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Abstract: (1) Background: Arrhythmias, or irregular heart rhythms, are a prevalent cardiovascular
condition and are diagnosed using electrocardiogram (ECG) signals. Advances in deep learning have
enabled automated analysis of these signals. However, the effectiveness of deep learning models
depends greatly on the quality of signal preprocessing. This study evaluated the impact of different
windowing techniques applied to Fourier transform-preprocessed ECG signals on the classification
accuracy of deep learning models. (2) Methods: We applied three windowing techniques—Hamming,
Hann, and Blackman—to transform ECG signals into the frequency domain. A one-dimensional
convolutional neural network was employed to classify the ECG signals into five arrhythmia cate-
gories based on features extracted from each windowed signal. (3) Results: The Blackman window
yielded the highest classification accuracy, with improved signal-to-noise ratio and reduced spectral
leakage compared to the Hamming and Hann windows. (4) Conclusions: The choice of windowing
technique significantly influences the effectiveness of deep learning models in ECG classification.
Future studies should explore additional preprocessing methods and their clinical applications.

Keywords: arrhythmia; electrocardiogram (ECG); ECG classification; signal processing; deep learning;
convolutional neural network (CNN)

1. Introduction

Arrhythmias, characterized by irregular heart rhythms, are among the most prevalent
heart conditions. These disorders occur when the heart beats either too fast or too slow due
to abnormal electrical impulses traveling through the myocardial tissue. These impulses
are responsible for controlling the contraction and relaxation of the myocardium and
generating the heart’s rhythm. Whereas a healthy heart maintains a consistent rhythm,
arrhythmias disrupt this pattern, making the heartbeat erratic, either faster, or slower,
depending on factors such as the heart’s electrical activity, blood flow, and/or the strength
of the myocardial tissue or damage to it [1].

The ECG signal demonstrates a unique waveform for every heartbeat cycle, with each
part of the signal representing specific cyclic events. When the atria are filled with blood,
the sinoatrial (SA) node fires an electrical impulse that causes atrial depolarization, leading
to the formation of the P wave on the ECG [2]. After the P wave, the atria contract for
approximately 100 milliseconds. The PQ interval represents the transmission of the signal
from the SA node to the atrioventricular (AV) node. Ventricular depolarization follows,
marked by the QRS complex, which is initiated by the AV node’s firing. The Q wave
reflects electrical impulses traveling through the heart’s lower regions, whereas the R wave
occurs as the signal passes through the ventricles’ lateral sides. The S wave denotes the last
phase of ventricular depolarization in the heart’s lower muscles, and even though atrial
repolarization happens concurrently, it is obscured by the QRS complex. The ventricle
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continues contracting during the ST segment, and the T wave signals ventricular repolar-
ization [3]. Figure 1 provides a visual representation of these components within a typical
ECG waveform.

Figure 1. Illustration of PQRST wave in an ECG signal.

By carefully examining these ECG waveforms, segments, and intervals, cardiologists
can diagnose various types of arrhythmias. Advances in machine learning and deep
learning technologies allow automated analysis of ECG data, extracting key features
and enabling the classification of different arrhythmia types. This not only helps detect
arrhythmias more efficiently but also assists in making faster, more accurate diagnoses.
Through these innovations, arrhythmia detection has become more accessible, improving
patient outcomes by allowing for timely intervention.

Deep learning (DL) has demonstrated significant success in medical diagnoses in
recent years, particularly in the automatic classification of heart abnormalities using ECG
signals [4–8]. DL models learn to map ECG features to their corresponding medical
categories, utilizing multiple neural layers. This mapping is optimized through a training
process using datasets where neuron weights are adjusted to minimize discrepancies
between the predicted and actual categories of the training data. Compared to traditional
machine learning methods such as clustering [9] and support vector machines (SVMs) [10],
DL-based ECG classification offers a more effective way to map ECG signal characteristics
to their respective categories [1,11], due to its powerful multi-level abstraction capability
for feature extraction.

Although existing research has yielded promising outcomes in the analysis of ECG
signals, several challenges remain unresolved. One significant issue is the imbalance in
data, where normal ECG signals far outnumber abnormal ones, leading to difficulty in
effectively addressing the imbalance problem. Additionally, the generalization capabilities
of many current models are limited. Due to the significant individual variations in ECG
patterns, these methods are often inadequate for clinical application [12]. When applied
to real-time hospital data, their performance tends to fall short compared to results from
publicly available datasets.

Convolutional neural networks (CNNs) have established themselves as potent tools in
the morphological analysis of physiological signals, particularly due to the ability of these
tools to be used to discern invariant patterns and capture pivotal features across data. This
paper presents an innovative approach for ECG signal recognition and classification, which
utilizes the strengths of CNNs to analyze signals in both time and frequency domains.
To enhance the model’s performance and address the nuances of complex ECG signal
patterns, different Fourier transform windowing techniques were explored.

While the Fourier transform has long been a cornerstone in the analysis of ECG sig-
nals, its application has predominantly focused on the transformation of signals from the
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time domain to the frequency domain without a detailed examination of the effects of
various windowing techniques. Previous studies have effectively leveraged the Fourier
transform to identify fundamental frequency components and to diagnose arrhythmias,
ischemic episodes, and other cardiac abnormalities [6,13–15]. Although the Hann, Ham-
ming, and Blackman windowing techniques reduce spectral leakage and improve signal
clarity, knowledge regarding how these methods impact the diagnostic capabilities of
Fourier-based ECG analysis is lacking. This paper explored how these specific windowing
techniques enhance the interpretability of Fourier-transformed ECG signals and, in turn,
improve the performance of CNNs in classifying cardiac events. This innovative approach
promises not only to refine the analysis of ECG data but also to provide more accurate and
reliable diagnostic tools that are critical for clinical decision making.

The primary contributions of this work are summarized as follows: Firstly, Fourier
transform techniques with different window functions—Hamming, Hann, and Blackman—
were applied to convert the ECG signals into the frequency domain. This transformation
facilitated the extraction of frequency-based features that provide valuable insights into the
signal’s characteristics. Secondly, a one-dimensional (1D)-CNN model was employed to
classify the ECG signals into five categories based on the features extracted through each
windowing method. This approach not only addressed data imbalances but also enhanced
the analysis framework by leveraging features derived from various Fourier windowing
techniques. The comparative analysis of these window functions aims to identify which
method optimally enhances model performance by effectively balancing the resolution and
leakage trade-offs inherent in Fourier-based frequency-domain feature extraction.

2. Materials and Methods
2.1. Dataset Description

In this study, the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH)
Arrhythmia Dataset [16] is utilized. This dataset included 24-hour ECG recordings collected
from 47 individuals, with subjects ranging in age from 23 to 89 years. We utilized excerpts
from 30 to minute, dual-channel ECG recordings collected from 47 participants between
1975 and 1979. The dataset featured two ECG lead signals for each recording, digitized at
360 samples per second with 11-bit resolution over a 10-mV range.

For the purposes of classification, the annotations were grouped into five categories
following the Association for the Advancement of Medical Instrumentation (AAMI) EC57
standard, “Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment
Measurement Algorithms” [17]. Class N encompasses “normal beats”, as well as “left
bundle branch block”, “right bundle branch block”, “atrial escape”, and “nodal junction
escape” beats. Class V includes “premature ventricular contractions” and “ventricular
escape” beats. Class S contains “atrial premature” (AP) beats, “aberrated premature” beats,
“nodal junction premature” beats, and “supraventricular” beats.

Class Q, sometimes referred to as “unknown beats”, includes “paced beats” (P), “fusion
of paced and normal beats” (fPN), and “unclassified beats.” Lastly, Class F is comprised
of “fusion of ventricular and normal beats” (fVN). These annotations are derived from
specific symbols present in the original dataset, which were mapped into five simplified
categories for classification purposes. For example, the “N” label includes symbols such as
“N”, “L”, “R”, “e”, and “j”, whereas the “S” label corresponds to symbols like “A”, “a”, and
“S.” This mapping was implemented to standardize the labels for the classification task.
The illustration of each signal is shown in Figure 2.

The classification and understanding of these beats rely immensely on the identifica-
tion of the PQRST complex, which is fundamental to interpreting ECG signals. Occasionally,
a U wave may be present, following the T wave, whose origin is less clearly understood
but is thought to be related to the repolarization of the Purkinje fibers. Understanding
the morphology and timing of these components is critical for accurate beat classification
and diagnosis, as each class of beats exhibits distinct characteristics in terms of the PQRST



Hearts 2024, 5 504

sequence. For instance, ventricular contractions such as those in Class V may display an ab-
normal QRS complex, whereas atrial contractions in Class S alter the P wave’s morphology.

(a) Class N (b) Class V (c) Class S

(d) Class F (e) Class Q

Figure 2. Illustration of time series signals for each label (N, V, S, F, Q).

2.2. Signal Preprocessing
2.2.1. Standardization for Signal Normalization

For this study, we chose standardization as the normalization technique, which is
particularly suitable for data involving biological signals such as ECGs. Standardiza-
tion adjusts the data to have zero mean and unit standard deviation. This is achieved
by subtracting the mean and dividing by the standard deviation of each data sample.
The standardization formula applied to each signal x in the dataset is expressed as:

x′ =
x − µ

σ
(1)

where µ represents the mean of the signal, and σ denotes the standard deviation.
Standardization was selected over other normalization techniques like min-max scal-

ing because it effectively addresses features that vary in scale and distribution. The ECG
signals, which exhibit significant variations in amplitude and waveform due to factors
such as heart size, electrode placement, and physiological conditions, benefit from stan-
dardization as it normalizes the range without distorting differences in values or losing
information about zero entries.

2.2.2. Noise Reduction Using Moving Average Filters

Noise reduction is a critical preprocessing step in ECG signal analysis to ensure the
reliability and accuracy of the data before further processing. Among various techniques
available, the moving average filter is widely employed due to its simplicity and effectiveness
in smoothing out short-term fluctuations and highlighting longer-term trends in the data.

The moving average filter operates by creating an average of different subsets of the
total number of data points available in a signal, effectively smoothing the signal. This is
particularly useful in ECG signal processing, where high-frequency noise can obscure the
true heart rate signal and other important diagnostic features.

The moving average filter is applied to the ECG signal using the following formula:

y[i] =
1
N

N−1

∑
j=0

x[i + j] (2)
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where x[i] represents the original data points in the signal, y[i] represents the output of the
moving average filter, and N is the number of data points in the moving average window,
which determines how much the data will be smoothed. In this study, a window size
of 5 samples was chosen based on the sampling rate and the expected frequency of the
noise components. This window size provided a balance between smoothing the signal to
remove high-frequency noise and preserving the essential characteristics of the ECG signal,
such as the P wave, QRS complex, and T wave.

2.3. Feature Extraction and Windowing Techniques

Feature extraction is a pivotal aspect of signal processing, especially for tasks that
involve the classification of physiological signals like ECGs. The Fourier transform is a
powerful mathematical tool used for deconstructing a signal into its constituent frequencies,
providing a different perspective that is particularly useful for analyzing the frequency
content of signals. The Fourier transform [18] converts a time-domain signal, which is a
function of time, into a frequency-domain signal, which is a function of frequency. This
transformation reveals the different frequencies present in the signal and their amplitudes,
which can be crucial for identifying rhythmic patterns such as those found in heartbeats.

The continuous Fourier transform of a continuous, time-dependent signal x(t) is
defined as:

X( f ) =
∫ ∞

−∞
x(t)e−j2π f t dt (3)

where:

• X( f ) is the Fourier Transform of x(t);
• f is the frequency in Hertz;
• t is time;
• j is the imaginary unit.

For digital signals, we use the discrete Fourier transform (DFT), especially imple-
mented in an efficient manner through the fast Fourier transform (FFT) algorithm as shown
in Equation (4).

X[k] =
N−1

∑
n=0

x[n] · e−j2π kn
N (4)

where:

• N is the total number of samples;
• x[n] is the signal value at sample n;
• X[k] represents the frequency component at frequency k.

To enhance the spectral purity of the Fourier analysis, finite impulse response (FIR)
filters [19] such as the Hann, Hamming, and Blackman windows are employed to precon-
dition the ECG signal. These filters are specifically designed to address the phenomenon
of spectral leakage, during which energy from strong frequency components bleeds into
neighboring frequencies, potentially obscuring or altering the true spectral content [20].

The Hann, Hamming, and Blackman windows are widely adopted in ECG analysis
due to the nature of physiological signals, which often contain both strong and weak com-
ponents. ECG signals are characterized by cyclic waveforms (such as PQRST complexes)
that demand a careful balance between frequency resolution and spectral leakage suppres-
sion. Each of these different window functions provides specific advantages. The Hann
window works well when a compromise between frequency and time resolution is needed,
whereas the Hamming window provides superior frequency resolution, making it ideal
for distinguishing small changes between consecutive beats. In contrast, the Blackman
window offers the best leakage suppression, making it a top choice in noisy environments,
ensuring that even small amplitude signals are accurately captured [21,22].

Applying FIR filters in the preprocessing stages of signal analyses enhances the effec-
tiveness of subsequent DL models. These filters are important for reducing spectral leakage
and noise, thereby improving the quality of the signal. Enhanced signal quality guarantees
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that DL models train on data that accurately represent the underlying physiological sig-
nals, which is particularly vital in ECG analysis. The clear and distinct representation of
frequency components achieved through FIR filtering facilitates the extraction of subtle
features. This is especially beneficial for CNNs, which rely strongly on high-quality inputs
to detect key data patterns. By improving the signal-to-noise ratio and emphasizing im-
portant signal characteristics, FIR filters reduce the complexity of the models required to
achieve high performance, thus enhancing training efficiency and predictive accuracy.

When applying the FFT, spectral leakage can occur, where energy from one frequency
spreads to adjacent frequencies, distorting the frequency spectrum. This issue arises from
the discontinuities introduced by the finite length of sampled signals. To mitigate this,
window functions are applied to the signal before performing the Fourier transform [21,22].
Window functions taper the signal to zero at the edges, ensuring smooth transitions at the
boundaries, which minimizes the leakage into adjacent frequency bins.

The window size refers to the number of consecutive samples of the signal to which
the window function is applied [22]. The window defines a segment of the signal to be
analyzed, and the choice of window size plays a critical role in determining the frequency
resolution and time resolution of the analysis. In the context of ECG signal processing,
the window size must be carefully chosen to balance the trade-off between frequency
resolution and time resolution [23]. Typically, the window size matches the length of the
ECG signal segment being analyzed. For example, if an ECG sample contains 360 time
points, the window function will be applied to these 360 points.

2.3.1. Hann Window

The Hann window, often referred to as the Hanning window, is designed to reduce
spectral leakage effectively [20,24]. It is mathematically defined as:

w(n) = 0.5
(

1 − cos
(

2πn
N − 1

))
(5)

where n is the sample index ranging from 0 to N − 1, and N is the total number of samples in
the window. This window function tapers the signal to zero at both ends, thus minimizing
the discontinuities at the window boundaries and reducing the resultant spectral leakage.

2.3.2. Hamming Window

The Hamming window offers a narrower main lobe compared to the Hann window [20,24],
which enhances its ability to resolve close frequency components but at the cost of higher
side lobes. It is defined by the expression:

w(n) = 0.54 − 0.46 cos
(

2πn
N − 1

)
(6)

This characteristic provides a better frequency resolution and is beneficial when
analyzing complex signals where precision in frequency component separation is crucial.

2.3.3. Blackman Window

For applications requiring significant reduction of spectral leakage, the Blackman
window is a superior choice [20,24]. It incorporates a second-order cosine term to further
attenuate the side lobes, as defined by:

w(n) = 0.42 − 0.5 cos
(

2πn
N − 1

)
+ 0.08 cos

(
4πn

N − 1

)
(7)

The inclusion of the additional cosine term results in a significantly higher attenuation
of the side lobes, making the Blackman window especially effective in situations where
leakage needs to be minimized to detect small-amplitude frequencies adjacent to large-
amplitude components.
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The selection of specific FIR filters can be strategically aligned with the requirements
of the deep learning model, taking into account the characteristics of the ECG signal
and the diagnostic objectives. For instance, a Blackman window, known for its superior
attenuation of side lobes, can be particularly useful in noisy environments where detailed
feature analysis is critical [25]. This strategic alignment ensures that the preprocessing not
only augments the capabilities of deep learning models but also optimizes them for more
effective learning and improved diagnostic outcomes. Therefore, integrating FIR filters into
the preprocessing stage is instrumental in maximizing the potential of advanced machine
learning techniques for medical signal analysis, thereby enhancing the overall diagnostic
capabilities in clinical settings.

2.3.4. Data Balancing Using SMOTE

In many real-world datasets, especially in medical applications like ECG signal anal-
ysis, class imbalance poses a significant challenge. This occurs when some classes have
substantially fewer samples than others, which can lead to biased models that perform
poorly on minority classes. To address this, we used the Synthetic Minority Oversampling
Technique (SMOTE) [26] to balance the dataset.

SMOTE is an oversampling technique that creates synthetic samples for the minority
class by interpolating between existing minority samples [26]. Unlike simple random
oversampling, which duplicates samples and can lead to overfitting, SMOTE generates
new synthetic samples, making the model more generalizable and robust.

The SMOTE algorithm operates as follows:

• For each minority class sample, a set of its k-nearest neighbors is identified.
• A new synthetic sample is generated by randomly selecting one of these neighbors

and creating a sample along the line segment connecting the original sample and
the neighbor.

Mathematically, if xi is a sample from the minority class, and xj is one of its k-nearest
neighbors, the synthetic sample xnew is given by Equation (8).

xnew = xi + λ · (xj − xi) (8)

where λ is a random number between 0 and 1.
By implementing SMOTE, we ensured that the machine learning model does not favor

the majority class, allowing for more balanced predictions across all classes. In the context of
ECG signal analysis, where it is crucial to accurately detect rare events such as arrhythmias,
the use of SMOTE ensures that minority events are adequately represented during training.
This reduces the risk of misclassification and improves the overall diagnostic accuracy of
the model. However, it is important to apply SMOTE cautiously, especially for time-series
data, such as ECG signals, as generating synthetic samples can sometimes introduce noise.
To mitigate this, SMOTE was applied only after signal preprocessing steps, including noise
reduction and normalization, to ensure high-quality synthetic samples. Additionally, model
performance on minority classes was closely monitored during training to validate the
effectiveness of the balancing strategy.

2.4. 1D-CNN Model Architecture

A CNN is a type of deep learning architecture that excels at extracting high-level
features from input data. Conceptually similar to a multilayer perceptron (MLP), each
neuron in a CNN has an activation function that processes weighted inputs to produce
outputs. CNNs are composed primarily of three types of layers: convolutional layers, pool-
ing layers, and fully connected layers [27]. These networks, when adequately trained, find
application in various fields such as speech recognition, structural engineering, and image
processing [28].

A 1D-CNN is a variant of the traditional CNN, tailored specifically for handling one-
dimensional data, making it particularly effective for sparse datasets. Unlike 2D-CNNs,
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which use two-dimensional convolutional filters, 1D-CNNs utilize one-dimensional filters
to extract the data features. This allows 1D-CNNs to be more suitable for processing audio
or text data and more computationally efficient due to having fewer parameters. Their
design grants the capture of local features within the signal, making them robust to slight
shifts in time, particularly for analyzing time-series data with temporal components [29].

The first 1D-CNN classification model used in this study is designed to process the
ECG signals and classify them into one of the five heartbeat categories. The architecture,
as shown in Table 1, consists of:

• Three convolutional layers with filter sizes of 32, 64, and 64, respectively, and a kernel
size of 3. Each convolutional layer is followed by a max pooling layer with a pool size
of 2 to reduce the spatial dimensions of the data.

• Flattening layer, which transforms the 1D convoluted data into a flat vector for the
fully connected layers.

• Two dense layers: the first dense layer has 64 units, followed by another dense layer
with 32 units, both using the ReLU activation function.

• Dropout layer (with a dropout rate of 0.5) is added after the first dense layer to prevent
overfitting by randomly deactivating neurons during training.

• The final output layer uses a softmax activation function to predict the probability of
each class, with five output units corresponding to the five heartbeat categories.

Table 1. Parameter Tuning of the Proposed 1D CNN Model.

Parameter Value

Pooling Type Max Pooling
Pooling Size 2

Units in First Dense Layer 64
Units in Second Dense Layer 32

Activation Function ReLU
Dropout Rate 0.5

Output Layer Activation Softmax
Number of Output Units 5

Optimizer Adam

This architecture was chosen for its ability to capture local patterns in the ECG signals
while maintaining a manageable number of parameters. The model was trained using
the Adam optimizer, with categorical cross-entropy as the loss function since this is a
multi-class classification problem. The model was trained for 15 epochs with a batch size
of 32, in line with prior research settings. The training dataset was split into 60% training
and 40% testing to ensure the model was evaluated on a substantial portion of the data.
Validation data were taken from the test set to monitor the model’s performance during
training. Additionally, the class distribution in the training and test sets was adjusted to
reflect the balanced dataset achieved through SMOTE.

3. Results
3.1. Effectiveness of FIR Window Functions in Signal Preprocessing
Quantitative Analysis

The signal-to-noise ratio (SNR) is a metric in signal processing used to quantify the
clarity and quality of a signal relative to the background noise. It is particularly important
in the context of ECG signal analysis where distinguishing true signal from noise can
influence diagnostic decisions. The SNR is expressed in decibels (dB) and calculated using
the following Equation [30]:

SNR (dB) = 10 · log10

(Psignal

Pnoise

)
(9)
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where Psignal represents the power of the desired signal, calculated as the sum of the squares
of the signal amplitudes, and Pnoise denotes the power of the noise, which is determined by
the difference between the original and the FIR-filtered signal:

Psignal = ∑ x(t)2, Pnoise = ∑(x(t)− xfiltered(t))
2 (10)

Here, x(t) is the amplitude of the original ECG signal at time t, and xfiltered(t) is the
amplitude after applying an FIR filter, such as Hann, Hamming, or Blackman. The applica-
tion of these filters typically aims to enhance the SNR by reducing the noise components
without distorting the essential features of the ECG signal. By improving the SNR, the fil-
tered signal can offer clearer and more discernible cardiac events, facilitating more accurate
analysis and interpretation.

In the analysis of FIR filters applied to ECG signals, the Hann and Hamming filters
demonstrated superior performance in enhancing the signal-to-noise ratio (SNR), both
achieving improvements of around 4 dB (Figure 3). The Hamming filter slightly outper-
formed the Hann filter, suggesting its marginally better efficacy in minimizing spectral
leakage and enhancing signal clarity. Conversely, the Blackman filter, while still effective,
showed a lower SNR improvement of approximately 3 dB. The observed variations in
SNR improvements, denoted by error bars in the results, underscore the consistency of
the filters’ effects across multiple datasets. This variability is crucial for understanding the
practical implications of filter selection in clinical ECG analysis, where signal integrity can
significantly influence diagnostic accuracy.

Figure 3. Comparison of spectral analysis results for ECG signals processed using Hann, Hamming,
and Blackman windows.

3.2. Performance of Deep Learning Models on Preprocessed Signals
3.2.1. Confusion Matrix Analysis

In classifying ECG signals using different windowing techniques in preprocessing,
the evaluation of classification performance is central, with a specific focus on confusion
matrices for the Blackman, Hamming, and Hann, and “None” (no technique applied) win-
dows. The classification matrix is an imperative metric to assess how well the classification
algorithms performed under the different spectral conditions induced by the respective
window types. The classification matrices of both training and test data prediction are
shown in Figures 4 and 5.

The confusion matrix for the Blackman window demonstrates high classification
accuracy across the board, with a notable 34,349 correct classifications for class F, indicating
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strong sensitivity. However, there were 297 instances of class N being misclassified as
F, which was the largest source of confusion. Similarly, class V indicated 51 instances
of misclassification as F, suggesting some challenges in distinguishing between F and V.
Overall, the Blackman window offered good specificity and sensitivity, with a limited
spread in misclassifications across other categories.

The Hamming window’s confusion matrix also displayed robust performance, with
34,349 correct classifications for class F. There were 271 misclassifications of N as F and
228 cases where class S was also predicted as F. However, the number of mis-categorizations
between other classes (such as between V and S) was relatively small. The Hamming
window demonstrated effective sorting overall but performed slightly more misclassifica-
tions than the Blackman window, particularly in distinguishing between classes S and V.
The Hann window demonstrated effective organization performance with 34,357 correct
classifications for class F. However, it introduced some noticeable errors, such as 291 cases
where class S was classified as F, and 276 cases where class N was also confused with F.
In terms of distinguishing class V, the Hann window indicated 123 instances were misclas-
sified as F, indicating similar behavior as the other windows but with a slight tendency
toward more errors.

(a) Hann Window (Training) (b) Hamming Window (Training)

(c) Blackman Window (Training) (d) No Window Filter Applied (Training)

Figure 4. Comparison of confusion matrices for ECG signal classification processed using different
window types: (a) Hann, (b) Hamming, (c) Blackman, and (d) No Window using training data set.
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(a) Hann Window (Test) (b) Hamming Window (Test)

(c) Blackman Window (Test) (d) No Window Filter Applied (Test)

Figure 5. Comparison of confusion matrices for ECG signal classification processed using different
window types: (a) Hann, (b) Hamming, (c) Blackman, and (d) No Window using test data set.

The absence of a windowing function (None) altogether resulted in the highest number
of misclassifications, highlighting the importance of windowing for signal preprocessing.
Without the benefits of tapering, 34,222 samples of class F were correctly classified, which
is slightly lower than the other window techniques. Additionally, 406 instances of class S
were miscategorized as F, and 141 instances of V were also misclassified as F, highlighting
the limitations of the use of the raw signals in achieving high classification accuracy.
The lack of windowing exacerbated spectral leakage and high-frequency noise, leading
to reduced precision and specificity. This result emphasizes the need for windowing
techniques to reduce noise and enhance feature preservation, particularly for models that
rely substantially on subtle signal patterns for classification.

All three windowing techniques—Blackman, Hamming, and Hann—exhibited ro-
bust classification capabilities, but subtle differences in their performances make certain
windows more suitable for specific applications. The Blackman window emerged as the
most reliable option, with the least number of misclassifications and the highest specificity,
making it ideal for high-stakes, high-precision clinical diagnostics. Similarly, the Hamming
window offered strong performance but introduced slightly more misclassifications, par-
ticularly between related classes, suggesting that careful tuning may be required when
precision is critical. The Hann exhibited slightly more spectral leakage, leading to more
frequent class confusion, but it may be suitable for applications where the focus is on
capturing long-term trends rather than precise transitions.

The “None” configuration, while still functional, highlighted the necessity of utiliza-
tion of windowing techniques for achieving optimal performance. The increased number
of misclassifications underscored the role of windowing in reducing noise and spectral
leakage, improving the model’s ability to learn from the data. Therefore, the choice of win-
dow function should be guided by the specific requirements of the application—whether it
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is a precise class distinction, resolution of closely spaced frequency components, or overall
trend capture.

3.2.2. Overall Performance

The performance analysis of the three window functions—Hamming, Hann, and
Blackman—on ECG signal classification provides a detailed insight into their effectiveness
across five classes (F, N, S, V, Q), evaluated through metrics such as precision, recall,
and F1-Score (Table 2). These metrics are defined as follows:

• Precision: the ratio of correctly predicted positive observations to the total predicted
positive observations.

Precision =
TP

TP + FP
where TP is the number of true positives, and FP is the number of false positives.

• Recall: the ratio of correctly predicted positive observations to all observations in the
actual class.

Recall =
TP

TP + FN
where FN is the number of false negatives.

• F1-Score: the harmonic mean of precision and recall, providing a balance between the
two.

F1-Score = 2 × Precision × Recall
Precision + Recall

Table 2. Performance Metrics for Each Window Type and Dataset (Training vs. Test).

Window Type Class
Training Test

Precision Recall F1-Score Samples Precision Recall F1-Score Samples

None

F 0.9784 0.9944 0.9863 51,722 0.9761 0.9927 0.9843 34,474
N 0.9493 0.6967 0.8036 1612 0.9192 0.7024 0.7963 1102
S 0.9265 0.8768 0.9010 4171 0.9098 0.8468 0.8772 2775
V 0.8533 0.5289 0.6531 484 0.8516 0.4952 0.6263 313
Q 1.0000 0.0909 0.1667 11 0.0000 0.0000 0.0000 4

Hamming

F 0.9855 0.9975 0.9915 51,722 0.9822 0.9964 0.9892 34,474
N 0.9782 0.7525 0.8506 1612 0.9599 0.7377 0.8343 1102
S 0.9574 0.9439 0.9506 4171 0.9476 0.9128 0.9299 2775
V 0.9394 0.5764 0.7145 484 0.9209 0.5208 0.6653 313
Q 1.0000 0.1818 0.3077 11 0.0000 0.0000 0.0000 4

Hann

F 0.9818 0.9975 0.9896 51,722 0.9803 0.9966 0.9884 34,474
N 0.9559 0.7401 0.8343 1612 0.9263 0.7296 0.8162 1102
S 0.9617 0.9019 0.9308 4171 0.9576 0.8865 0.9207 2775
V 0.9338 0.5537 0.6952 484 0.9011 0.5240 0.6626 313
Q 1.0000 0.1818 0.3077 11 0.0000 0.0000 0.0000 4

Blackman

F 0.9828 0.9973 0.9900 51,722 0.9812 0.9964 0.9887 34,474
N 0.9424 0.7208 0.8169 1612 0.9336 0.7142 0.8093 1102
S 0.9578 0.9295 0.9434 4171 0.9469 0.9128 0.9295 2775
V 0.9829 0.4752 0.6407 484 0.9650 0.4409 0.6053 313
Q 1.0000 0.1818 0.3077 11 0.0000 0.0000 0.0000 4

All three models performed excellently in classifying class F, with notably high preci-
sion and recall, suggesting their strong capability in accurately identifying this category
with minimal false positives and negatives. Classes N and S were also observed with
relatively good performance, although the recall for class N was slightly reduced, indi-
cating fewer true positives detected relative to the actual number of positives present.
This outcome could impact the clinical utility of the model where missing a positive case
can have significant consequences. The performance on class V was moderate across all
models, with precision slightly lower than other classes, hinting at a higher rate of false
positives for this class. This finding might suggest a common challenge in the classification
of this class using window-based spectral analysis, possibly due to the overlap in spectral
characteristics between class V and other classes.

A notable observation across all three models was the complete lack of detection
of class Q, which exhibited zero values in precision, recall, and F1-score. This uniform
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failure to detect class Q likely indicates that class Q represents a type of signal that is unde-
tectable under the current feature extraction and classification methodologies employed.
This consequence could be due to the absence of distinct or adequate features within the
spectral domain that these window functions analyze, or possibly the absence of sufficient
representative samples of class Q in the training dataset.

Overall, while all three window functions provide robust classification capabilities
for most ECG signal classes, the choice among them should consider the specific classifi-
cation needs and the unique challenges presented by each class. The slight differences in
performance metrics between the models can guide the selection of a window function
based on whether higher precision or a better-balanced F1-Score is more critical for the
intended application.

The results clearly indicate the utility of FIR window functions in enhancing the
signal-to-noise ratio and reducing artifacts in ECG signals, which in turn significantly
improved the performance of the deep learning models. The particular use of Blackman
window filtering facilitated more refined feature extraction, thereby aiding in more accurate
heart condition diagnostics. The findings suggested that integrating advanced FIR filtering
techniques with deep learning frameworks can significantly advance the field of biomedical
signal analysis.

4. Conclusions

This study investigated the impact of applying different FIR window functions—
Hann, Hamming, and Blackman—on ECG signal classification using convolutional neural
networks. The results established that the choice of window function plays a critical role in
balancing frequency resolution, leakage suppression, and classification performance across
different ECG classes.

From the performance metrics and confusion matrices, all FIR filters utilized enhanced
the signal-to-noise ratio and improved the clarity of ECG signals, which in turn facilitated
more accurate feature extraction by the 1D-CNN models. However, differences in precision,
recall, and F1-scores among window functions suggested that specific windows perform
better under certain conditions, as highlighted below.

4.1. Window Function Performance

• Hamming Window: Best Overall Balance
The Hamming window achieved high F1-scores and recall, especially for smaller
classes (S and V) in both training and test datasets. This suggests that the Hamming
window’s narrow main lobe helped the CNN distinguish subtle ECG features, such as
T-wave variations and atrial fibrillation events. It also showed the best generalization
performance, with consistent results across training and test sets, indicating that it
effectively balances frequency resolution and leakage suppression.

• Hann Window: Consistent General Purpose Window
The Hann window provided a balanced trade-off between precision and recall for
most classes, particularly in identifying normal beats (F-class), while not excelling
in any one metric, the Hann window demonstrated stable performance across all
classes, making it a practical choice for general ECG analysis tasks where both time
and frequency information are critical.

• Blackman Window: Superior Noise Suppression but Limited Generalization
The Blackman window, known for its excellent side-lobe suppression, performed well
in training but showed lower recall and F1-scores on the test data, particularly for
rarer classes like V and Q.

• No Window: Moderate Performance Across Metrics
The absence of a window function resulted in lower F1-scores and recall, particularly
for smaller classes (Q and V). This outcome highlights the importance of precondi-
tioning ECG signals with window functions to reduce spectral leakage and enhance
classification performance.
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4.2. Class-Specific Observations

Normal beats (F-class) consistently achieved the highest precision, recall, and F1-scores
across all window types due to their abundance in the dataset. Rare Classes (Q-class)
exhibited low recall and F1-scores across all window types, indicating that class imbalance
remains a challenge despite the use of FIR filters. The performance for Q-class was especially
poor on the test set, with zero recall and precision in some cases. PVC beats (V-class) showed
improved detection when using the Hamming and Hann windows, but struggled with the
Blackman window on unseen test data.

4.3. Implications

The results suggest that Hamming and Hann windows are the most suitable for ECG
signal analysis, with Hamming performing better for smaller classes and Hann providing
consistent results across all classes. The Blackman window, while effective for noise
suppression, may require further regularization techniques to reduce overfitting. The use
of no window function is not recommended, as it led to poorer model performance due to
the lack of leakage control. The findings highlight the importance of selecting appropriate
window functions during preprocessing to ensure that the deep learning models receive
high-quality input signals. This is especially relevant in clinical settings, where accurate
detection of rare cardiac events can significantly impact patient outcomes.

4.4. Limitations and Future Work

Although this study provides valuable insights, further research is needed to address
the class imbalance problem observed in the detection of rare ECG events. Additionally,
exploring adaptive windowing techniques that dynamically adjust window parameters
based on the signal characteristics could further enhance model performance. Future work
could also investigate the impact of other window functions or hybrid filtering methods on
different types of ECG signals to optimize classification accuracy across all conditions.
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