Recurrent Immunoglobulin A Nephropathy after Kidney Transplant—An Updated Review
Abstract
:1. Introduction
2. Epidemiology
2.1. Native Disease
2.2. Recurrent Disease Post-Renal Transplant
3. Pathogenesis
4. Genetic Basis of IgAN
5. Diagnosis
6. Treatment
7. Prognosis
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGrogan, A.; Franssen, C.F.M.; de Vries, C.S. The incidence of primary glomerulonephritis worldwide: A systematic review of the literature. Nephrol. Dial. Transplant. 2011, 26, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Kiryluk, K.; Li, Y.; Scolari, F.; Sanna-Cherchi, S.; Choi, M.; Verbitsky, M.; Fasel, D.; Lata, S.; Prakash, S.; Shapiro, S.; et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 2014, 46, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Choy, B.Y.; Chan, T.M.; Lai, K.N. Recurrent glomerulonephritis after kidney transplantation. Am. J. Transplant. 2006, 6, 2535–2542. [Google Scholar] [CrossRef] [PubMed]
- Briganti, E.M.; Russ, G.R.; McNeil, J.J.; Atkins, R.C.; Chadban, S.J. Risk of renal allograft loss from recurrent glomerulonephritis. N. Engl. J. Med. 2002, 347, 103–109. [Google Scholar] [CrossRef]
- Allen, P.J.; Chadban, S.J.; Craig, J.C.; Lim, W.H.; Allen, R.D.; Clayton, P.A.; Teixeira-Pinto, A.; Wong, G. Recurrent glomerulonephritis after kidney transplantation: Risk factors and allograft outcomes. Kidney Int. 2017, 92, 461–469. [Google Scholar] [CrossRef]
- Odum, J.; Peh, C.A.; Clarkson, A.R.; Bannister, K.M.; Seymour, A.E.; Gillis, D.; Thomas, A.C.; Mathew, T.H.; Woodroffe, A.J. Recurrent mesangial IgA nephritis following renal transplantation. Nephrol. Dial. Transplant. 1994, 9, 309–312. [Google Scholar]
- Fellström, B.C.; Barratt, J.; Cook, H.; Coppo, R.; Feehally, J.; de Fijter, J.W.; Floege, J.; Hetzel, G.; Jardine, A.G.; Locatelli, F.; et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): A double-blind, randomised, placebo-controlled phase 2b trial. Lancet 2017, 389, 2117–2127. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Radhakrishnan, J.; Alpers, C.E.; Barratt, J.; Bieler, S.; Diva, U.; Inrig, J.; Komers, R.; Mercer, A.; Noronha, I.L.; et al. Sparsentan in patients with IgA nephropathy: A prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 2023, 401, 1584–1594. [Google Scholar] [CrossRef]
- Wyld, M.L.; Chadban, S.J. Recurrent IgA Nephropathy After Kidney Transplantation. Transplantation 2016, 100, 1827–1832. [Google Scholar] [CrossRef]
- Wyatt, R.J.; Julian, B.A. IgA nephropathy. N. Engl. J. Med. 2013, 368, 2402–2414. [Google Scholar] [CrossRef]
- Suzuki, K.; Honda, K.; Tanabe, K.; Toma, H.; Nihei, H.; Yamaguchi, Y. Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int. 2003, 63, 2286–2294. [Google Scholar] [CrossRef]
- Wyatt, R.J.; Julian, B.A.; Baehler, R.W.; Stafford, C.C.; McMorrow, R.G.; Ferguson, T.; Jackson, E.; Woodford, S.Y.; Miller, P.M.; Kritchevsky, S. Epidemiology of IgA nephropathy in central and eastern Kentucky for the period 1975 through 1994. Central Kentucky Region of the Southeastern United States IgA Nephropathy DATABANK Project. J. Am. Soc. Nephrol. 1998, 9, 853–858. [Google Scholar] [CrossRef]
- Fischer, E.G.; Harris, A.A.; Carmichael, B.; Lathrop, S.L.; Cerilli, L.A. IgA nephropathy in the triethnic population of New Mexico. Clin. Nephrol. 2009, 72, 163–169. [Google Scholar]
- McDonald, S.P. Australia and New Zealand Dialysis and Transplant Registry. Kidney Int. Suppl. 2015, 5, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.J.; Foley, R.N.; Chavers, B.; Gilbertson, D.; Herzog, C.; Johansen, K.; Kasiske, B.; Kutner, N.; Liu, J.; Peter, W.S.; et al. ’United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am. J. Kidney Dis. 2012, 59 (Suppl. 1), e1–e420. [Google Scholar] [CrossRef]
- Clayton, P.; McDonald, S.; Chadban, S. Steroids and recurrent IgA nephropathy after kidney transplantation. Am. J. Transplant. 2011, 11, 1645–1649. [Google Scholar] [CrossRef]
- Berthoux, F.; El Deeb, S.; Mariat, C.; Diconne, E.; Laurent, B.; Thibaudin, L. Antithymocyte globulin (ATG) induction therapy and disease recurrence in renal transplant recipients with primary IgA nephropathy. Transplantation 2008, 85, 1505–1507. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, F.; Gelpi, R.; Koskinen, P.; Manonelles, A.; Raisanen-Sokolowski, A.; Carrera, M.; Honkanen, E.; Grinyo, J.M.; Cruzado, J.M. IgA nephropathy recurs early in the graft when assessed by protocol biopsy. Nephrol. Dial. Transplant. 2012, 27, 2553–2558. [Google Scholar] [CrossRef]
- Mulay, A.V.; van Walraven, C.; Knoll, G.A. Impact of immunosuppressive medication on the risk of renal allograft failure due to recurrent glomerulonephritis. Am. J. Transplant. 2009, 9, 804–811. [Google Scholar] [CrossRef]
- Ponticelli, C.; Traversi, L.; Feliciani, A.; Cesana, B.M.; Banfi, G.; Tarantino, A. Kidney transplantation in patients with IgA mesangial glomerulonephritis. Kidney Int. 2001, 60, 1948–1954. [Google Scholar] [CrossRef]
- Han, S.S.; Huh, W.; Park, S.K.; Ahn, C.; Han, J.S.; Kim, S.; Kim, Y.S. Impact of recurrent disease and chronic allograft nephropathy on the long-term allograft outcome in patients with IgA nephropathy. Transpl. Int. 2010, 23, 169–175. [Google Scholar] [CrossRef]
- McDonald, S.P.; Russ, G.R. Recurrence of IgA nephropathy among renal allograft recipients from living donors is greater among those with zero HLA mismatches. Transplantation 2006, 82, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Boyd, J.K.; Cheung, C.K.; Molyneux, K.; Feehally, J.; Barratt, J. An update on the pathogenesis and treatment of IgA nephropathy. Kidney Int. 2012, 81, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Groopman, E.E.; Marasa, M.; Cameron-Christie, S.; Petrovski, S.; Aggarwal, V.S.; Milo-Rasouly, H.; Li, Y.; Zhang, J.; Nestor, J.; Krithivasan, P.; et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N. Engl. J. Med. 2019, 380, 142–151. [Google Scholar] [CrossRef]
- McCoy, R.C.; Abramowsky, C.R.; Tisher, C.C. IgA nephropathy. Am. J. Pathol. 1974, 76, 123–144. [Google Scholar]
- Zwirner, J.; Burg, M.; Schulze, M.; Brunkhorst, R.; Götze, O.; Koch, K.-M.; Floege, J. Activated complement C3: A potentially novel predictor of progressive IgA nephropathy. Kidney Int. 1997, 51, 1257–1264. [Google Scholar] [CrossRef]
- Perkovic, V.; Rovin, B.; Zhang, H.; Brunkhorst, R.; Götze, O.; Koch, K.-M.; Floege, J. MO148A multi-center, randomized, double-blind, placebo controlled, parallel group, phase iii study to evaluate the efficacy and safety of lnp023 in primary iga nephropathy patients. Nephrol. Dial. Transplant. 2021, 36 (Suppl. 1), gfab092.0026. [Google Scholar] [CrossRef]
- Roufosse, C.; Simmonds, N.; Clahsen-van Groningen, M.; Haas, M.; Henriksen, K.J.; Horsfield, C.; Loupy, A.; Mengel, M.; Perkowska-Ptasińska, A.; Rabant, M.; et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation 2018, 102, 1795–1814. [Google Scholar] [CrossRef]
- Tan, L.; Tang, Y.; Pei, G.; Zhong, Z.; Tan, J.; Zhou, L.; Wen, D.; Sheikh-Hamad, D.; Qin, W. A multicenter, prospective, observational study to determine association of mesangial C1q deposition with renal outcomes in IgA nephropathy. Sci. Rep. 2021, 11, 5467. [Google Scholar] [CrossRef]
- Georgianos, P.I.; Agarwal, R. Mineralocorticoid Receptor Antagonism in Chronic Kidney Disease. Kidney Int. Rep. 2021, 6, 2281–2291. [Google Scholar] [CrossRef]
- Lehrke, I.; Waldherr, R.; Ritz, E.; Wagner, J. Renal endothelin-1 and endothelin receptor type B expression in glomerular diseases with proteinuria. J. Am. Soc. Nephrol. 2001, 12, 2321–2329. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, D.; Ming, H.; Zhang, H.; Yu, X. BAFF promotes proliferation of human mesangial cells through interaction with BAFF-R. BMC Nephrol. 2015, 16, 72. [Google Scholar] [CrossRef]
- Wallweber, H.J.A.; Compaan, D.M.; Starovasnik, M.A.; Hymowitz, S.G. The crystal structure of a proliferation-inducing ligand, APRIL. J. Mol. Biol. 2004, 343, 283–290. [Google Scholar] [CrossRef]
- McCarthy, D.D.; Kujawa, J.; Wilson, C.; Papandile, A.; Poreci, U.; Porfilio, E.A.; Ward, L.; Lawson, M.A.; Macpherson, A.J.; McCoy, K.D.; et al. Mice overexpressing BAFF develop a commensal flora–dependent, IgA-associated nephropathy. J. Clin. Investig. 2011, 121, 3991–4002. [Google Scholar] [CrossRef]
- Wang, X.Z.; Wan, Z.; Xue, W.J.; Zheng, J.; Li, Y.; Ding, C.G. B-Cell Activating Factor Predicts Acute Rejection Risk in Kidney Transplant Recipients: A 6-Month Follow-Up Study. Front. Immunol. 2019, 10, 1046. [Google Scholar] [CrossRef] [PubMed]
- Myette, J.R.; Kano, T.; Suzuki, H.; Sloan, S.E.; Szretter, K.J.; Ramakrishnan, B.; Adari, H.; Deotale, K.D.; Engler, F.; Shriver, Z.; et al. A Proliferation Inducing Ligand (APRIL) targeted antibody is a safe and effective treatment of murine IgA nephropathy. Kidney Int. 2019, 96, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Khodadadi, L.; Cheng, Q.; Radbruch, A.; Hiepe, F. The Maintenance of Memory Plasma Cells. Front. Immunol. 2019, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Zhang, L.; Zhao, P.W.; Ma, L.; Li, C.; Zou, H.-B.; Jiang, Y.-F. Functional Implications of Regulatory B Cells in Human IgA Nephropathy. Scand. J. Immunol. 2014, 79, 51–60. [Google Scholar] [CrossRef] [PubMed]
- McAdoo, S.; Tam, F.W.K. Role of the Spleen Tyrosine Kinase Pathway in Driving Inflammation in IgA Nephropathy. Semin. Nephrol. 2018, 38, 496–503. [Google Scholar] [CrossRef]
- Kim, M.J.; McDaid, J.P.; McAdoo, S.P.; Barratt, J.; Molyneux, K.; Masuda, E.S.; Pusey, C.D.; Tam, F.W.K. Spleen tyrosine kinase is important in the production of proinflammatory cytokines and cell proliferation in human mesangial cells following stimulation with IgA1 isolated from IgA nephropathy patients. J. Immunol. 2012, 189, 3751–3758. [Google Scholar] [CrossRef]
- Yiu, W.H.; Chan, K.W.; Chan, L.Y.Y.; Leung, J.C.K.; Lai, K.N.; Tang, S.C.W. Spleen Tyrosine Kinase Inhibition Ameliorates Tubular Inflammation in IgA Nephropathy. Front. Physiol. 2021, 12, 650888. [Google Scholar] [CrossRef]
- Smith, J.; McDaid, J.P.; Bhangal, G.; Chawanasuntorapoj, R.; Masuda, E.S.; Cook, H.T.; Pusey, C.D.; Tam, F.W. A Spleen Tyrosine Kinase Inhibitor Reduces the Severity of Established Glomerulonephritis. J. Am. Soc. Nephrol. 2010, 21, 231–236. [Google Scholar] [CrossRef]
- Ramessur Chandran, S.; Han, Y.; Tesch, G.H.; Di Paolo, J.; Mulley, W.R.; Kanellis, J.; Ma, F.Y.; Nikolic-Paterson, D.J. Inhibition of Spleen Tyrosine Kinase Reduces Renal Allograft Injury in a Rat Model of Acute Antibody-Mediated Rejection in Sensitized Recipients. Transplantation 2017, 101, e240–e248. [Google Scholar] [CrossRef]
- Prakash, S.; Gharavi, A.G. Assessing Genetic Risk for IgA Nephropathy: State of the Art. CJASN 2021, 16, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Moroni, G.; Longhi, S.; Quaglini, S.; Gallelli, B.; Banfi, G.; Montagnino, G.; Messa, P. The long-term outcome of renal transplantation of IgA nephropathy and the impact of recurrence on graft survival. Nephrol. Dial. Transplant. 2013, 28, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Emancipator, S.N. IgA nephropathy: Morphologic expression and pathogenesis. Am. J. Kidney Dis. 1994, 23, 451–462. [Google Scholar] [CrossRef]
- Trimarchi, H.; Barratt, J.; Cattran, D.C.; Cook, H.T.; Coppo, R.; Haas, M.; Liu, Z.-H.; Roberts, I.S.; Yuzawa, Y.; Zhang, H.; et al. Oxford Classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017, 91, 1014–1021. [Google Scholar] [CrossRef]
- Park, S.; Go, H.; Baek, C.H.; Kim, Y.H.; Kim, Y.C.; Yang, S.H.; Lee, J.P.; Min, S.; Ha, J.; Song, E.Y.; et al. Clinical importance of the updated Oxford classification in allograft IgA nephropathy. Am. J. Transplant. 2019, 19, 2855–2864. [Google Scholar] [CrossRef]
- Oka, K.; Imai, E.; Moriyama, T.; Akagi, Y.; Ando, A.; Hori, M.; Okuyama, A.; Toki, K.; Kyo, M.; Kokado, Y.; et al. A clinicopathological study of IgA nephropathy in renal transplant recipients: Beneficial effect of angiotensin-converting enzyme inhibitor. Nephrol. Dial. Transplant. 2000, 15, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Courtney, A.E.; McNamee, P.T.; Nelson, W.E.; Maxwell, A.P. Does angiotensin blockade influence graft outcome in renal transplant recipients with IgA nephropathy? Nephrol. Dial. Transplant. 2006, 21, 3550–3554. [Google Scholar] [CrossRef]
- Donadio, J.V.; Bergstralh, E.J.; Offord, K.P.; Spencer, D.C.; Holley, K.E. A Controlled Trial of Fish Oil in IgA Nephropathy. N. Engl. J. Med. 1994, 331, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Hotta, O.; Komatsuda, A.; Nakai, S.; Shoji, T.; Yasunaga, C.; Taguma, Y. A multicenter prospective cohort study of tonsillectomy and steroid therapy in Japanese patients with IgA nephropathy: A 5-year report. Contrib. Nephrol. 2007, 157, 94–98. [Google Scholar] [CrossRef]
- Kennoki, T.; Ishida, H.; Yamaguchi, Y.; Tanabe, K. Proteinuria-Reducing Effects of Tonsillectomy Alone in IgA Nephropathy Recurring After Kidney Transplantation. Transplantation 2009, 88, 935–941. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Bao, W.; Zheng, Q.Y.; Wang, Y.H.; Sun, L.Y. Efficacy and Safety of Finerenone in Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front. Pharmacol. 2022, 13, 819327. [Google Scholar] [CrossRef]
- Hu, H.; Cao, M.; Sun, Y.; Jin, X.; Zhao, X.; Cong, X. Efficacy and Safety of Eplerenone for Treating Chronic Kidney Disease: A Meta-Analysis. Int. J. Hypertens. 2023, 2023, 6683987. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Halden, T.A.S.; Kvitne, K.E.; Midtvedt, K.; Rajakumar, L.; Robertsen, I.; Brox, J.; Bollerslev, J.; Hartmann, A.; Åsberg, A.; Jenssen, T. Efficacy and Safety of Empagliflozin in Renal Transplant Recipients With Posttransplant Diabetes Mellitus. Diabetes Care 2019, 42, 1067–1074. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Toto, R.D.; Stefánsson, B.V.; Jongs, N.; Chertow, G.M.; Greene, T.; Hou, F.F.; McMurray, J.J.; Pecoits-Filho, R.; Correa-Rotter, R.; et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021, 100, 215–224. [Google Scholar] [CrossRef]
- Komers, R.; Plotkin, H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R877–R884. [Google Scholar] [CrossRef]
- Kohan, D.E.; Barton, M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 2014, 86, 896–904. [Google Scholar] [CrossRef]
- Pozzi, C.; Bolasco, P.G.; Fogazzi, G.B.; Andrulli, S.; Altieri, P.; Ponticelli, C.; Locatelli, F. Corticosteroids in IgA nephropathy: A randomised controlled trial. Lancet 1999, 353, 883–887. [Google Scholar] [CrossRef]
- Manno, C.; Torres, D.D.; Rossini, M.; Pesce, F.; Schena, F.P. Randomized controlled clinical trial of corticosteroids plus ACE-inhibitors with long-term follow-up in proteinuric IgA nephropathy. Nephrol. Dial. Transplant. 2009, 24, 3694–3701. [Google Scholar] [CrossRef] [PubMed]
- Woodle, E.S.; First, M.R.; Pirsch, J.; Shihab, F.; Gaber, A.O.; Van Veldhuisen, P. A Prospective, Randomized, Double-Blind, Placebo-Controlled Multicenter Trial Comparing Early (7 Day) Corticosteroid Cessation Versus Long-Term, Low-Dose Corticosteroid Therapy. Ann. Surg. 2008, 248, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Di Vico, M.C.; Messina, M.; Fop, F.; Barreca, A.; Segoloni, G.P.; Biancone, L. Recurrent IgA nephropathy after renal transplantation and steroid withdrawal. Clin. Transplant. 2018, 32, e13207. [Google Scholar] [CrossRef]
- Leeaphorn, N.; Garg, N.; Khankin, E.V.; Cardarelli, F.; Pavlakis, M. Recurrence of IgA nephropathy after kidney transplantation in steroid continuation versus early steroid-withdrawal regimens: A retrospective analysis of the UNOS/OPTN database. Transpl. Int. 2018, 31, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Stangou, M.; Ekonomidou, D.; Giamalis, P.; Liakou, H.; Tsiantoulas, A.; Pantzaki, A.; Papagianni, A.; Efstratiadis, G.; Alexopoulos, E.; Memmos, D. Steroids and azathioprine in the treatment of IgA nephropathy. Clin. Exp. Nephrol. 2011, 15, 373–380. [Google Scholar] [CrossRef]
- Pozzi, C.; Andrulli, S.; Pani, A.; Scaini, P.; Del Vecchio, L.; Fogazzi, G.; Vogt, B.; De Cristofaro, V.; Allegri, L.; Cirami, L.; et al. Addition of Azathioprine to Corticosteroids Does Not Benefit Patients with IgA Nephropathy. J. Am. Soc. Nephrol. 2010, 21, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Bi, T.; Zhu, L.; Liu, L. Efficacy and safety of mycophenolate mofetil for IgA nephropathy: An updated meta-analysis of randomized controlled trials. Exp. Ther. Med. 2018, 16, 1882–1890. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.F.; Xie, D.; Wang, J.; Xu, X.; Yang, X.; Ai, J.; Nie, S.; Liang, M.; Wang, G.; Jia, N.; et al. Effectiveness of Mycophenolate Mofetil Among Patients With Progressive IgA Nephropathy: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2254054. [Google Scholar] [CrossRef] [PubMed]
- Ballardie, F.W.; Roberts, I.S.D. Controlled prospective trial of prednisolone and cytotoxics in progressive IgA nephropathy. J. Am. Soc. Nephrol. 2002, 13, 142–148. [Google Scholar] [CrossRef]
- Rauen, T.; Eitner, F.; Fitzner, C.; Sommerer, C.; Zeier, M.; Otte, B.; Panzer, U.; Peters, H.; Benck, U.; Mertens, P.R.; et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N. Engl. J. Med. 2015, 373, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Shi, S.; Lv, J.; Liu, L.; Zhou, X.; Zhu, L.; Chen, P.; Yang, H.; Wang, Z.; Wang, S.; et al. Rapidly progressive IgA nephropathy: Clinicopathological characteristics and outcomes assessed according to the revised definition of the KDIGO 2021 Guideline. Nephrol. Dial. Transplant. 2022, 37, 2429–2437. [Google Scholar] [CrossRef] [PubMed]
- Coppo, R. The Gut-Renal Connection in IgA Nephropathy. Semin. Nephrol. 2018, 38, 504–512. [Google Scholar] [CrossRef]
- Ismail, G.; Obrişcă, B.; Jurubiţă, R.; Andronesi, A.; Sorohan, B.; Vornicu, A.; Sinescu, I.; Hârza, M. Budesonide versus systemic corticosteroids in IgA Nephropathy: A retrospective, propensity-matched comparison. Medicine 2020, 99, e21000. [Google Scholar] [CrossRef]
- Lingaraj, U.; Aralapuram, K.; Chikkanayakanhalli, S.; Vishwanathan, A.; Vankalakunti, M. Successful treatment of a patient with posttransplant IgA nephropathy with targeted release formulation of budesonide. Saudi J. Kidney Dis. Transpl. 2020, 31, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Zand, L.; Canetta, P.; Lafayette, R.; Aslam, N.; Jan, N.; Sethi, S.; Fervenza, F.C. An Open-Label Pilot Study of Adrenocorticotrophic Hormone in the Treatment of IgA Nephropathy at High Risk of Progression. Kidney Int. Rep. 2020, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Chancharoenthana, W.; Leelahavanichkul, A.; Ariyanon, W.; Vadcharavivad, S.; Phumratanaprapin, W. Comparative Long-Term Renal Allograft Outcomes of Recurrent Immunoglobulin A with Severe Activity in Kidney Transplant Recipients with and without Rituximab: An Observational Cohort Study. JCM 2021, 10, 3939. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.; Westergren, E.; Smolander, J.; Bruchfeld, A. B cell–depleting therapy with rituximab or ofatumumab in immunoglobulin A nephropathy or vasculitis with nephritis. Clin. Kidney J. 2016, 10, 20–26. [Google Scholar] [CrossRef]
- Lafayette, R.A.; Canetta, P.A.; Rovin, B.H.; Appel, G.B.; Novak, J.; Nath, K.A.; Sethi, S.; Tumlin, J.A.; Mehta, K.; Hogan, M.; et al. A Randomized, Controlled Trial of Rituximab in IgA Nephropathy with Proteinuria and Renal Dysfunction. JASN 2017, 28, 1306–1313. [Google Scholar] [CrossRef]
- Floege, J. Rituximab therapy for IgA nephropathy. Nat. Rev. Nephrol. 2017, 13, 138–140. [Google Scholar] [CrossRef]
- Hartono, C.; Chung, M.; Perlman, A.S.; Chevalier, J.M.; Serur, D.; Seshan, S.V.; Muthukumar, T. Bortezomib for Reduction of Proteinuria in IgA Nephropathy. Kidney Int. Rep. 2018, 3, 861–866. [Google Scholar] [CrossRef] [PubMed]
- McAdoo, S.P.; Bhangal, G.; Page, T.; Cook, H.T.; Pusey, C.D.; Tam, F.W.K. Correlation of disease activity in proliferative glomerulonephritis with glomerular spleen tyrosine kinase expression. Kidney Int. 2015, 88, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.; Ma, F.Y.; Han, Y.; Ozols, E.; Kanellis, J.; Tesch, G.H.; Nikolic-Paterson, D.J. Myeloid cell-mediated renal injury in rapidly progressive glomerulonephritis depends upon spleen tyrosine kinase. J. Pathol. 2016, 238, 10–20. [Google Scholar] [CrossRef]
- Podolanczuk, A.; Lazarus, A.H.; Crow, A.R.; Grossbard, E.; Bussel, J.B. Of mice and men: An open-label pilot study for treatment of immune thrombocytopenic purpura by an inhibitor of Syk. Blood 2009, 113, 3154–3160. [Google Scholar] [CrossRef] [PubMed]
- Weinblatt, M.E.; Kavanaugh, A.; Genovese, M.C.; Musser, T.K.; Grossbard, E.B.; Magilavy, D.B. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N. Engl. J. Med. 2010, 363, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Tam, W.K.F.; Tumlin, J.; Barratt, J.; H, B.R.; Sd, I.R.; Roufosse, C.; Cook, H.; Tong, S.; Magilavy, D.; Lafayette, R. SUN-036 Spleen Tyrosine Kinase (Syk) Inhibition in Iga Nephropathy: A Global, Phase Ii, Randomised Placebo-Controlled Trial Of Fostamatinib. Kidney Int. Rep. 2019, 4, S168. [Google Scholar] [CrossRef]
- Tortajada, A.; Gutierrez, E.; Pickering, M.C.; Praga Terente, M.; Medjeral-Thomas, N. The role of complement in IgA nephropathy. Mol. Immunol. 2019, 114, 123–132. [Google Scholar] [CrossRef]
- Kim, S.J.; Koo, H.M.; Lim, B.J.; Oh, H.J.; Yoo, D.E.; Shin, D.H.; Lee, M.J.; Doh, F.M.; Park, J.T.; Yoo, T.-H.; et al. Decreased Circulating C3 Levels and Mesangial C3 Deposition Predict Renal Outcome in Patients with IgA Nephropathy. PLoS ONE 2012, 7, e40495. [Google Scholar] [CrossRef]
- Nam, K.H.; Joo, Y.S.; Lee, C.; Lee, S.; Kim, J.; Yun, H.-R.; Park, J.T.; Chang, T.I.; Ryu, D.-R.; Yoo, T.-H.; et al. Predictive value of mesangial C3 and C4d deposition in IgA nephropathy. Clin. Immunol. 2020, 211, 108331. [Google Scholar] [CrossRef]
- Huang, X.; Xu, G. An Update on Targeted Treatment of IgA Nephropathy: An Autoimmune Perspective. Front. Pharmacol. 2021, 12, 715253. [Google Scholar] [CrossRef]
- Roos, A.; Rastaldi, M.P.; Calvaresi, N.; Oortwijn, B.D.; Schlagwein, N.; van Gijlswijk-Janssen, D.J.; Stahl, G.L.; Matsushita, M.; Fujita, T.; van Kooten, C.; et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J. Am. Soc. Nephrol. 2006, 17, 1724–1734. [Google Scholar] [CrossRef]
- Lafayette, R.A.; Rovin, B.H.; Reich, H.N.; Tumlin, J.A.; Floege, J.; Barratt, J. Safety, Tolerability and Efficacy of Narsoplimab, a Novel MASP-2 Inhibitor for the Treatment of IgA Nephropathy. Kidney Int. Rep. 2020, 5, 2032–2041. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, Y.; Duan, X.; Peng, Q.; Liu, Q.; Zhou, Y.; Quan, S.; Xing, G. C3a, C5a Renal Expression and Their Receptors are Correlated to Severity of IgA Nephropathy. J. Clin. Immunol. 2014, 34, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Ring, T.; Pedersen, B.B.; Salkus, G.; Goodship, T.H.J. Use of eculizumab in crescentic IgA nephropathy: Proof of principle and conundrum? Clin. Kidney J. 2015, 8, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Rosenblad, T.; Rebetz, J.; Johansson, M.; Békássy, Z.; Sartz, L.; Karpman, D. Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatr. Nephrol. 2014, 29, 2225–2228. [Google Scholar] [CrossRef] [PubMed]
- Bruchfeld, A.; Magin, H.; Nachman, P.; Parikh, S.; Lafayette, R.; Potarca, A.; Miao, S.; Bekker, P. C5a receptor inhibitor avacopan in immunoglobulin A nephropathy-an open-label pilot study. Clin. Kidney J. 2022, 15, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Mathur, M.; Barratt, J.; Engler, F.; Yarbrough, J.; Sloan, S.; Oldach, D. Mo258safety, Tolerability, Pharmacokinetics And Pharmacodynamics Of Vis649, An April-Neutralizing Igg2 Monoclonal Antibody, In Healthy Volunteers: Phase 1, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose Study. Nephrol. Dial. Transplant. 2021, 36 (Suppl. 1), gfab104.0016. [Google Scholar] [CrossRef]
- Barratt, J.; Hour, B.; Sibley, C.; Mittan, A.; Roy, S.; Stromatt, C.; Endsley, A.; Lo, J.; Glicklich, A. FC 040interim results of phase 1 and 2 trials to investigate the safety, tolerability, pharmacokinetics, pharmacodynamics, and clinical activity of bion-1301 in patients with iga nephropathy. Nephrol. Dial. Transplant. 2021, 36 (Suppl. 1), gfab117.004. [Google Scholar] [CrossRef]
- Xin, G.; Shi, W.; Xu, L.X.; Su, Y.; Yan, L.J.; Li, K.S. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J. Nephrol. 2013, 26, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Barratt, J.; Hislop, C.; Pennington, J.; Gangal, M.; Martin, R.; Liew, A. Effects of Blisibimod, a Selective Inhibitor of B-Cell Activating Factor, in Patients with IgA Nephropathy. J. Am. Soc. Nephrol. 2016, 27, 4B. [Google Scholar]
- Barratt, J.; Tumlin, J.A.; Suzuki, Y.; Kao, A.; Aydemir, A.; Zima, Y.; Appel, G. MO039THE 24-week interim analysis results of a randomized, double-blind, placebo-controlled phase ii study of atacicept in patients with iga nephropathy and persistent proteinuria. Nephrol. Dial. Transplant. 2020, 35 (Suppl. 3), gfaa140.MO039. [Google Scholar] [CrossRef]
- Kavanagh, C.R.; Zanoni, F.; Leal, R.; Jain, N.G.; Stack, M.N.; Vasilescu, E.-R.; Serban, G.; Shaut, C.; Kamal, J.; Kudose, S.; et al. Clinical Predictors and Prognosis of Recurrent IgA Nephropathy in the Kidney Allograft. Glomerular Dis. 2022, 2, 42–53. [Google Scholar] [CrossRef]
- Andresdottir, M.B.; Haasnoot, G.W.; Doxiadis, I.I.N.; Persijn, G.G.; Claas, F.H.J. Exclusive characteristics of graft survival and risk factors in recipients with immunoglobulin A nephropathy: A retrospective analysis of registry data. Transplantation 2005, 80, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
Recipient Related Risk Factors | Donor Related Risk Factors | Transplant Associated Risk Factors | |||
---|---|---|---|---|---|
Higher Serum IgA level at the time of transplant | ↑ | Living Donor Transplantation | ↑ | Increasing Time After Transplant | ↑ |
Younger Age at Transplantation | ↑ | Zero HLA Mismatched Kidney Allografts | ↑ | Use of Steroid Maintenance Immunosuppression | ↓ |
Rapid Progression of Initial IgA to ESKD | ↑ | Specific HLA types * (B12, B35 DR4) | ↑ | ||
Higher Degree of Proteinuria | ↑ |
Drug/Treatment | Study Type | IgAN Type | Synthetic Evidence | References |
---|---|---|---|---|
ACEi | Prospective Cohort Study | Recurrent | ACEis may reduce blood pressure and proteinuria in IgAN post-transplant | Oka et al. [45] |
ACEi/ARB | Retrospective Cohort Study | Recurrent | ACEi/ARBs may improve 10-year graft survival in transplanted patients with ESRD due to IgAN | Courtney et al. [46] |
Fish Oil | Randomized Controlled Trial | Native | Fish oil may slow renal decline in IgAN | Donadio et al. [47] |
Tonsillectomy | Prospective Cohort Study | Recurrent | Tonsillectomy may reduce proteinuria in post-transplant IgAN | Kennoki et al. [49] |
Tonsillectomy | Prospective Cohort Study | Native | Tonsillectomy and high-dose steroids may improve clinical remission in those with high-proteinuria IgAN | Miyazaki et al. [48] |
SGLT2 Inhibitors | Randomized Controlled Trial Sub-analysis | Native | Dapagliflozin may reduce the risk of CKD progression in those with IgAN | Wheeler et al. [56] |
Dual Endothelin-Angiotensin Receptor Antagonist | Randomized Controlled Trial | Native | In IgAN, sparsentan may reduce proteinuria compared to irbesartan | Heerspink et al. [8] |
Corticosteroids | Randomized Controlled Trials | Native | In patients with IgAN and proteinuria, steroids (including monthly pulse methylprednisolone) may protect against worsening renal function | Pozzi et al. [69], Manno et al. [59] |
Steroid Withdrawal | Retrospective Cohort Studies | Recurrent | Early steroid withdrawal post-transplant may increase risk for recurrent IgAN | Di Vico et al. [62], Leeaphorn et al. [63], Clayton et al. [17] |
Cyclophosphamide | Randomized Controlled Trial | Native | For high-risk IgAN, adding immunosuppressive agents including cyclophosphamide may not improve outcomes and increases adverse events | Rauen et al. [69] |
TRF-budesonide | Randomized Controlled Trial | Native | TRF-budesonide may stabilize renal function and reduce proteinuria in IgAN, but also may increase adverse events | Fellstrom et al. [7] |
TRF-budesonide | Case Report | Recurrent | TRF-budesonide may lead to clinical remission in post-transplant IgAN | Lingaraj et al. [73] |
ACTH | Prospective Cohort Study | Native | ACTH gel may reduce proteinuria and stabilize renal function in IgAN | Zand et al. [74] |
Iptacopan (complement Inhibitor) | Randomized Controlled Trial (Phase II) | Native | Iptacopan may reduce proteinuria and preserve renal function | Perkovic et al. [23] |
Narsoplimab (anti-MASP-2 monoclonal Ab) | Prospective Cohort Study | Native | Narsoplimab may reduce proteinuria and stabilize renal function in advanced IgAN | Lafayette et al. [90] |
Eculizumab (anti-C5 monoclonal Ab) | Case Reports | Native | Eculizumab may reduce proteinuria and stabilize renal function in progressive IgAN | Ring et al. [92], Rosenblad et al. [93] |
Avacopan (anti-C5aR small molecule) | Prospective Cohort Study | Native | Avacopan may reduce proteinuria in IgAN | Bruchfeld et al. [94] |
BION-1301 (anti-APRIL monoclonal Ab) | Phase I/II Clinical Trial | Native | BION-1301 may reduce IgA and Gd-IgA1 levels and proteinuria in IgAN | Barratt et al. [96] |
Blisibimod (anti-BAFF monoclonal Ab) | Randomized Controlled Trial (Phase II) | Native | Blisibimod may reduce proteinuria in IgAN | Barratt et al. [102] |
Atacicept (anti-bLyS fusion protein) | Randomized Controlled Trial (Phase II) | Native | Atacicept may reduce Gd-IgA1 levels and proteinuria in IgAN | Barratt et al. [98] |
Bortezomib | Prospective Cohort Study | Native | Bortezomib may reduce proteinuria in some cases of IgAN | Hartono et al. [79] |
Fostamatinib (SYK inhibitor) | Randomized Controlled Trial (Phase II) | Native | Fostamatinib may reduce proteinuria in IgAN | Tam et al. [84] |
Rituximab | Randomized Controlled Trial | Native | Rituximab may not significantly reduce proteinuria in IgAN | Lafayette et al. [77] |
Mycophenolate | Randomized Controlled Trial | Native | In progressive IgAN, mycophenolate may reduce kidney disease progression | Hou et al. [67] |
Azathioprine | Randomized Controlled Trial | Native | In IgAN, adding azathioprine to steroids may not reduce risk of kidney disease progression | Pozzi et al. [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.S.; Lubetzky, M.L.; Anandasivam, N.S.; Cox, R.A.; Lee, B.K. Recurrent Immunoglobulin A Nephropathy after Kidney Transplant—An Updated Review. Transplantology 2023, 4, 161-177. https://doi.org/10.3390/transplantology4030016
Han HS, Lubetzky ML, Anandasivam NS, Cox RA, Lee BK. Recurrent Immunoglobulin A Nephropathy after Kidney Transplant—An Updated Review. Transplantology. 2023; 4(3):161-177. https://doi.org/10.3390/transplantology4030016
Chicago/Turabian StyleHan, Hwarang S., Michelle L. Lubetzky, Nidharshan S. Anandasivam, Rebecca A. Cox, and Brian K. Lee. 2023. "Recurrent Immunoglobulin A Nephropathy after Kidney Transplant—An Updated Review" Transplantology 4, no. 3: 161-177. https://doi.org/10.3390/transplantology4030016
APA StyleHan, H. S., Lubetzky, M. L., Anandasivam, N. S., Cox, R. A., & Lee, B. K. (2023). Recurrent Immunoglobulin A Nephropathy after Kidney Transplant—An Updated Review. Transplantology, 4(3), 161-177. https://doi.org/10.3390/transplantology4030016