The Role of Late-Onset Inflammatory Markers in the Prediction of Complications and Graft Survival after Pancreas Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Surgical Details
2.3. Perioperative Regimen
2.4. Outcome Assessment
2.5. C-Reactive Protein
2.6. White Blood Cells
2.7. Graft Function
2.8. Statistical Analysis
3. Results
3.1. Donor and Recipient Characteristics
3.2. CRP Course and Complications
3.3. Outcome According to Antibiotic Regimen
3.4. WBC and Second CRP Peak
3.5. Patient and Graft Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | computed tomography |
CRP | C-reactive protein |
GFR | glomerular filtration rate |
HbA1c | hemoglobin A1c |
MRI | magnetic resonance imaging |
SCP | second C-reactive protein peak |
SD | standard deviation |
SPK | simultaneous pancreas and kidney transplantation |
PCP | primary C-reactive protein peak |
PT | pancreas transplantation |
WBC | white blood cells |
References
- White, S.A.; Shaw, J.A.; Sutherland, D.E. Pancreas transplantation. Lancet 2009, 373, 1808–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, M.; Ricart, M.J.; Casamitjana, R.; Astudillo, E.; Lopez, I.; Jimenez, A.; Fernandez-Cruz, L.; Esmatjes, E. Pancreas and kidney transplantation: Long-term endocrine function. Clin. Transplant. 2010, 24, E236–E240. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, J.P.; Hartmann, A.; Horneland, R.; Holdaas, H.; Reisæter, A.V.; Midtvedt, K.; Leivestad, T.; Oyen, O.; Jenssen, T. Improved patient survival with simultaneous pancreas and kidney transplantation in recipients with diabetic end-stage renal disease. Diabetologia 2013, 56, 1364–1371. [Google Scholar] [CrossRef] [Green Version]
- Esmeijer, K.; Hoogeveen, E.K.; van den Boog, P.J.M.; Konijn, C.; Mallat, M.J.K.; Baranski, A.G.; Dekkers, O.M.; de Fijter, J.W. Superior Long-term Survival for Simultaneous Pancreas-Kidney Transplantation as Renal Replacement Therapy: 30-Year Follow-up of a Nationwide Cohort. Diabetes Care 2020, 43, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Kopp, W.H.; Verhagen, M.J.; Blok, J.J.; Huurman, V.A.; de Fijter, J.W.; de Koning, E.J.; Putter, H.; Baranski, A.G.; Schaapherder, A.F.; Braat, A.E.; et al. Thirty Years of Pancreas Transplantation at Leiden University Medical Center: Long-term Follow-up in a Large Eurotransplant Center. Transplantation 2015, 99, e145–e151. [Google Scholar] [CrossRef]
- Ollinger, R.; Margreiter, C.; Bosmuller, C.; Weissenbacher, A.; Frank, F.; Schneeberger, S.; Mark, W.; Margreiter, R.; Pratschke, J. Evolution of pancreas transplantation: Long-term results and perspectives from a high-volume center. Ann. Surg. 2012, 256, 780–786; discussion 786–787. [Google Scholar] [CrossRef]
- Sollinger, H.W.; Odorico, J.S.; Becker, Y.T.; D’Alessandro, A.M.; Pirsch, J.D. One thousand simultaneous pancreas-kidney transplants at a single center with 22-year follow-up. Ann. Surg. 2009, 250, 618–630. [Google Scholar] [CrossRef]
- Gonzales, H.M.; Taber, D.J.; Nadig, S.; Patel, N.; Lin, A.; Baliga, P.K.; Rohan, V.S. The impact of race on metabolic, graft and patient outcomes after pancreas transplantation. Am. J. Surg. 2022, 223, 812–816. [Google Scholar] [CrossRef]
- Sharda, B.; Jay, C.L.; Gurung, K.; Harriman, D.; Gurram, V.; Farney, A.C.; Orlando, G.; Rogers, J.; Garner, M.; Stratta, R.J. Improved surgical outcomes following simultaneous pancreas-kidney transplantation in the contemporary era. Clin. Transplant. 2022, 36, e14792. [Google Scholar] [CrossRef]
- Boggi, U.; Vistoli, F.; Andres, A.; Arbogast, H.P.; Badet, L.; Baronti, W.; Bartlett, S.T.; Benedetti, E.; Branchereau, J.; Burke, G.W., 3rd; et al. First World Consensus Conference on pancreas transplantation: Part II—Recommendations. Am. J. Transpl. 2021, 21 (Suppl. 3), 17–59. [Google Scholar] [CrossRef]
- Troppmann, C. Complications after pancreas transplantation. Curr. Opin. Organ. Transplant. 2010, 15, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Fàbrega, J.; Cano-Vargas, B.; Ventura-Aguiar, P.; Cárdenas, G.; García-Criado, Á.; López-Boado, M.A.; Rull, R.; García, R.; Cuatrecasas, M.; Esmatjes, E.; et al. Early intestinal complications following pancreas transplantation: Lessons learned from over 300 cases—A retrospective single-center study. Transpl. Int. 2021, 34, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Ausania, F.; Drage, M.; Manas, D.; Callaghan, C.J. A registry analysis of damage to the deceased donor pancreas during procurement. Am. J. Transplant. 2015, 15, 2955–2962. [Google Scholar] [CrossRef]
- Maglione, M.; Ploeg, R.J.; Friend, P.J. Donor risk factors, retrieval technique, preservation and ischemia/reperfusion injury in pancreas transplantation. Curr. Opin. Organ. Transplant. 2013, 18, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Benz, S.; Bergt, S.; Obermaier, R.; Wiessner, R.; Pfeffer, F.; Schareck, W.; Hopt, U.T. Impairment of microcirculation in the early reperfusion period predicts the degree of graft pancreatitis in clinical pancreas transplantation. Transplantation 2001, 71, 759–763. [Google Scholar] [CrossRef]
- Schaser, K.D.; Puhl, G.; Vollmar, B.; Menger, M.D.; Stover, J.F.; Köhler, K.; Neuhaus, P.; Settmacher, U. In Vivo imaging of human pancreatic microcirculation and pancreatic tissue injury in clinical pancreas transplantation. Am. J. Transplant. 2005, 5, 341–350. [Google Scholar] [CrossRef]
- Chatzigeorgiou, A.; Harokopos, V.; Mylona-Karagianni, C.; Tsouvalas, E.; Aidinis, V.; Kamper, E.F. The pattern of inflammatory/anti-inflammatory cytokines and chemokines in type 1 diabetic patients over time. Ann. Med. 2010, 42, 426–438. [Google Scholar] [CrossRef]
- Adamina, M.; Steffen, T.; Tarantino, I.; Beutner, U.; Schmied, B.M.; Warschkow, R. Meta-analysis of the predictive value of C-reactive protein for infectious complications in abdominal surgery. Br. J. Surg. 2015, 102, 590–598. [Google Scholar] [CrossRef]
- Lee, Y.; McKechnie, T.; Doumouras, A.G.; Handler, C.; Eskicioglu, C.; Gmora, S.; Anvari, M.; Hong, D. Diagnostic Value of C-Reactive Protein Levels in Postoperative Infectious Complications After Bariatric Surgery: A Systematic Review and Meta-Analysis. Obes. Surg. 2019, 29, 2022–2029. [Google Scholar] [CrossRef]
- Khambalia, H.A.; Alexander, M.Y.; Nirmalan, M.; Weston, R.; Pemberton, P.; Moinuddin, Z.; Summers, A.; van Dellen, D.; Augustine, T. Links between a biomarker profile, cold ischaemic time and clinical outcome following simultaneous pancreas and kidney transplantation. Cytokine 2018, 105, 8–16. [Google Scholar] [CrossRef]
- Deirmengian, G.K.; Zmistowski, B.; Jacovides, C.; O’Neil, J.; Parvizi, J. Leukocytosis is common after total hip and knee arthroplasty. Clin. Orthop. Relat. Res. 2011, 469, 3031–3036. [Google Scholar] [CrossRef] [Green Version]
- Wullstein, C.; Drognitz, O.; Woeste, G.; Schareck, W.D.; Bechstein, W.O.; Hopt, U.T.; Benz, S. High levels of C-reactive protein after simultaneous pancreas-kidney transplantation predict pancreas graft-related complications and graft survival. Transplantation 2004, 77, 60–64. [Google Scholar] [CrossRef]
- Gilabert, R.; Fernández-Cruz, L.; Real, M.I.; Ricart, M.J.; Astudillo, E.; Montaña, X. Treatment and outcome of pancreatic venous graft thrombosis after kidney--pancreas transplantation. Br. J. Surg. 2002, 89, 355–360. [Google Scholar] [CrossRef]
- Kopp, W.H.; van Leeuwen, C.A.T.; Lam, H.D.; Huurman, V.A.L.; de Fijter, J.W.; Schaapherder, A.F.; Baranski, A.G.; Braat, A.E. Retrospective study on detection, treatment, and clinical outcome of graft thrombosis following pancreas transplantation. Transpl. Int. 2019, 32, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibanes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Slankamenac, K.; Graf, R.; Barkun, J.; Puhan, M.A.; Clavien, P.A. The comprehensive complication index: A novel continuous scale to measure surgical morbidity. Ann. Surg. 2013, 258, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Slankamenac, K.; Nederlof, N.; Pessaux, P.; de Jonge, J.; Wijnhoven, B.P.; Breitenstein, S.; Oberkofler, C.E.; Graf, R.; Puhan, M.A.; Clavien, P.A. The comprehensive complication index: A novel and more sensitive endpoint for assessing outcome and reducing sample size in randomized controlled trials. Ann. Surg. 2014, 260, 757–762; discussion 753–762. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Asti, E.; Bonitta, G.; Melloni, M.; Tornese, S.; Milito, P.; Sironi, A.; Costa, E.; Bonavina, L. Utility of C-reactive protein as predictive biomarker of anastomotic leak after minimally invasive esophagectomy. Langenbecks Arch. Surg. 2018, 403, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Welsch, T.; Frommhold, K.; Hinz, U.; Weigand, M.A.; Kleeff, J.; Friess, H.; Büchler, M.W.; Schmidt, J. Persisting elevation of C-reactive protein after pancreatic resections can indicate developing inflammatory complications. Surgery 2008, 143, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.P.; Zeng, I.S.; Srinivasa, S.; Lemanu, D.P.; Connolly, A.B.; Hill, A.G. Systematic review and meta-analysis of use of serum C-reactive protein levels to predict anastomotic leak after colorectal surgery. Br. J. Surg. 2014, 101, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Roth, L.; Eshmuminov, D.; Laminger, F.; Koppitsch, C.; Schneider, M.; Graf, T.R.; Gupta, A.; Kober, F.; Roka, S.; Gertsch, P.; et al. Systemic inflammatory response after hyperthermic intraperitoneal chemotherapy (HIPEC): The perfusion protocol matters! Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2019, 45, 1734–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawai, M.; Tani, M.; Hirono, S.; Ina, S.; Miyazawa, M.; Yamaue, H. How do we predict the clinically relevant pancreatic fistula after pancreaticoduodenectomy? An analysis in 244 consecutive patients. World J. Surg. 2009, 33, 2670–2678. [Google Scholar] [CrossRef] [PubMed]
- John, B.J.; Wijeyekoon, S.; Warnaar, N.; Shasi, P.; Rahman, S.H.; Davidson, B.R.; Fusai, G. Biochemical indicators of in-hospital complications following pancreatic surgery. Int. Surg. 2010, 95, 215–220. [Google Scholar]
- Fellmer, P.T.; Pascher, A.; Kahl, A.; Ulrich, F.; Lanzenberger, K.; Schnell, K.; Jonas, S.; Tullius, S.G.; Neuhaus, P.; Pratschke, J. Influence of donor- and recipient-specific factors on the postoperative course after combined pancreas-kidney transplantation. Langenbecks Arch. Surg. 2010, 395, 19–25. [Google Scholar] [CrossRef]
- Coffman, D.; Jay, C.L.; Sharda, B.; Garner, M.; Farney, A.C.; Orlando, G.; Reeves-Daniel, A.; Mena-Gutierrez, A.; Sakhovskaya, N.; Stratta, R., Jr.; et al. Influence of donor and recipient sex on outcomes following simultaneous pancreas-kidney transplantation in the new millennium: Single-center experience and review of the literature. Clin. Transplant. 2023, 37, e14864. [Google Scholar] [CrossRef]
- Siskind, E.; Maloney, C.; Akerman, M.; Alex, A.; Ashburn, S.; Barlow, M.; Siskind, T.; Bhaskaran, M.; Ali, N.; Basu, A.; et al. An analysis of pancreas transplantation outcomes based on age groupings—An update of the UNOS database. Clin. Transplant. 2014, 28, 990–994. [Google Scholar] [CrossRef]
- Rudolph, E.N.; Dunn, T.B.; Sutherland, D.E.R.; Kandaswamy, R.; Finger, E.B. Optimizing outcomes in pancreas transplantation: Impact of organ preservation time. Clin. Transplant. 2017, 31, e13035. [Google Scholar] [CrossRef]
- Kayler, L.K.; Wen, X.; Zachariah, M.; Casey, M.; Schold, J.; Magliocca, J. Outcomes and survival analysis of old-to-old simultaneous pancreas and kidney transplantation. Transpl. Int. 2013, 26, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Afaneh, C.; Rich, B.S.; Aull, M.J.; Hartono, C.; Leeser, D.B.; Kapur, S. Pancreas transplantation: Does age increase morbidity? J. Transpl. 2011, 2011, 596801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego Ferrero, P.; Crespo Del Pozo, J. Imaging in pancreas transplantation complications: Temporal classification. J. Med. Imaging Radiat. Oncol. 2018, 62, 504–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, R.M.; Shetzigovski, I.; Blachar, A.; Sosna, J.; Klausner, J.M.; Nakache, R.; Ben-Haim, M. Redefining Late Acute Graft Pancreatitis: Clinical Presentation, Radiologic Findings, Principles of Management and Prognosis. Ann. Surg. 2008, 247, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Vrakas, G.; Hayek, S.; Hayek, S.; Anam, S.; Aqueel, M.; Olsburgh, J.; Calder, F.; Mamode, N.; Callaghan, C.; et al. Clinically significant peripancreatic fluid collections after simultaneous pancreas-kidney transplantation. Transplantation 2013, 95, 1263–1269. [Google Scholar] [CrossRef]
- Michalak, G.; Kwiatkowski, A.; Bieniasz, M.; Meszaros, J.; Czerwinski, J.; Wszola, M.; Nosek, R.; Ostrowski, K.; Chmura, A.; Danielewicz, R.; et al. Infectious Complications After Simultaneous Pancreas–Kidney Transplantation. Transplant. Proc. 2005, 37, 3560–3563. [Google Scholar] [CrossRef]
- Linhares, M.M.; Gonzalez, A.M.; Triviño, T.; Barbosa, M.M.; Schraibman, V.; Melaragno, C.; Moura, R.M.; Silva, M.H.; Sá, J.R.; Aguiar, W.F.; et al. Simultaneous pancreas-kidney transplantation: Infectious complications and microbiological aspects. Transplant. Proc. 2004, 36, 980–981. [Google Scholar] [CrossRef]
- Byrne, M.; Singh, A.; Mowbray, C.A.; Aldridge, P.D.; Drage, L.K.L.; Ali, A.S.M.; Bates, L.; Hall, J.; Wilson, C. Bladder-Drained Pancreas Transplantation: Urothelial Innate Defenses and Urinary Track Infection Susceptibility. J. Surg. Res. 2019, 235, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Siskind, E.J.; Amodu, L.I.; Pinto, S.; Akerman, M.; Jonsson, J.; Molmenti, E.P.; Ortiz, J. Bladder Versus Enteric Drainage of Exocrine Secretions in Pancreas Transplantation: A Retrospective Analysis of the United Network for Organ Sharing Database. Pancreas 2018, 47, 625–630. [Google Scholar] [CrossRef]
SCP n = 60 | No SCP n = 56 | p-Value | |
---|---|---|---|
Male, n (%) | 30 (50.0) | 20 (35.7) | 0.2 |
Age [years] | 43.4 (±8.6) | 42.5 (±7.1) | 0.5 |
Recipient BMI (kg/m2) | 24.2 (±3.7) | 23.0 (±2.7) | 0.05 |
Time of diabetes [years] | 31.2 ± 8.9 | 29.6 ± 9.9 | 0.4 |
Time on transplant waitlist [months] | 12.3 ± 10.0 | 16.0 ± 10.3 | 0.05 |
Chronic dialysis, n (%) | 39 (65.0) | 42 (75.0) | 0.3 |
Donor age [years] | 33.7 ± 11.5 | 31.5 ± 11.9 | 0.4 |
Donor BMI (kg/m2) | 23.1 ± 2.7 | 22.1 ± 3.4 | 0.1 |
Duration of surgery [min] | 345.5 ± 99.1 | 333.0 ± 86.0 | 0.5 |
CIT pancreas [min] | 549.6 ± 172.4 | 535.1 ± 165.6 | 0.6 |
Rewarming time pancreas [min] | 39.4 ± 10.0 | 31.4 ± 5.5 | 0.07 |
CIT kidney [min] | 655.6 ± 183.0 | 654.2 ± 191.1 | 1.0 |
Rewarming time kidney [min] | 47.2 ± 17.2 | 42.7 ± 9.9 | 0.5 |
SCP n = 60 | No SCP n = 56 | p-Value | |
---|---|---|---|
Any complications until discharge, n (%) | 51 (85.0) | 28 (50.0) | <0.001 |
Any complications until 90 days, n (%) | 56 (93.3) | 43 (76.8) | 0.02 |
CCI at discharge, median (range) | 33.6 (0.0–63.9) | 4.35 (0.0–47.4) | <0.001 |
90-day CCI, median (range) | 39.7 (0.0–71.9) | 20.9 (0.0–49.5) | <0.001 |
Highest Clavien–Dindo complication, n (%) | <0.001 | ||
I | 1 (1.7) | 7 (12.5) | |
II | 16 (26.7) | 17 (30.6) | |
IIIa | 14 (23.3) | 2 (3.6) | |
IIIb | 20 (33.3) | 2 (3.6) | |
IVa | 0 (0) | 0 (0) | |
IVb | 0 (0) | 0 (0) | |
V | 0 (0) | 0 (0) | |
Routine antibiotics, n (%) | 10 (16.7) | 8 (14.3) | 0.8 |
Postoperative antibiotics, n (%) | 48 (80.0) | 11 (19.6) | <0.001 |
Postoperative imaging (CT or MRI), n (%) | 37 (61.7) | 14 (25.0) | <0.001 |
Graft thrombosis, n (%)
| 5 (8.3%) 9 (15%) | 1 (1.8%) 2 (3.6%) | 0.2 0.06 |
Graft loss, n (%) | 4 (6.7%) | 0 (0%) | 0.1 |
Causes of SCP n = 60 | Treatment |
---|---|
33 (55%) non-specific (no clear diagnosis) | Antibiotics only |
10 (16%) UTI | Antibiotics only |
4 (7%) wound infection | Local wound treatment |
4 (7%) peri-pancreatic fluid collection | Percutaneous drainage |
2 (3%) bleeding | Relaparotomy |
2 (3%) intraabdominal abscess | Relaparotomy |
2 (3%) no relevant finding | Relaparotomy |
1 (2%) rejection | Steroids |
1 (2%) ileus | Conservative |
1 (2%) kidney graft removal for thrombosis | Relaparotomy |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Donor age | 1.0 | 0.97–1.04 | 0.8 | 1.01 | 0.96–1.06 | 0.7 |
Recipient age | 1.0 | 0.95–1.05 | 1.0 | 0.9 | 0.9–1.0 | 0.1 |
Recipient BMI | 1.07 | 0.95–1.2 | 0.3 | 0.9 | 0.9–1.4 | 0.3 |
CIT pancreas | 1.0 | 1.0–1.0 | 0.9 | 1.0 | 1.0–1.0 | 0.1 |
Female gender | 1.1 | 0.54–2.27 | 0.9 | 0.03 | 0.004–0.14 | <0.001 |
HbA1c pre TPL | 1.3 | 0.98–1.9 | 0.08 | 2.1 | 1.3–3.8 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hügli, S.; Müller, P.C.; Pfister, M.; Rössler, F. The Role of Late-Onset Inflammatory Markers in the Prediction of Complications and Graft Survival after Pancreas Transplantation. Transplantology 2023, 4, 90-101. https://doi.org/10.3390/transplantology4020010
Hügli S, Müller PC, Pfister M, Rössler F. The Role of Late-Onset Inflammatory Markers in the Prediction of Complications and Graft Survival after Pancreas Transplantation. Transplantology. 2023; 4(2):90-101. https://doi.org/10.3390/transplantology4020010
Chicago/Turabian StyleHügli, Sandro, Philip C. Müller, Matthias Pfister, and Fabian Rössler. 2023. "The Role of Late-Onset Inflammatory Markers in the Prediction of Complications and Graft Survival after Pancreas Transplantation" Transplantology 4, no. 2: 90-101. https://doi.org/10.3390/transplantology4020010
APA StyleHügli, S., Müller, P. C., Pfister, M., & Rössler, F. (2023). The Role of Late-Onset Inflammatory Markers in the Prediction of Complications and Graft Survival after Pancreas Transplantation. Transplantology, 4(2), 90-101. https://doi.org/10.3390/transplantology4020010