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Abstract: Since the success of solid organ transplants, such as human kidneys, livers and hearts, from
the 50s to the 60s in the last century, the field of organ transplantation has progressed rapidly. Mainly
due to modifications in surgical operation techniques and improvements in immunosuppressive
therapy regimes, organ survival time can now be greatly prolonged. This progress has also been
dependent upon the availability of appropriate animal models for organ transplantation. Therefore,
the mouse heart transplantation model has developed into an irreplaceable research model for solid
organ transplantation, providing indelible contributions to the field. In this review, we will provide
an overview of the technical developments in murine heart transplantation, as well as its historical
and current role for alloimmune research. Further, we will describe its current fields of application
and its scientific achievements before we discuss potential future applications.
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1. The Historic Implementation of Animal Models for Transplantation Research

Since the success of solid organ transplants, such as human kidneys, livers and hearts,
from the 50s to the 60s in the last century [1–3], the field of organ transplantation has
progressed rapidly. Mainly due to modifications in surgical operation techniques and
improvements in immunosuppressive therapy regimes, organ survival time can now
be greatly prolonged. This progress has also been dependent upon the availability of
appropriate animal models for organ transplantation.

Beginning in 1907, Carrel et al. invented the vascular anastomosis technique and
tried to apply it to the transplantation of solid organs, such as forelimbs, ears and kidneys,
in dogs [4,5]. Thus, he can be viewed as one of the founders of solid organ transplanta-
tion because he successfully tackled one of the biggest surgical obstacles, enabling organ
transplantation. For this achievement, he subsequently received the Nobel Prize in 1912.
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During the next fifty years, scientists were continuously trying to establish and optimize the
transplantation of various solid organs. However, due to alloimmune reactions leading to
acute or chronic transplant rejection, the long-term survival of donor organs after transplan-
tation represented a major limitation for broad applications. Hence, various experimental
models mimicking transplantation in animal models were established to find a solution
for this problem. Before the 1960s, avascular skin grafts were the only successful animal
model to study alloimmunity after transplantation [6], but since then, rat kidney organ
transplantation models have been established. This model used the so-called porto-cavity
shunt technique developed by Lee et al. [7,8]. In 1964, the first rat heart transplantation
model was reported by Abbott and colleagues [9]. Initially, Abbott’s model was performed
with end-to-end anastomoses between the vessels of the donor and recipient. In 1969,
Ono and Lindsey refined Abbott’s model from end-to-end anastomoses to end-to-side
anastomoses [10], thus eliminating the risk of paraplegia in the recipient. This technique
significantly improved the model and, subsequently, made it more popular. Based on this
technique, Corry et al. established the first successful mouse heart transplantation model in
1973 [11]. Also, in the same year, a mouse kidney transplantation model was successfully
established by Sknoskiewicz et al. [12].

Compared with other animal model organisms (e.g., dogs, pigs, baboons) [13–16],
mouse models display certain advantages in terms of experimental costs, the possibility
of genetic manipulations and a higher reproducibility of experimental results. This is
the major reason why they quickly became the mainstream animal model in the area of
transplantation research. However, the technique to successfully transplant mouse kidneys
is relatively complicated. Hence, its availability is limited and restricted to a few expert
groups. Therefore, it is less widely applied to scientific studies [17]. Other mouse organ
transplantation models, such as those of the liver, pancreas, small intestine, ear, artery
and cornea, were subsequently developed in the 1980s and 1990s [18–25]. Thus, there
are various problems, such as low success rates, complicated operation techniques and
unstable graft perfusions. In contrast, the heart transplantation technique in mice is easier to
perform, displays fewer complications and enables more stable and reproducible long-term
graft survival. Therefore, it is currently more widely applied by various scientists [26–28].

2. Surgical Procedures of Mouse Heart Transplantation

Mouse heart transplantation is characterized by delicate microsurgery. The operation
requires a lot of practice to achieve satisfactory success rates [29], which is also the biggest
factor for limiting its use. In order to reduce the difficulty of the operation and improve its
success rate, researchers have been ambitious in improving the applied surgical techniques.
With continuous efforts for half a century, the operation time and success rate of this
technique has been greatly improved. The main transplant methods are summarized in
Figure 1 and described in the following subsections in chronological order based on their
first application in the field.

2.1. The Cervical Heterotopic Heart Transplantation Technique

In 1991, Chen et al. reported on a cervical anastomosis technique where the innomi-
nate artery of the donor heart and the right common carotid artery of the recipient were
anastomosed first using a 11/0 suture (Figure 2a). Subsequently, the pulmonary artery of
the donor heart and the external jugular vein of the recipient were anastomosed using a
14 µm suture [30]. This technique has not been used on a large scale due to mismatching
between the donor and recipient vessel lumen, leading to difficulties during the operation.
In addition, vascular distortion, thrombosis and obstruction of the vessel anastomosis are
more likely and have been reported to limit the surgical success rate of this technique [31].
Hence, this method is less used nowadays.



Transplantology 2024, 5 300Transplantology 2024, 5, FOR PEER REVIEW 3 
 

 

 
Figure 1. Timeline of key breakthrough events for this technology in mice. 

2.1. The Cervical Heterotopic Heart Transplantation Technique 
In 1991, Chen et al. reported on a cervical anastomosis technique where the innomi-

nate artery of the donor heart and the right common carotid artery of the recipient were 
anastomosed first using a 11/0 suture (Figure 2a). Subsequently, the pulmonary artery of 
the donor heart and the external jugular vein of the recipient were anastomosed using a 
14 μm suture [30]. This technique has not been used on a large scale due to mismatching 
between the donor and recipient vessel lumen, leading to difficulties during the operation. 
In addition, vascular distortion, thrombosis and obstruction of the vessel anastomosis are 
more likely and have been reported to limit the surgical success rate of this technique [31]. 
Hence, this method is less used nowadays. 

Figure 1. Timeline of key breakthrough events for this technology in mice.

Transplantology 2024, 5, FOR PEER REVIEW 4 
 

 

 
Figure 2. Surgical procedures of mouse heart transplantation. The cervical heterotopic heart trans-
plantation technique (a). The cuff cervical heart transplantation technique (b). The heterotopic ab-
dominal heart transplantation technique (c). The modified heterotopic abdominal heart transplan-
tation technique (d). Arrows depict the direction of blood flow. 

2.2. The Cuff Cervical Heart Transplantation Technique 
In the same year as Chen et al., Matsura and colleagues invented a simplified mouse 

cuff cervical heart transplantation technique (Figure 2b) [32]. This method uses Teflon 
cuffs placed onto the recipient’s external jugular vein/common carotid artery and the do-
nor’s pulmonary artery/aorta and ties a suture ligature around the connection. The cuff 
technique is the simplest surgical operation technique for a heart transplantation, and the 
model is less invasive [33,34]. However, the technique was mostly used for short- and 
medium-term experiments. In 2011, Li et al. reported a modified splint tube technique 
(STT) based on the cuff technique (CT) [35]. With the development of new vascular mate-
rials and the increasing availability of 3D printing technologies [36,37], this and other 
modifications to the cuff technique are expected to lead to considerable enhancements in 
surgical outcomes still to be proven in future studies. 

2.3. The Heterotopic Abdominal Heart Transplantation Technique 
The heterotopic abdominal heart transplantation technique was initially developed 

in rats [9] but is most widely used for murine heart transplantations. In this technique, the 
donor aorta and the recipient abdominal aorta are anastomosed, while the pulmonary 
artery is anastomosed to the recipient’s inferior vena cava (Figure 2c) [29,38–40]. This tech-
nique achieves long-term survival of the transplanted heart in the recipient’s abdominal 
cavity through end-to-side anastomosis, and it avoids complications caused by differ-
ences in the size of the vascular lumen in end-to-end anastomosis. Improvements in this 
technique are also quite elaborate and progressive. Niimi et al. (2001) proposed that the 
opening positions of arteries and veins should be staggered [41], Song Rong et al. (2012) 
proposed a continuous suture technique without a knotted end at the end-to-side anasto-
mosis for the abdominal vessels [42] and Dun et al. (2020) reported a combined abdominal 
heterotopic heart and aorta transplantation model for mice [43]. Although this traditional 
way of operating is considered difficult and requires that the surgeon has extensive train-
ing, the complications are relatively small. 

Figure 2. Surgical procedures of mouse heart transplantation. The cervical heterotopic heart trans-
plantation technique (a). The cuff cervical heart transplantation technique (b). The heterotopic
abdominal heart transplantation technique (c). The modified heterotopic abdominal heart transplan-
tation technique (d). Arrows depict the direction of blood flow.



Transplantology 2024, 5 301

2.2. The Cuff Cervical Heart Transplantation Technique

In the same year as Chen et al., Matsura and colleagues invented a simplified mouse
cuff cervical heart transplantation technique (Figure 2b) [32]. This method uses Teflon cuffs
placed onto the recipient’s external jugular vein/common carotid artery and the donor’s
pulmonary artery/aorta and ties a suture ligature around the connection. The cuff technique
is the simplest surgical operation technique for a heart transplantation, and the model is
less invasive [33,34]. However, the technique was mostly used for short- and medium-term
experiments. In 2011, Li et al. reported a modified splint tube technique (STT) based on
the cuff technique (CT) [35]. With the development of new vascular materials and the
increasing availability of 3D printing technologies [36,37], this and other modifications to
the cuff technique are expected to lead to considerable enhancements in surgical outcomes
still to be proven in future studies.

2.3. The Heterotopic Abdominal Heart Transplantation Technique

The heterotopic abdominal heart transplantation technique was initially developed in
rats [9] but is most widely used for murine heart transplantations. In this technique, the
donor aorta and the recipient abdominal aorta are anastomosed, while the pulmonary artery
is anastomosed to the recipient’s inferior vena cava (Figure 2c) [29,38–40]. This technique
achieves long-term survival of the transplanted heart in the recipient’s abdominal cavity
through end-to-side anastomosis, and it avoids complications caused by differences in the
size of the vascular lumen in end-to-end anastomosis. Improvements in this technique
are also quite elaborate and progressive. Niimi et al. (2001) proposed that the opening
positions of arteries and veins should be staggered [41], Song Rong et al. (2012) proposed a
continuous suture technique without a knotted end at the end-to-side anastomosis for the
abdominal vessels [42] and Dun et al. (2020) reported a combined abdominal heterotopic
heart and aorta transplantation model for mice [43]. Although this traditional way of
operating is considered difficult and requires that the surgeon has extensive training, the
complications are relatively small.

2.4. The Modified Heterotopic Abdominal Heart Transplantation Technique

In 2006, Witzke et al. invented a modified method of heterotopic abdominal trans-
plantation using the intrathoracic inferior vena cava (IIVC), instead of the pulmonary
artery of the donor heart, for the anastomosis to the inferior vena cava of the recipient
(Figure 2d) [28,44]. After a long-term comparative study by our team, we found that even
though there are no differences in long-term survival rates for this model compared with
traditional pulmonary artery anastomosis, this modified technique facilitates anastomotic
vessel reconstruction, thus reducing the difficulty of abdominal heart transplantation in
mice [45]. In addition, the length of the donor inferior vena cava is significantly longer than
that of the pulmonary artery, which also provides anatomical possibilities to use tissue en-
gineering techniques, such as “nanofiber scaffolds” and 3D micro-stent printed ”chimney”
technologies [46–48], for more rapid intraperitoneal transplantation in the future.

3. Application Fields of Mouse Heart Transplantation

Heart transplant models in mice represent an important tool to investigate a variety
of scientific aspects that are current or emerging obstacles in transplantation medicine.
To provide a comprehensive overview of these research fields, we performed a medicine
database search, as depicted in Figure 3. Published articles involving the use of this
technology within the past 20 years were summarized, highlighting the applications and
the achievements of this technology.
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For this purpose, a literature search was performed using PubMed over the years
2000–2023. The search terms used were heart transplantation AND mouse. Publications
were filtered and included as depicted Figure 3 (identification of studies). In the identified
articles, the achievements from using this technology and the respective research scope
which can mainly be categorized by several aspects (see Figure 4) will be discussed in the
following subsections.
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Figure 4. Review of the heart transplant literature. Categorization of the research scope in mouse
heart transplantation (A), dynamic heat map of articles published over time with respect to research
background (B). In the last two decades, nearly half of the applications of mouse heart transplantation
technologies have focused on studying the mechanism and/or induction of immune tolerance
(A). By examining the year–quantity heat map, we see that the application of this technology in
the mechanism of immunological tolerance has a large compartment and is stable compared with
two decades ago, and its application in other emerging fields has also increased (B). We identified
1747 identified articles that used mouse heart transplantation model technology. These reports were
categorized into eight groups based on topic (a–g): articles focused on research investigating the
efficacy of immunosuppressive drugs (a); articles studying the mechanism of immunological tolerance
(b); articles conducting research on the role of transplant-relevant genes and gene therapy (c); articles
conducting research on cardiovascular lesions (d); articles conducting research on cardiomyopathy
(e); articles describing improvements in surgical techniques, novel therapeutics or the development
of new inspection and detection methods (f); articles focusing on other research areas (e.g., age and
sex factors, side effects of radiotherapy, transfusion blood group research) (g).

3.1. Alloimmune Response and Immune Tolerance Mechanisms

One of these aspects is the investigation of the alloimmune response or the targeted
development of tolerance mechanisms. The heart transplantation model in mice is of great
value, as the HLA (human leukocyte antigen) system and H − 2 in mice are similar to
each other. A large number of various mouse strains implemented for the clarification of
a variety of immunological research queries have been cultivated [49], and it can be said
that the understanding and progress of modern human immunology is based on a variety
of these findings. Mouse heart transplantation models, especially those using various
immunodeficient mouse strains, provide an excellent and reproducible quantification tool
for studying the complexity of the immune system. According to our statistics, in the
past 20 years, 499 papers related to mouse heart transplantation technology used special
transgenic/gene-deficient mouse strains, accounting for 29% of the total. A few to mention
are the Scid and RAG-2 mouse strains lacking functional T cells and B cells [50], nude
mice lacking functional T cells, 129/Sv mice demonstrating B cell dysfunction and beige
mice showing poor NK cell function. Scientists have extensively used various specific
strains of mouse HTX models to study the alloimmune response and immune tolerance
mechanisms [49–54]. For instance, by using this model, Hasgur et al. revealed the essential
role of B cell-derived IL-1β and IL-6 during homeostatic T cell expansion [50]. Sharma et al.
reported that they used a mouse HTX model to study the relationship between myocardial
myosin and cardiac graft failure (acute immune rejection) [51]. Young et al. reported the use
of this model to study the effect of Listeria (Lm) bacterial infections on immune tolerance
in cardiac allografts [52]. On the other hand, it is important to note that some groups have
performed heart transplantation between rats and mice to investigate the immunological
mechanism of acute rejection in a xenotransplantation setting [53–56].
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3.2. Gene Therapy and the Impact of Genes and Gene Mutations on Long-Term Survival

Another research aspect is the topic of genetic engineering, gene therapy and the
impact of genes and gene mutations on long-term survival. It is an invaluable advantage
that mouse heart transplantation models can be used to study organ transplantation in
syngeneic, transgenic and knockout strains [57,58]. Knockout of a single selected gene
can cause a specific immunodeficiency in mice [59–61], while activation/insertion of a
new gene of interest can alter a certain immune function [62,63]. Today, the number of
molecular genetic knockout models in mice has exceeded 1200, and some special transgenic
“humanized mouse models” have been developed to better research human diseases [64–66].
Research on these specific genes represents an irreplaceable reference value for human
organ transplantation, as well as autoimmune and hereditary diseases caused by gene
defects [67–70]. Roussoulieres et al. successfully used a mouse heart transplantation
model to identify key genes implicated in the acute rejection of heart allografts [58]. Just
recently, the first short-term success of a pig-to-human heart xenotransplantation attracted
a lot of attention. The lack of galactose-α1, 3-galactose epitope (GTKO) [71–73] (α1, 3-
galactosyltransferase knockout) used in donor GT-KO pigs for transplantation was initially
studied on the basis of a mouse heart transplant model. It was McKenzie et al. who
described in mice the rejection of Gal+ mouse hearts by mice lacking Galα(1,3)Gal (Gal−/−)
and, subsequently, raised attention that the α1, 3-galactosyltransferase epitope is a major
trigger for xenogeneic hyperacute rejection (HAR) and that its pathogenesis more closely
reflects the combination of pig and primate [74]. To study the crossmatch of humans with
pigs, many transplant research groups have used the GALT/KO humanized mouse HTX
model for further preliminary studies [65,71,73,75]. The establishment of a reliable heart
transplantation technique in mice has inestimable value, for which genetically modified
mice have provided profound proof. For instance, transgenic expression of CD39, CD47,
tissue factor pathway inhibitor (TFPI) and endothelial protein C receptor (EPCR), the
key components of thromboregulation that affect hemostasis, have also been reported in
previous studies using mouse heart transplantation technology [76,77].

Many more examples can be mentioned here for using gene knockout mouse transplan-
tation models, such as Zhang et al., who determined the site and mechanism of suppression
by regulatory T (Treg) cells using KO-chemokine receptor mice for CCR2, CCR4, CCR5
and CCR7. They investigated the homing behavior of alloantigen-specific Foxp3+ Tregs
migrating sequentially from the transplant into the secondary lymphatic organs of tolerant
animals. Zhang et al. showed that sequential migration from blood to the target tissue and
to the draining lymph nodes is required for Treg cells to differentiate and fully execute
their suppressive function. The Bromberg group further, and more elegantly, showed in
subsequent work that L-selectin (CD62L)-dependent T cells homing to lymph nodes (LNs)
are required for heart allograft tolerance induction, clearly showing the important role
of lymphoid compartments [78,79]. Hu et al. found that p53 is involved in the cardiac
apoptosis that is triggered in the process of an alloimmune reaction and that prolonged
survival of heart allografts can be achieved when p53 is lacking [80].

3.3. Immune Activating/Suppressing Drug Research

Various new drug compounds that are generated with the purpose of selectively
activating regulatory or inhibitory components of the immune reaction must undergo
a large number of repeated animal tests during research and development. Including
molecular probes, monoclonal antibodies and various other reagents, these application
tests in mice are far more extensive than in other experimental animal settings [81–83].
Moreover, due to the small size of mice, these tests typically cost a third as much due to
reduced costs to raise and house them in comparison to rats, and the tests require only a
tenth of the drug’s dose. Therefore, from the perspective of drug development costs, the
mouse experimental setup is currently one of the most favorable, cost-effective and, from
the immunological point of view, ideal mammalian models. Therefore, the mouse heart
transplantation model has also been extensively used in the research and development
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of drugs for organ transplantation, such as cyclosporine, cyclophosphamide, tacrolimus
and rapamycin [84–88]. There are also some reports in which scientists used this model to
investigate pharmacokinetic drug delivery. For instance, when Zhou et al. used this model,
they observed that prodrug-assembled nanoparticle scaffolds carrying the mammalian
target of rapamycin complex kinase inhibitor (TORKinib) compounds can significantly
extend the survival of grafts through inducing immune suppression [89]. Another example
is the work of Zhang et al., who reported that this model was used to study allograft
tolerance in cyclophosphamide-induced tolerance [90]. Furthermore, Zhang et al. used this
model to study the combined use of a blocking monoclonal antibodies against CD45RB and
cyclophosphamide after transplantation and found a significant prolongation in xenograft
survival [91]. Wang et al. reported that they used this model to study the role of cytokines
in regulating the pattern of rejection and recipient susceptibility to cyclosporine (CsA) in
a mouse cardiac allograft model [92]. Last but not least, Moffatt et al. used this model
to investigate the effect of tacrolimus on tolerance induction in a model implementing a
CD4/CD8 blockade [93].

3.4. Ischemia–Reperfusion(I/R) Injury and Cardiovascular Disease Research

The mouse heart transplantation model is also widely implemented in the study
of ischemia and reperfusion (I/R) injuries, as well as to investigate the development of
cardiovascular lesions [94–98]. The model supports researchers to investigate specific time
frames in the damaging patterns after ischemia–reperfusion in the transplanted organ to
study the effects of ischemia [29,99]. Fukunaga et al. used this model and discovered
that the antagonistic translation factor nuclear factor erythroid 2-related factor 2 (Nrf2) is
protective in the I/R injury setting and in cardiac allogamy vasculopathy [98]. Ban et al.
found that I/R injury was closely related to the downregulation of the β-catenin pathway
and the upregulation of ROCK1 and PTEN expression using a mouse heart model [100].
Hasegawa et al. applied it to study the difference between cardiac allograft vasculopathy
(CAV) and atherosclerosis [101]. Sumi et al. and Benke et al. both described the application
of this technique in their studies of cardiac remodeling caused by heart failure, which can
be used to study cardiac remodeling in mechanically unloaded hearts in order to address
the underlying mechanisms [29,102].

3.5. Other Fields

The mouse heart transplantation model has also been applied to investigate sex and
age differences after transplantation [103–105], the effect of diet and exercise on transplant
function and survival outcomes [106,107], research on ABO-incompatible transplanta-
tion [108,109], the identification of cellular and protein functions [110–113], the invention
and validation of new testing technologies [114–117] and many more. For instance, Daly
et al. applied this model to prove the potential of positron emission tomography (PET)
to be a specific, sensitive and quantitative diagnostic test in the detection of transplant
rejection [115]. Flögel et al. reported this model to investigate the MRI-based noninvasive
detection of allograft rejection in the early posttransplant stage [116].

Habertheuer et al. also used this model to find that donor tissue-specific exosome
analysis can noninvasively monitor early acute rejection after transplantation with high
precision [118].

4. Current Problems and Prospects for the Future

Current immunosuppressive therapies have been clinically effective in preventing and
reversing acute rejection after transplantation. However, the ultimate goal of long-term
transplant survival has not been fulfilled by developing this revolutionary breakthrough
in the past two decades [119], so there is still a long way to go. Many researchers and
clinicians are convinced that xenotransplantation and the induction of immune tolerance
will be an important development to substantially improve transplantation medicine
in the future. The establishment of a suitable animal model that mimics human organ
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transplantation is an indispensable condition to achieve this goal, and all the researchers
contributing to the supply and optimization of the mouse heart transplant model have
helped to make great progress in this direction. Unfortunately, there is no animal model
that truly meets 100% of the ideal criteria reflecting the clinical setting. Although the HTX
model in mice truly is accompanied by some problems, such as technically complex and
delicate surgery compared with other large animal transplant settings, this can be met by
long-term microsurgical training to reach sufficient success [29]. A perspective to improve
this obstacle will be the founding and support of a specific mouse transplantation training
class to impart the required expert knowledge. Importantly, to study and tease out different
mechanisms of acute and chronic alloimmune rejection, as well as to determine aspects
in evolving techniques that can induce immune tolerance for bench-to-bedside transfer
in humans, it is still an irreplaceable animal model at this stage, as it offers an almost
unlimited variety with which to implement genetic engineering to inactivate or remove
one or more specific genes of interest. We believe that, with the development of genetic
engineering technology, microsurgery technology and new biomaterials technology, the
mouse HTX organ transplantation model will become easier to use and surgery procedures
more effective, which will lead to wider applications and, thus, will continue to promote
the development of transplantation research in humans.
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