Dyslipidemia in Renal Transplant Recipients
Abstract
:1. Introduction
2. Dyslipidemia Prevalence
3. Causes of Post-Transplant Dyslipidemia
4. Role of Immunosuppression in Dyslipidemia Development
4.1. Glucocorticoids
4.2. Calcineurin Inhibitors (CNI)
4.3. Mammalian Target of Rapamycin (mTOR) Inhibitors
4.4. Purine Synthesis Inhibitors
4.5. Belatacept—An Upcoming Revolution?
5. Measures to Prevent Dyslipidemia
6. Pharmacological Treatment of Dyslipidemia
6.1. Statins
Statins Drug-Drug Interactions
6.2. Ezetimibe
6.3. Bile Sequestrants
6.4. Fibrates
7. Future Perspectives to Reduce LDL-C
7.1. PCSK9 Inhibitors
7.2. Inclisiran
7.3. Bempedoic Acid
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agarwal, A.; Prasad, G.V.R. Post-Transplant Dyslipidemia: Mechanisms, Diagnosis and Management. World J. Transplant. 2016, 6, 125. [Google Scholar] [CrossRef] [PubMed]
- Badiou, S.; Cristol, J.P.; Mourad, G. Dyslipidemia Following Kidney Transplantation: Diagnosis and Treatment. Curr. Diabetes Rep. 2009, 9, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Shirali, A.C.; Bia, M.J. Management of Cardiovascular Disease in Renal Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2008, 3, 491–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heleniak, Z.T.; Illersperger, S.; Brakemeier, S.; Dębska-Ślizień, A.; Bach, P.; Budde, K.; Halleck, F. Influence of Lipid Profile and Statin Administration on Arterial Stiffness in Renal Transplant Recipients. Cardiol. J. 2022, 29, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in Patients with Chronic Kidney Disease: Etiology and Management. Int. J. Nephrol. Renov. Dis. 2017, 10, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, T.; Eriguchi, M.; Yoshida, H.; Tasaki, H.; Fukata, F.; Nishimoto, M.; Matsui, M.; Samejima, K.I.; Iseki, K.; Fujimoto, S.; et al. Association between Chronic Kidney Disease and New-Onset Dyslipidemia: The Japan Specific Health Checkups (J-SHC) Study. Atherosclerosis 2021, 332, 24–32. [Google Scholar] [CrossRef]
- Piecha, G.; Adamczak, M.; Ritz, E. Dyslipidemia in Chronic Kidney Disease: Pathogenesis and Intervention. Pol. Arch. Med. Wewn. 2009, 119, 487–492. [Google Scholar] [CrossRef]
- Dębska-Ślizień, A.; Bzoma, B.; Rutkowski, B. Wyprzedzające Przeszczepianie Nerek. Forum Nefrol. 2009, 2, 84–89. [Google Scholar]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; de Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular RiskThe Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, E1082–E1143. [Google Scholar] [CrossRef]
- Wanner, C.; Tonelli, M. KDIGO Clinical Practice Guideline for Lipid Management in CKD: Summary of Recommendation Statements and Clinical Approach to the Patient. Kidney Int. 2014, 85, 1303–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannu, H.S.; Singh, D.; Sandhu, J.S. Lipid Profile before and after Renal Transplantation—A Longitudinal Study. Ren. Fail. 2003, 25, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Massy, Z.A.; Kasiske, B.L. Post-Transplant Hyperlipidemia: Mechanisms and Management. J. Am. Soc. Nephrol. 1996, 7, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Corsini, A. The Safety of HMG-CoA Reductase Inhibitors in Special Populations at High Cardiovascular Risk. Cardiovasc. Drugs Ther. 2003, 17, 265–285. [Google Scholar] [CrossRef] [PubMed]
- Quaschning, T.; Mainka, T.; Nauck, M.; Rump, L.C.; Wanner, C.; Krämer-Guth, A. Immunosuppression Enhances Atherogenicity of Lipid Profile after Transplantation. Kidney Int. Suppl. 1999, 56, S235–S237. [Google Scholar] [CrossRef] [Green Version]
- Van den Dorpel, M.A.; Ghanem, H.; Rischen-Vos, J.; Man In’t Veld, A.J.; Jansen, H.; Weimar, W. Low-Density Lipoprotein Oxidation Is Increased in Kidney Transplant Recipients. Transplant. Int. 1996, 9, S54–S57. [Google Scholar] [CrossRef]
- Sabbatini, M.; Ferreri, L.; Pisani, A.; Capuano, I.; Morgillo, M.; Memoli, A.; Riccio, E.; Guida, B. Nutritional Management in Renal Transplant Recipients: A Transplant Team Opportunity to Improve Graft Survival. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Kluch, M.; Kurnatowska, I.; Matera, K.; Łokieć, K.; Puzio, T.; Czkwianianc, E.; Grzelak, P. Nutrition Trends in Patients over the Long Term after Kidney Transplantation. Transplant. Proc. 2020, 52, 2357–2362. [Google Scholar] [CrossRef]
- Nöhre, M.; Schieffer, E.; Hanke, A.; Pape, L.; Schiffer, L.; Schiffer, M.; de Zwaan, M. Obesity After Kidney Transplantation—Results of a KTx360°Substudy. Front. Psychiatry 2020, 11, 399. [Google Scholar] [CrossRef]
- Zielińska, K.; Kukulski, L.; Wróbel, M.; Przybyłowski, P.; Zakliczyński, M.; Strojek, K. Prevalence and Risk Factors of New-Onset Diabetes After Transplantation (NODAT). Ann. Transplant. 2021, 26, e926556-1. [Google Scholar] [CrossRef]
- Ponticelli, C.; Favi, E. Physical Inactivity: A Modifiable Risk Factor for Morbidity and Mortality in Kidney Transplantation. J. Pers. Med. 2021, 11, 927. [Google Scholar] [CrossRef] [PubMed]
- Moorthi, R.N.; Avin, K.G. Clinical Relevance of Sarcopenia in Chronic Kidney Disease. Curr. Opin. Nephrol. Hypertens. 2017, 26, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, E.J.; Prohaska, T.R.; Gallant, M.; Siminoff, L.A. Self-Care Strategies and Barriers among Kidney Transplant Recipients: A Qualitative Study. Chronic Illn. 2009, 5, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballesteros, F.; Allard, J.; Durand, C.; Cardinal, H.; Lalonde, L.; Fortin, M.-C. Kidney Transplant Recipients’ Perspectives on Cardiovascular Disease and Related Risk Factors After Transplantation: A Qualitative Study. Transplant. Direct 2017, 3, e162. [Google Scholar] [CrossRef]
- Ponticelli, C.; Arnaboldi, L.; Moroni, G.; Corsini, A. Treatment of Dyslipidemia in Kidney Transplantation. Expert Opin. Drug Saf. 2020, 19, 257–267. [Google Scholar] [CrossRef]
- Jankowska, M. Immunosuppressive Therapy Following Kidney Transplantation in Elderly Recipients. Ren. Dis. Transplant. Forum 2021, 14, 58–65. [Google Scholar] [CrossRef]
- Rostaing, L.; Vincenti, F.; Grinyõ, J.; Rice, K.M.; Bresnahan, B.; Steinberg, S.; Gang, S.; Gaite, L.E.; Moal, M.C.; Mondragõn-Ramirez, G.A.; et al. Long-Term Belatacept Exposure Maintains Efficacy and Safety at 5 Years: Results from the Long-Term Extension of the BENEFIT Study. Am. J. Transplant. 2013, 13, 2875–2883. [Google Scholar] [CrossRef]
- Ponticelli, C.; Favi, E.; Ferraresso, M. New-Onset Diabetes after Kidney Transplantation. Medicina 2021, 57, 250. [Google Scholar] [CrossRef]
- Geer, E.B.; Islam, J.; Buettner, C. Mechanisms of Glucocorticoid-Induced Insulin Resistance: Focus on Adipose Tissue Function and Lipid Metabolism. Endocrinol. Metab. Clin. N. Am. 2014, 43, 75. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, P.J.; Dudley, C.R.K.; Higgins, R.M.; Firth, J.D.; Smith, B.; Morris, P.J. Randomised Controlled Trial of Steroid Withdrawal in Renal Transplant Recipients Receiving Triple Immunosuppression. Lancet 1996, 348, 643–648. [Google Scholar] [CrossRef]
- Kato, Y.; Tojimbara, T.; Iwadoh, K.; Koyama, I.; Nanmoku, K.; Kai, K.; Sannomiya, A.; Nakajima, I.; Fuchinoue, S.; Teraoka, S. Early Steroid Withdrawal Protocol with Basiliximab, Cyclosporine and Mycophenolate Mofetil in Renal-Transplant Recipients. Int. Immunopharmacol. 2006, 6, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Ekberg, J.; Baid-Agrawal, S.; Jespersen, B.; Källén, R.; Rafael, E.; Skov, K.; Lindnér, P. A Randomized Controlled Trial on Safety of Steroid Avoidance in Immunologically Low-Risk Kidney Transplant Recipients. Kidney Int. Rep. 2022, 7, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Arnol, M.; Naumovic, R.; Dimitrov, E.P.; Racki, S.; Bucsa, C.A.; Covic, A.; Mitic, I.; Vavic, N.; Radovanovic, R.M.V.; Zibar, L.; et al. Immunosuppressive Regimens Following Kidney Transplantation in Five European Countries: The Observational RECORD Study. Transplant. Rep. 2020, 5, 100061. [Google Scholar] [CrossRef]
- Neuwirt, H.; Rudnicki, M.; Schratzberger, P.; Pirklbauer, M.; Kronbichler, A.; Mayer, G. Immunosuppression after Renal Transplantation. Memo-Mag. Eur. Med. Oncol. 2019, 12, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Dikkers, A.; Tietge, U.J. Biliary Cholesterol Secretion: More than a Simple ABC. World J. Gastroenterol. 2010, 16, 5936–5945. [Google Scholar] [CrossRef] [PubMed]
- Riella, L.V.; Gabardi, S.; Chandraker, A. Dyslipidemia and Its Therapeutic Challenges in Renal Transplantation. Am. J. Transplant. 2012, 12, 1975–1982. [Google Scholar] [CrossRef] [PubMed]
- Badiou, S.; Garrigue, V.; Dupuy, A.M.; Chong, G.; Cristol, J.P.; Mourad, G. Small Dense Low-Density Lipoprotein in Renal Transplant Recipients: A Potential Target for Prevention of Cardiovascular Complications? Transplant. Proc. 2006, 38, 2314–2316. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.O.; Barr, M.L.; Radovancevic, B.; Renlund, D.G.; Mentzer, R.M.; Smart, F.W.; Tolman, D.E.; Frazier, O.H.; Young, J.B.; Vanveldhuisen, P. A Randomized, Multicenter Comparison of Tacrolimus and Cyclosporine Immunosuppressive Regimens in Cardiac Transplantation: Decreased Hyperlipidemia and Hypertension with Tacrolimus. J. Heart Lung Transplant. 1999, 18, 336–345. [Google Scholar] [CrossRef]
- Naesens, M.; Kuypers, D.R.J.; Sarwal, M. In-Depth Review Calcineurin Inhibitor Nephrotoxicity. Clin. J. Am. Soc. Nephrol. 2009, 4, 481–508. [Google Scholar] [CrossRef] [Green Version]
- Baroja-Mazo, A.; Revilla-Nuin, B.; Ramírez, P.; Pons, J.A. Immunosuppressive Potency of Mechanistic Target of Rapamycin Inhibitors in Solid-Organ Transplantation. World J. Transplant. 2016, 6, 183. [Google Scholar] [CrossRef]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR Signaling Pathway and mTOR Inhibitors in Cancer: Progress and Challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Morrisett, J.D.; Abdel-Fattah, G.; Hoogeveen, R.; Mitchell, E.; Ballantyne, C.M.; Pownall, H.J.; Opekun, A.R.; Jaffe, J.S.; Oppermann, S.; Kahan, B.D. Effects of Sirolimus on Plasma Lipids, Lipoprotein Levels, and Fatty Acid Metabolism in Renal Transplant Patients. J. Lipid Res. 2002, 43, 1170–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoogeveen, R.C.; Ballantyne, C.M.; Pownall, H.J.; Opekun, A.R.; Hachey, D.L.; Jaffe, J.S.; Oppermann, S.; Kahan, B.D.; Morrisett, J.D. Effect of Sirolimus on the Metabolism of ApoB100-Containing Lipoproteins in Renal Transplant Patients. Transplantation 2001, 72, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Klawitter, J.; Nashan, B.; Christians, U. Everolimus and Sirolimus in Transplantation-Related but Different. Expert Opin. Drug Saf. 2015, 14, 1055. [Google Scholar] [CrossRef]
- Kasiske, B.L.; de Mattos, A.; Flechner, S.M.; Gallon, L.; Meier-Kriesche, H.-U.; Weir, M.R.; Wilkinson, A. Mammalian Target of Rapamycin Inhibitor Dyslipidemia in Kidney Transplant Recipients. Am. J. Transplant. 2008, 8, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- Legendre, C.; Campistol, J.M.; Squifflet, J.P.; Burke, J.T. Cardiovascular Risk Factors of Sirolimus Compared with Cyclosporine: Early Experience from Two Randomized Trials in Renal Transplantation. Transplant. Proc. 2003, 35, S151–S153. [Google Scholar] [CrossRef]
- Topilsky, Y.; Hasin, T.; Raichlin, E.; Boilson, B.A.; Schirger, J.A.; Pereira, N.L.; Edwards, B.S.; Clavell, A.L.; Rodeheffer, R.J.; Frantz, R.P.; et al. Sirolimus as Primary Immunosuppression Attenuates Allograft Vasculopathy with Improved Late Survival and Decreased Cardiac Events after Cardiac Transplantation. Circulation 2012, 125, 708–720. [Google Scholar] [CrossRef]
- Akman, B.; Uyar, M.; Afsar, B.; Sezer, S.; Ozdemir, F.N.; Haberal, M. Lipid Profile during Azathioprine or Mycophenolate Mofetil Combinations with Cyclosporine and Steroids. Transplant. Proc. 2007, 39, 135–137. [Google Scholar] [CrossRef]
- Crepeau, R.L.; Ford, M.L. Challenges and Opportunities in Targeting the CD28/CTLA-4 Pathway in Transplantation and Autoimmunity. Expert Opin. Biol. Ther. 2017, 17, 1001. [Google Scholar] [CrossRef]
- Vanrenterghem, Y.; Bresnahan, B.; Campistol, J.; Durrbach, A.; Grinyó, J.; Neumayer, H.H.; Lang, P.; Larsen, C.P.; Mancilla-Urrea, E.; Pestana, J.M.; et al. Belatacept-Based Regimens Are Associated with Improved Cardiovascular and Metabolic Risk Factors Compared with Cyclosporine in Kidney Transplant Recipients (BENEFIT and BENEFIT-EXT Studies). Transplantation 2011, 91, 976–983. [Google Scholar] [CrossRef]
- Vincenti, F.; Charpentier, B.; Vanrenterghem, Y.; Rostaing, L.; Bresnahan, B.; Darji, P.; Massari, P.; Mondragon-Ramirez, G.A.; Agarwal, M.; di Russo, G.; et al. A Phase III Study of Belatacept-Based Immunosuppression Regimens versus Cyclosporine in Renal Transplant Recipients (BENEFIT Study). Am. J. Transplant. 2010, 10, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Westhoff, T.H. Belatacept in Renal Transplantation—Quo Vadis? Transl. Androl. Urol. 2016, 5, 953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosas, S.E.; Reese, P.P.; Huan, Y.; Doria, C.; Cochetti, P.T.; Doyle, A. Pretransplant Physical Activity Predicts All-Cause Mortality in Kidney Transplant Recipients. Am. J. Nephrol. 2012, 35, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, E.J.; Prohaska, T.R.; Gallant, M.P.; Sehgal, A.R.; Strogatz, D.; Yucel, R.; Conti, D.; Siminoff, L.A. Longitudinal Analysis of Physical Activity, Fluid Intake, and Graft Function among Kidney Transplant Recipients. Transpl. Int. 2009, 22, 990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landi, F.; Russo, A.; Cesari, M.; Pahor, M.; Bernabei, R.; Onder, G. HDL-Cholesterol and Physical Performance: Results from the Ageing and Longevity Study in the Sirente Geographic Area (IlSIRENTE Study). Age Ageing 2007, 36, 514–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, G.A.; Kelley, K.S.; Vu Tran, Z. Aerobic Exercise, Lipids and Lipoproteins in Overweight and Obese Adults: A Meta-Analysis of Randomized Controlled Trials. Int. J. Obes. 2005, 29, 881. [Google Scholar] [CrossRef] [Green Version]
- De Smet, S.; van Craenenbroeck, A.H. Exercise Training in Patients after Kidney Transplantation. Clin. Kidney J. 2021, 14, ii15–ii24. [Google Scholar] [CrossRef]
- Calella, P.; Hernández-Sánchez, S.; Garofalo, C.; Ruiz, J.R.; Carrero, J.J.; Bellizzi, V. Exercise Training in Kidney Transplant Recipients: A Systematic Review. J. Nephrol. 2019, 32, 567–579. [Google Scholar] [CrossRef]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, 49–73. [Google Scholar] [CrossRef] [Green Version]
- Akbulut, G.; Gencer-Bingol, F. Medical Nutritional Therapy for Renal Transplantation in the COVID-19 Pandemic. World J. Transplant. 2021, 11, 212–219. [Google Scholar] [CrossRef]
- Goldfarb Cyrino, L.; Galpern, J.; Moore, L.; Borgi, L.; Riella, L.V. A Narrative Review of Dietary Approaches for Kidney Transplant Patients. Kidney Int. Rep. 2021, 6, 1764–1774. [Google Scholar] [CrossRef] [PubMed]
- Fong, J.V.N.; Moore, L.W. Nutrition Trends in Kidney Transplant Recipients: The Importance of Dietary Monitoring and Need for Evidence-Based Recommendations. Front. Med. 2018, 5, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massy, Z.A.; Kolla, E.; Ferrières, J.; Bruckert, E.; Lambert, O.; Mansencal, N.; Laville, M.; Frimat, L.; Fouque, D.; Combe, C.; et al. Is a Treat-to-Target Approach to Lipid-Lowering Therapy Appropriate in Patients with Chronic Kidney Disease? A Prospective French Cohort Study. J. Nephrol. 2021, 34, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; et al. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, 2889–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginsberg, H.N. REVIEW: Efficacy and Mechanisms of Action of Statins in the Treatment of Diabetic Dyslipidemia. J. Clin. Endocrinol. Metab. 2006, 91, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Chapman, M.J.; McTaggart, F. Optimizing the Pharmacology of Statins: Characteristics of Rosuvastatin. Atheroscler. Suppl. 2002, 2, 33–37. [Google Scholar] [CrossRef]
- Davignon, J. Beneficial Cardiovascular Pleiotropic Effects of Statins. Circulation 2004, 109, III-39–III-43. [Google Scholar] [CrossRef] [Green Version]
- Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgözoʇlu, L.; Nordestgaard, B.G.; et al. Statin-Associated Muscle Symptoms: Impact on Statin Therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur. Heart J. 2015, 36, 1012–1022. [Google Scholar] [CrossRef]
- Palmer, S.C.; Navaneethan, S.D.; Craig, J.C.; Perkovic, V.; Johnson, D.W.; Nigwekar, S.U.; Hegbrant, J.; Strippoli, G.F.M. HMG CoA Reductase Inhibitors (Statins) for Kidney Transplant Recipients. Cochrane Database Syst. Rev. 2014, 2014, CD005019. [Google Scholar] [CrossRef]
- Holdaas, H.; Fellström, B.; Jardine, A.G.; Holme, I.; Nyberg, G.; Fauchald, P.; Grönhagen-Riska, C.; Madsen, S.; Neumayer, H.H.; Cole, E.; et al. Effect of Fluvastatin on Cardiac Outcomes in Renal Transplant Recipients: A Multicentre, Randomised, Placebo-Controlled Trial. Lancet 2003, 361, 2024–2031. [Google Scholar] [CrossRef]
- Woron, J. Interactions of Immunosuppressive Drugs: Why They Are so Important in Clinical Practice? Forum Nefrol. 2019, 12, 106–113. [Google Scholar]
- Oscanoa Espinoza, T.J.; Paredes-Pérez, N.; Lizaraso-Soto, F. Safety of Statins. Indian J. Endocrinol. Metab. 2013, 17, 636. [Google Scholar] [CrossRef]
- Scarfia, R.V.; Clementi, A.; Granata, A. Rhabdomyolysis and Acute Kidney Injury Secondary to Interaction between Simvastatin and Cyclosporine. Ren. Fail. 2013, 35, 1056–1057. [Google Scholar] [CrossRef] [Green Version]
- Monostory, K. Metabolic Drug Interactions with Immunosuppressants. In Organ Donation and Transplantation–Current Status and Future Challenges; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, J.; Coutavas, E.; Shi, H.; Hao, Q.; Blobel, G. Structure of Human Niemann-Pick C1 Protein. Proc. Natl. Acad. Sci. USA 2016, 113, 8212–8217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohnle, M.; Pietruck, F.; Kribben, A.; Philipp, T.; Heemann, U.; Witzke, O. Ezetimibe for the Treatment of Uncontrolled Hypercholesterolemia in Patients with High-Dose Statin Therapy after Renal Transplantation. Am. J. Transplant. 2006, 6, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Landray, M.J.; Reith, C.; Emberson, J.; Wheeler, D.C.; Tomson, C.; Wanner, C.; Krane, V.; Cass, A.; Craig, J.; et al. The Effects of Lowering LDL Cholesterol with Simvastatin plus Ezetimibe in Patients with Chronic Kidney Disease (Study of Heart and Renal Protection): A Randomised Placebo-Controlled Trial. Lancet 2011, 377, 2181. [Google Scholar] [CrossRef] [Green Version]
- Pontremoli, R.; Bellizzi, V.; Bianchi, S.; Bigazzi, R.; Cernaro, V.; del Vecchio, L.; de Nicola, L.; Leoncini, G.; Mallamaci, F.; Zoccali, C.; et al. Management of Dyslipidaemia in Patients with Chronic Kidney Disease: A Position Paper Endorsed by the Italian Society of Nephrology. J. Nephrol. 2020, 33, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Kshirsagar, A.V.; Shoham, D.A.; Bang, H.; Hogan, S.L.; Simpson, R.J.; Colindres, R.E. The Effect of Cholesterol Reduction with Cholestyramine on Renal Function. Am. J. Kidney Dis. 2005, 46, 812–819. [Google Scholar] [CrossRef]
- Jakob, T.; Nordmann, A.J.; Schandelmaier, S.; Ferreira-González, I.; Briel, M. Fibrates for Primary Prevention of Cardiovascular Disease Events. Cochrane Database Syst. Rev. 2016, 11, CD009753. [Google Scholar] [CrossRef]
- Gallego-Colon, E.; Daum, A.; Yosefy, C. Statins and PCSK9 Inhibitors: A New Lipid-Lowering Therapy. Eur. J. Pharmacol. 2020, 878, 173114. [Google Scholar] [CrossRef]
- Eisenga, M.F.; Zelle, D.M.; Sloan, J.H.; Gaillard, C.A.J.M.; Bakker, S.J.L.; Dullaart, R.P.F. High Serum PCSK9 Is Associated with Increased Risk of New-Onset Diabetes after Transplantation in Renal Transplant Recipients. Diabetes Care 2017, 40, 894–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosmas, C.E.; Skavdis, A.; Sourlas, A.; Papakonstantinou, E.J.; Genao, E.P.; Uceta, R.E.; Guzman, E. Safety and Tolerability of PCSK9 Inhibitors: Current Insights. Clin. Pharmacol. 2020, 12, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Brégeault, M.F.; Dalby, A.J.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; et al. Effect of Alirocumab on Mortality after Acute Coronary Syndromes: An Analysis of the ODYSSEY OUTCOMES Randomized Clinical Trial. Circulation 2019, 140, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warden, B.A.; Kaufman, T.; Minnier, J.; Duell, P.B.; Fazio, S.; Shapiro, M.D. Use of PCSK9 Inhibitors in Solid Organ Transplantation Recipients. JACC Case Rep. 2020, 2, 396–399. [Google Scholar] [CrossRef]
- Fitzgerald, K.; White, S.; Borodovsky, A.; Bettencourt, B.R.; Strahs, A.; Clausen, V.; Wijngaard, P.; Horton, J.D.; Taubel, J.; Brooks, A.; et al. A Highly Durable RNAi Therapeutic Inhibitor of PCSK9. N. Engl. J. Med. 2017, 376, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, A.; Ballantyne, C.M. Bempedoic Acid (ETC-1002): A Current Review. Cardiol. Clin. 2018, 36, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Bays, H.E.; Catapano, A.L.; Lalwani, N.D.; Bloedon, L.T.; Sterling, L.R.; Robinson, P.L.; Ballantyne, C.M. Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N. Engl. J. Med. 2019, 380, 1022–1032. [Google Scholar] [CrossRef]
Modifiable | Non-Modifiable |
---|---|
Obesity | Age |
Reduced physical activity | Gender |
Hypothyroidism | Genetic predispositions |
Diabetes | Chronic liver disease |
Smoking | Renal insufficiency |
Therapy for hypertension 1 | |
Pretransplant lipid level | |
Immunosuppressive agents |
Drug | TC | LDL-C | HDL-C | TG |
---|---|---|---|---|
Cyclosporine | ↑↑ | ↑↑ | ↓ | ↑↑ |
Tacrolimus | ↑ | ↑ | ↓ | ↑ |
Sirolimus | ↑↑ | ↑↑ | ↓ | ↑↑↑ |
Prednisone | ↑ | ↑ | ↑ | ↑ |
Mycophenolate mofetil | - | - | - | - |
Azathioprine | - | - | - | - |
Belatacept | ↓ | ↓ | ↑ | ↓ |
Statin | Initial Dose | Target Dose * |
---|---|---|
Fluvastatin | 40 | 80 |
Atorvastatin | 10 | 20 |
Rosuvastatin | 5 | 10 |
Pravastatin | 20 | 40 |
Simvastatin | 20 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielnicka, K.; Heleniak, Z.; Dębska-Ślizień, A. Dyslipidemia in Renal Transplant Recipients. Transplantology 2022, 3, 188-199. https://doi.org/10.3390/transplantology3020020
Chmielnicka K, Heleniak Z, Dębska-Ślizień A. Dyslipidemia in Renal Transplant Recipients. Transplantology. 2022; 3(2):188-199. https://doi.org/10.3390/transplantology3020020
Chicago/Turabian StyleChmielnicka, Karolina, Zbigniew Heleniak, and Alicja Dębska-Ślizień. 2022. "Dyslipidemia in Renal Transplant Recipients" Transplantology 3, no. 2: 188-199. https://doi.org/10.3390/transplantology3020020
APA StyleChmielnicka, K., Heleniak, Z., & Dębska-Ślizień, A. (2022). Dyslipidemia in Renal Transplant Recipients. Transplantology, 3(2), 188-199. https://doi.org/10.3390/transplantology3020020