatment in 91 patients. Ann. Thorac. Surg. 1999, 68, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Truong, P.T.; Jones, S.O.; Martens, B.; Alexander, C.; Paquette, M.; Joe, H.; Hart, J.; Allan, S.J. Treatment and outcomes in adult patients with primary cardiac sarcoma: The British Columbia Cancer Agency experience. Ann. Surg. Oncol. 2009, 16, 3358–3365. [Google Scholar] [CrossRef]
- Liu, X.; Wen, Y.; Miao, Q.; Liu, X.; Zhang, C.; Ma, G. Surgery for angiosarcoma and other cardiac sarcomas: A single-institution experience. JTCVS Open 2023, 13, 242–251. [Google Scholar] [CrossRef]
- Simpson, L.; Kumar, S.K.; Okuno, S.H.; Schaff, H.V.; Porrata, L.F.; Buckner, J.C.; Moynihan, T.J. Malignant primary cardiac tumors: Review of a single institution experience. Cancer 2008, 112, 2440–2446. [Google Scholar] [CrossRef]
- Putnam, J.B., Jr.; Sweeney, M.S.; Colon, R.; Lanza, L.A.; Frazier, O.H.; Cooley, D.A. Primary cardiac sarcomas. Ann. Thorac. Surg. 1991, 51, 906–910. [Google Scholar] [CrossRef]
- Rahouma, M.; Baudo, M.; Khairallah, S.; Lau, C.; Gaudino, M.; El-Sayed Ahmed, M.M.; Kumar, A.; Lorusso, R.; Mick, S.L. Surgically Resected Cardiac Angiosarcoma: Survival Analysis from the National Cancer Database. J. Clin. Med. 2023, 12, 7764. [Google Scholar] [CrossRef]
- Rossi, N.P.; Kioschos, J.M.; Aschenbrener, C.A.; Ehrenhaft, J.L. Primary angiosarcoma of the heart. Cancer 1976, 37, 891–894. [Google Scholar] [CrossRef]
- Fukunaga, N.; Kitai, T.; Imai, Y.; Furukawa, Y.; Koyama, T. Three-year survival in primary cardiac angiosarcoma. J. Med. Investig. 2017, 64, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Llombart-Cussac, A.; Pivot, X.; Contesso, G.; Rhor-Alvarado, A.; Delord, J.P.; Spielmann, M.; Türsz, T.; Le Cesne, A. Adjuvant chemotherapy for primary cardiac sarcomas: The IGR experience. Br. J. Cancer 1998, 78, 1624–1628. [Google Scholar] [CrossRef]
- McAllister, H.A.; Fenoglio, J.J. Tumors of the Cardiovascular System; Armed Forces Institute of Pathology: Rawalpindi, Pakistan, 1978; Volume 15. [Google Scholar]
- Molina, J.E.; Edwards, J.; Ward, H.B. Primary cardiac tumors: Experience at the University of Minnesota. Thorac. Cardiovasc. Surg. 1990, 38, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Burke, A.P.; Cowan, D.; Virmani, R. Primary sarcomas of the heart. Cancer 1992, 69, 387–395. [Google Scholar] [CrossRef]
- Ren, S.; Wang, Y.; Wang, Z.; Shao, J.; Ye, Z. Survival predictors of metastatic angiosarcomas: A surveillance, epidemiology, and end results program population-based retrospective study. BMC Cancer 2020, 20, 778. [Google Scholar] [CrossRef]
- Klauber, N.; Parangi, S.; Flynn, E.; Hamel, E.; D’Amato, R.J. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 1997, 57, 81–86. [Google Scholar]
- Penel, N.; Bui, B.N.; Bay, J.O.; Cupissol, D.; Ray-Coquard, I.; Piperno-Neumann, S.; Kerbrat, P.; Fournier, C.; Taieb, S.; Jimenez, M.; et al. Phase II trial of weekly paclitaxel for unresectable angiosarcoma: The ANGIOTAX Study. J. Clin. Oncol. 2008, 26, 5269–5274. [Google Scholar] [CrossRef]
- Penel, N.; Lansiaux, A.; Adenis, A. Angiosarcomas and taxanes. Curr. Treat. Options Oncol. 2007, 8, 428–434. [Google Scholar] [CrossRef]
- Ram Prabu, M.P.; Thulkar, S.; Ray, R.; Bakhshi, S. Primary Cardiac Angiosarcoma with Good Response to Paclitaxel. J. Thorac. Oncol. 2011, 6, 1778–1779. [Google Scholar] [CrossRef] [PubMed]
- Candeias, C.M.; Luís, I.; Ribeiro, J.; Costa, L.; Almeida, L.S.d.; Gomes, M.M.; Barreto, L.; Brito-Avô, L.; Ducla-Soares, J.L. Extended remission of metastatic epithelioid angiosarcoma of the heart with liposomal doxorubicin. BMJ Case Rep. 2010, 2010, bcr0820092157. [Google Scholar] [CrossRef] [PubMed]
- Bakaeen, F.G.; Jaroszewski, D.E.; Rice, D.C.; Walsh, G.L.; Vaporciyan, A.A.; Swisher, S.S.; Benjamin, R.; Blackmon, S.; Reardon, M.J. Outcomes after surgical resection of cardiac sarcoma in the multimodality treatment era. J. Thorac. Cardiovasc. Surg. 2009, 137, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- Abu Saleh, W.K.; Ramlawi, B.; Shapira, O.M.; Al Jabbari, O.; Ravi, V.; Benjamin, R.; Durand, J.B.; Leja, M.J.; Blackmon, S.H.; Bruckner, B.A.; et al. Improved Outcomes With the Evolution of a Neoadjuvant Chemotherapy Approach to Right Heart Sarcoma. Ann. Thorac. Surg. 2017, 104, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Yadav, U.; Mangla, A. Primary pericardial angiosarcoma: Case report and review of treatment options. Ecancermedicalscience 2020, 14, 1056. [Google Scholar] [CrossRef] [PubMed]
- Maki, R.G.; Wathen, J.K.; Patel, S.R.; Priebat, D.A.; Okuno, S.H.; Samuels, B.; Fanucchi, M.; Harmon, D.C.; Schuetze, S.M.; Reinke, D.; et al. Randomized Phase II Study of Gemcitabine and Docetaxel Compared With Gemcitabine Alone in Patients With Metastatic Soft Tissue Sarcomas: Results of Sarcoma Alliance for Research Through Collaboration Study 002. J. Clin. Oncol. 2007, 25, 2755–2763. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Kawamoto, T.; Fukase, N.; Kawakami, Y.; Takemori, T.; Fujiwara, S.; Kitayama, K.; Nishida, K.; Kuroda, R.; Akisue, T. Gemcitabine and docetaxel combination chemotherapy for advanced bone and soft tissue sarcomas: Protocol for an open-label, non-randomised, Phase 2 study. BMC Cancer 2019, 19, 725. [Google Scholar] [CrossRef]
- Dickson, M.A.; D’Adamo, D.R.; Keohan, M.L.; D’Angelo, S.P.; Carvajal, R.D.; Gounder, M.M.; Maki, R.G.; Qin, L.-X.; Lefkowitz, R.A.; McKennon, O.R.; et al. Phase II Trial of Gemcitabine and Docetaxel with Bevacizumab in Soft Tissue Sarcoma. Sarcoma 2015, 2015, 532478. [Google Scholar] [CrossRef]
- Krishnan, T.; Pettersson, G.; Mukherjee, R.; Singhal, N. Cardiac angiosarcoma: A diagnostic and therapeutic challenge. J. Cardiol. Cases 2020, 22, 90–93. [Google Scholar] [CrossRef]
- Rhomberg, W.; Grass, M. Angiosarcoma of the right atrium: Local control via low radiation doses and razoxane. A case report. Strahlenther. Onkol. 1999, 175, 102–104. [Google Scholar] [CrossRef]
- Aoka, Y.; Kamada, T.; Kawana, M.; Yamada, Y.; Nishikawa, T.; Kasanuki, H.; Tsujii, H. Interactive. Lancet Oncol. 2004, 5, 636–638. [Google Scholar] [CrossRef]
- Andrei, V.; Scheggi, V.; Stefàno, P.L.; Marchionni, N. Primary cardiac sarcoma: A case report of a therapeutic challenge. Eur. Heart J. Case Rep. 2020, 4, 1–6. [Google Scholar] [CrossRef]
- Armitage, J.M.; Kormos, R.L.; Griffith, B.P.; Fricker, F.J.; Hardesty, R.L. Heart transplantation in patients with malignant disease. J. Heart Transplant. 1990, 9, 627–629, discussion 630. [Google Scholar]
- Michler, R.E.; Goldstein, D.J. Treatment of cardiac tumors by orthotopic cardiac transplantation. Semin. Oncol. 1997, 24, 534–539. [Google Scholar]
- Crespo, M.G.; Pulpón, L.A.; Pradas, G.; Serrano, S.; Segovia, J.; Vegazo, I.; Salas, C.; España, P.; Silva, L.; Burgos, R. Heart transplantation for cardiac angiosarcoma: Should its indication be questioned? J. Heart Lung Transplant. 1993, 12, 527–530. [Google Scholar]
- Benassi, F.; Maiorana, A.; Melandri, F.; Stefanelli, G. A case of primary cardiac angiosarcoma: Extensive right atrial wall reconstruction with autologous pericardium. J. Card. Surg. 2010, 25, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Kieran, M.W.; Kalluri, R.; Cho, Y.J. The VEGF pathway in cancer and disease: Responses, resistance, and the path forward. Cold Spring Harb. Perspect. Med. 2012, 2, a006593. [Google Scholar] [CrossRef]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)—Key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar] [PubMed]
- Agulnik, M.; Yarber, J.L.; Okuno, S.H.; von Mehren, M.; Jovanovic, B.D.; Brockstein, B.E.; Evens, A.M.; Benjamin, R.S. An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas †. Ann. Oncol. 2013, 24, 257–263. [Google Scholar] [CrossRef]
- Verschraegen, C.; Arias-Pulido, H.; Lee, S.-J.; Movva, S.; Cerilli, L.; Eberhardt, S.; Schmit, B.; Quinn, R.; Muller, C.; Rabinowitz, I. Phase IB study of the combination of docetaxel, gemcitabine, and bevacizumab in patients with advanced or recurrent soft tissue sarcoma: The Axtell regimen. Ann. Oncol. 2012, 23, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Koontz, B.F.; Miles, E.F.; Rubio, M.A.D.; Madden, J.F.; Fisher, S.R.; Scher, R.L.; Brizel, D.M. Preoperative radiotherapy and bevacizumab for angiosarcoma of the head and neck: Two case studies. Head Neck J. Sci. Spec. Head Neck 2008, 30, 262–266. [Google Scholar] [CrossRef]
- Fujisawa, Y.; Yoshino, K.; Fujimura, T.; Nakamura, Y.; Okiyama, N.; Ishitsuka, Y.; Watanabe, R.; Fujimoto, M. Cutaneous Angiosarcoma: The Possibility of New Treatment Options Especially for Patients with Large Primary Tumor. Front. Oncol. 2018, 8, 46. [Google Scholar] [CrossRef]
- Maki, R.G.; D’Adamo, D.R.; Keohan, M.L.; Saulle, M.; Schuetze, S.M.; Undevia, S.D.; Livingston, M.B.; Cooney, M.M.; Hensley, M.L.; Mita, M.M.; et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J. Clin. Oncol. 2009, 27, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
- Zhrebker, L.; Cherni, I.; Gross, L.M.; Hinshelwood, M.M.; Reese, M.; Aldrich, J.; Guileyardo, J.M.; Roberts, W.C.; Craig, D.; Von Hoff, D.D.; et al. Case report: Whole exome sequencing of primary cardiac angiosarcoma highlights potential for targeted therapies. BMC Cancer 2017, 17, 17. [Google Scholar] [CrossRef]
- Tian, K.; Liu, Y.; Zhu, H.; Wang, T.; Chen, T.; Pei, X.; Song, F. A case report of primary cardiac angiosarcoma with DNMT3A gene mutation. Front. Oncol. 2022, 12, 1018741. [Google Scholar] [CrossRef]
- Calvete, O.; Martinez, P.; Garcia-Pavia, P.; Benitez-Buelga, C.; Paumard-Hernández, B.; Fernandez, V.; Dominguez, F.; Salas, C.; Romero-Laorden, N.; Garcia-Donas, J.; et al. A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li–Fraumeni-like families. Nat. Commun. 2015, 6, 8383. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wei, T.; Sun, B.; Su, J.; Liu, H.; Wang, D.; Li, X. The diagnosis and treatment for primary cardiac angiosarcoma with N-ras gene mutation and MSI-L: A case report and review of the literature. Medicine 2023, 102, e36682. [Google Scholar] [CrossRef]
- Urbini, M.; Astolfi, A.; Indio, V.; Nannini, M.; Pizzi, C.; Paolisso, P.; Tarantino, G.; Pantaleo, M.A.; Saponara, M. Genetic aberrations and molecular biology of cardiac sarcoma. Ther. Adv. Med. Oncol. 2020, 12, 1758835920918492. [Google Scholar] [CrossRef]
- Johnson, K.D.; Glinskii, O.V.; Mossine, V.V.; Turk, J.R.; Mawhinney, T.P.; Anthony, D.C.; Henry, C.J.; Huxley, V.H.; Glinsky, G.V.; Pienta, K.J.; et al. Galectin-3 as a Potential Therapeutic Target in Tumors Arising from Malignant Endothelia. Neoplasia 2007, 9, 662–670. [Google Scholar] [CrossRef]
- Itakura, E.; Yamamoto, H.; Oda, Y.; Tsuneyoshi, M. Detection and characterization of vascular endothelial growth factors and their receptors in a series of angiosarcomas. J. Surg. Oncol. 2008, 97, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Fraga-Guedes, C.; André, S.; Mastropasqua, M.G.; Botteri, E.; Toesca, A.; Rocha, R.M.; Peradze, N.; Rotmensz, N.; Viale, G.; Veronesi, P.; et al. Angiosarcoma and atypical vascular lesions of the breast: Diagnostic and prognostic role of MYC gene amplification and protein expression. Breast Cancer Res. Treat. 2015, 151, 131–140. [Google Scholar] [CrossRef]
- Huang, S.C.; Zhang, L.; Sung, Y.S.; Chen, C.L.; Kao, Y.C.; Agaram, N.P.; Singer, S.; Tap, W.D.; D’Angelo, S.; Antonescu, C.R. Recurrent CIC Gene Abnormalities in Angiosarcomas: A Molecular Study of 120 Cases With Concurrent Investigation of PLCG1, KDR, MYC, and FLT4 Gene Alterations. Am. J. Surg. Pathol. 2016, 40, 645–655. [Google Scholar] [CrossRef]
- Antonescu, C. Malignant vascular tumors—An update. Mod. Pathol. 2014, 27 (Suppl. 1), S30–S38. [Google Scholar] [CrossRef]
- Garcia, J.M.; Gonzalez, R.; Silva, J.M.; Dominguez, G.; Vegazo, I.S.; Gamallo, C.; Provencio, M.; España, P.; Bonilla, F. Mutational status of K- ras and TP53 genes in primary sarcomas of the heart. Br. J. Cancer 2000, 82, 1183–1185. [Google Scholar] [CrossRef] [PubMed]
- Arbiser, J.L.; Moses, M.A.; Fernandez, C.A.; Ghiso, N.; Cao, Y.; Klauber, N.; Frank, D.; Brownlee, M.; Flynn, E.; Parangi, S.; et al. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl. Acad. Sci. USA 1997, 94, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Dictor, M.; Bendsöe, N.; Runke, S.; Witte, M. Major basement membrane components in Kaposi’s sarcoma, angiosarcoma and benign vascular neogenesis. J. Cutan. Pathol. 1995, 22, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer 2019, 18, 26. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Y. The impact of VEGF on cancer metastasis and systemic disease. Semin. Cancer Biol. 2022, 86, 251–261. [Google Scholar] [CrossRef]
Case | Age/Sex | Primary Site | Symptoms | Metastasis | USG/Angiography | CT Scan/MRI | Treatment | Prognosis | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | 26-year-old male | Right ventricle | Left hemithorax heaviness, and mild dyspnea | NIL | Immobile nonhomogeneous lobulated mass in the right ventricle (RV) apex | MRI: Round intracavitary mass in the RV apex with well-defined borders, isointense in T1 weighted image, hyperintense in T2 weighted image | Median sternotomy (MS) followed by full pericardiotomy | No recurrence after discharge | [40] |
2 | 58-year-old male | Left atrium | Shortness of breath and bradycardia | Inferior vena cava | NIL | MRI: An 8.8 × 6.4 cm × 6.6 cm mass affecting primarily the left atrium, with extension into the right atrium, pericardium, circumflex coronary artery, and IVC | Three-dimensional conformal radiation and docetaxel | Poor prognosis. The patient died 16 months after radiotherapy | [23] |
3 | 49-year-old male | Right atrium | Dyspnea and cyanosis | NIL | Mass in the right atrium moving into tricuspid valve during diastole | NIL | Surgical resection with postoperative radiation | Good. No signs of tumor recurrence or metastasis 36 months after surgery | [41] |
4 | 45-old-female | Left atrium | Confusion and left side weakness | Brain | NIL | CT/MRI: Multiple cerebral lesions with cerebral edema | Radiation was offered but was not administered. | Declining clinical course with death within three weeks | [42] |
5 | 17-year-old female | Pericardium | Dry cough, dyspnea, and periodic fever | NIL | Moderate amount of pericardial fluid with constrictive pericarditis | No metastasis | Pericardiectomy with postoperative docetaxel | Poor. Died within two weeks of discharge secondary to respiratory failure | [43] |
6 | 64-year-old male | Right coronary artery | Chest pain dyspnea | Right atrium, brain, spleen, adrenal, and bone | Massive pericardial effusion with cardiac tamponade | CT scan: Mass in the mediastinum. Left heart catheterization: Hypervascular tumor from RCA to acute margin of the heart | Surgical resection with postoperative paclitaxel | The patient succumbed within 5 months of diagnosis due to extensive metastasis. | [44] |
7 | 31-year-old male | Pericardium | Shortness of breath, orthopnea, and hemodynamic compromise | Mediastinum, | Large pericardial effusion | CT scan: Large homogeneous mass within pericardium and mediastinum infiltrating big vessels and right atrium. Pulmonary embolism of RPA | Repeated pericardiocentesis. Chemotherapy with vincristine, ifosfamide, doxorubicin, and etoposide did not evince a favorable tumor response. Following this, treatment with paclitaxel and pazopanib was initiated. | Patient improved clinically after a paclitaxel and pazopanib > 10 months follow-up revealed that the patient was resuming everyday activities. | [45] |
8 | 20-year-old male | Pericardium | Epistaxis, hemoptysis, malaise, pain in right hip, epigastrium, bilateral pleural effusions and peripheral edema, and weakness of the left arm, left hemiplegia. | Lungs, liver, and brain | Right carotid angiography: Large mass in the right posterior parietal region | NIL | Thoracotomy, repeated thoracocentesis, and pericardiocentesis | The patient rapidly deteriorated and died 5 months within the onset of illness | [46] |
9 | 41-old female with intrapapillary breast carcinoma treated with lumpectomy and radiotherapy | Pericardium | Progressive dyspnea, orthopnea, cough, repeated pleural, and pericardial effusions | Pleural and right atrium | Preserved left ventricular ejection fraction, diastolic dysfunction, bilateral pleural effusions, and evidence of effusive-constrictive pericarditis | Hemorrhagic pericardial fluid with mass in the right atrium | Open chest pericardiectomy. Paclitaxel for palliative therapy | Grave prognosis due to tumor not amenable to complete resection | [47] |
10 | 20-year-old women | Chest pain, back pain, fever, and malaise | Pericardium and right atrium | Lung and left atrium | Massive and bloody pericardial effusion. | MRI: Massive bilateral pleural effusion, mass in the right atrium | Pericardiocentesis, open heart surgery. The right atrium is removed and replaced with a Gore-tex sheet. Palliative chemotherapy with cyclophosphamide, doxorubicin and decarbazine | Poor prognosis. The patient died within 2 months of chemotherapy. | [48] |
11 | 65-year-old male | Transferred from another hospital for intracardiac mass. A 6-month history of dyspnea, asthenia and PAF. Nausea, vomiting, weight loss, asthenia, and dizziness | Right atrium | NIL | Large immobile mass in the right atrium attached to the inter-atrial septum. Mild TR. The right atrium is severely dilated, and RV is small. | NIL | NIL | Patient died a few hours after ultrasonography | [49] |
12 | 63-year-old female | Atrial fibrillation with a rapid ventricular response. Palpitation, asthenia, dry cough, and fever. | Inter-atrial septum | NIL | Inhomogeneous sessile mass originating from the inter-atrial septum and occupying 70% of the left atrial cavity. The tumor invaded the right upper pulmonary vein. | Nil | Complete excision of the tumor and reconstruction of the left atrium, pulmonary vein and pericardium is performed. | Grave prognosis. The patient expired 8 days after surgery due to respiratory failure. | [49] |
13 | 28-year-old male | Low back pain in sternocostal and lumbro-sacral regions. | Right atrium | Lung and bone | TTE = Ill-defined hypoechoic mass attached to the lateral wall of the right atrium. | Cardiac MRI: Right atrial tumor with multiple pulmonary lesions. Enhanced MRI: Arterial heterogeneous enhancement. PET CT: Increased FDG uptake with pulmonary and bone metastasis | Palliative chemotherapy with epirubicin, ifosfamide, and pembrolizumab. Palliative radiotherapy (20 Gy/5 f) at the sites of the 10th vertebra. | Repeat CMRI and chest CT showed significant regression of the tumor and pulmonary metastases. Now, the patient continues chemotherapy and immunotherapy | [50] |
14 | 35-year-old female | Right atrium | Occipital headache, cough, chills, slurred speech, and nystagmus. | Midbrain, lungs, ovaries, uterus, spleen, liver, thyroid gland, kidney, and lymph nodes. | NIL | NIL | NIL | Patient died after a lumbar puncture. Autopsy: Mass in the right atrium, with tumor deposits in the pulmonary trunk, ascending aorta, and pericardium. | [51] |
15 | 44-year-old male | Left atrium. | Shortness of breath, chest pain, and fatigue. | NIL | TTE = Mass in the left atrium with extensive pericardial effusion. | Chest CT: Infiltrating, spreading tumor that invades the pericardial cavity, pericardium, and left lung hilum. Chest MRI: Large tumor (5.3 × 4.9 × 5.0 cm), heterogeneously hypointense on pre-contrast T1W and T2W images, developed from the posterior left atrial wall and attached to the posterior mitral valve leaflet and the left lung hilum | Mediastinal endoscopic surgery: Complete removal of the tumor with the right atrium. Postoperative chemotherapy | The patient made a remarkable recovery after >1 month of intensive treatment (adjuvant chemotherapy) and is still living a healthy life with his family, without signs of metastasis, 6 months postoperatively. | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanuri, S.H.; Vegi, Y.A. Clinical Pathophysiology and Research Highlights of Cardiac Angiosarcoma: Obligation for Immunogenetic Profiling to Understand Their Growth Pattern and Tailor Therapies. Hearts 2024, 5, 389-409. https://doi.org/10.3390/hearts5030028
Kanuri SH, Vegi YA. Clinical Pathophysiology and Research Highlights of Cardiac Angiosarcoma: Obligation for Immunogenetic Profiling to Understand Their Growth Pattern and Tailor Therapies. Hearts. 2024; 5(3):389-409. https://doi.org/10.3390/hearts5030028
Chicago/Turabian StyleKanuri, Sri Harsha, and Yashashree Apparao Vegi. 2024. "Clinical Pathophysiology and Research Highlights of Cardiac Angiosarcoma: Obligation for Immunogenetic Profiling to Understand Their Growth Pattern and Tailor Therapies" Hearts 5, no. 3: 389-409. https://doi.org/10.3390/hearts5030028
APA StyleKanuri, S. H., & Vegi, Y. A. (2024). Clinical Pathophysiology and Research Highlights of Cardiac Angiosarcoma: Obligation for Immunogenetic Profiling to Understand Their Growth Pattern and Tailor Therapies. Hearts, 5(3), 389-409. https://doi.org/10.3390/hearts5030028