Comparative Study of Optimization Models for Evaluation of EDM Process Parameters on Ti-6Al-4V
Abstract
:1. Introduction
2. Materials and Methods
2.1. -nD Angle and Information Divergence Method
2.2. Multi-Angle Optimization Technique (MAOT)
2.3. MOORA Methodology
3. Experimental Procedure
4. Results and Discussions
4.1. -nD angle, MAOT and Information Divergence
4.2. Multi-Objective Optimization Based on Ratio Analysis (MOORA)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronym/ Symbol | Full Form/Unit |
EDM | Electrical Discharge Machine |
MAOT | Multi-Angle Optimization Technique |
MOORA | Multi-Objective Optimization based on Ratio Analysis |
WBM | Weight before machining (grams) |
WAM | Weight after machining (grams) |
Pulse On and Off | µs |
Current | Amps |
MRR | Material Removal Rate (MM3/Min) |
SR(Ra) | Surface Roughness (Ra) µm |
FP | Flushing Pressure (bar) |
References
- Jagadeeswara Rao, M.; Uddien Shaik, R.; Buschaiah, K. Electrical Discharge Machining: A Comparative Surface Integrity Study for Incoloy-800. Mater. Today Proc. 2020, 22, 3286–3296. [Google Scholar] [CrossRef]
- Sahu, A.K.; Thomas, J.; Mahapatra, S.S. An intelligent approach to optimize the electrical discharge machining of titanium alloy by simple optimization algorithm. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2021, 235, 371–383. [Google Scholar] [CrossRef]
- Rao, M.J.; Shaik, R.U.; Buschaiah, K.; Krishnaiah, A. Optimization of EDM Process Parameters using ANOVA and GRA on Stainless Steel-304. In Proceedings of the Technical Volume of 34th Indian Engineering Congress, Hyderabad, India, 27–29 December 2019. [Google Scholar]
- Jain, S.; Parashar, V. Critical review on the impact of EDM process on biomedical materials. Mater. Manuf. Process. 2021, 1–24. [Google Scholar] [CrossRef]
- Banu, A.; Ali, M.Y. Electrical Discharge Machining (EDM): A Review Electrical Discharge Machining (EDM): A Review. Int. J. Eng. Mater. Manuf. 2016, 2–10. [Google Scholar] [CrossRef]
- Kumar, A.; Siba, S.; Mahapatra, S. Surface Characteristics of EDMed Titanium Alloy and AISI 1040 Steel Workpieces Using Rapid Tool Electrode. Arab. J. Sci. Eng. 2020, 45, 699–718. [Google Scholar] [CrossRef]
- Yan, H.; Kabongo, D.B.; Yan, Z.; Han, F.; Chen, Z. Sustainable production of high-uniformity workpiece surface quality in wire electrical discharge machining by fabricating surface microstructure on wire electrode. J. Clean. Prod. 2020, 259, 120881. [Google Scholar] [CrossRef]
- Kumar, R.; Roy, S.; Gunjan, P.; Sahoo, A.; Sarkar, D.D.; Das, R.K. Analysis of MRR and Surface Roughness in Machining Ti-6Al-4V 2nd International Conference on Materials Manufacturing and Design Engineering ELI Titanium Alloy Using EDM Process Analysis of MRR and Surface Roughnes. Procedia Manuf. 2018, 20, 358–364. [Google Scholar] [CrossRef]
- Reddy, V.V.; Kumar, A.; Valli, P.M.; Reddy, C.S. Influence of surfactant and graphite powder concentration on electrical discharge machining of PH17-4 stainless steel. J. Braz. Soc. Mech. Sci. Eng. 2015, 37, 641–655. [Google Scholar] [CrossRef]
- Kolli, M.; Kumar, A. Parametric Optimization of Boron Carbide Powder Added Electrical Discharge Machining of Titanium Alloy. Appl. Mech. Mater. 2014, 592–594, 678–683. [Google Scholar] [CrossRef]
- Wu, H.; Ma, J.; Meng, Q.; Jahan, M.P.; Alavi, F. Numerical modeling of electrical discharge machining of Ti-6Al-4V. Procedia Manuf. 2018, 26, 359–371. [Google Scholar] [CrossRef]
- Yadav, U.S.; Yadava, V. Experimental Investigation on Electrical Discharge Drilling of Ti-6Al-4V Alloy. Mach. Sci. Technol. 2015, 19, 515–535. [Google Scholar] [CrossRef]
- Naidoo, S.; Olaniran, A.O. Treated wastewater effluent as a source of microbial pollution of surface water resources. Int. J. Environ. Res. Public Health 2013, 11, 249–270. [Google Scholar] [CrossRef] [Green Version]
- Adar, E.; Delice, E.K.; Adar, T. Prioritizing of industrial wastewater management processes using an integrated AHP–CoCoSo model: Comparative and sensitivity analyses. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Vuppala, S.; Shaik, R.U.; Stoller, M. Multi-response optimization of coagulation and flocculation of olive mill wastewater: Statistical approach. Appl. Sci. 2021, 11, 2344. [Google Scholar] [CrossRef]
- Li, W.; Zhang, M.; Wang, H.; Lian, J.; Qiang, Z. Removal of recalcitrant organics in reverse osmosis concentrate from coal chemical industry by UV/H2O2 and UV/PDS: Efficiency and kinetic modelling. Chemosphere 2022, 287, 131999. [Google Scholar] [CrossRef] [PubMed]
- Lindamulla, L.M.L.K.B.; Jegatheesan, V.; Jinadasa, K.B.S.N.; Nanayakkara, K.G.N.; Othman, M.Z. Integrated mathematical model to simulate the performance of a membrane bioreactor. Chemosphere 2021, 284, 131319. [Google Scholar] [CrossRef]
- Vuppala, S.; Bavasso, I.; Stoller, M.; di Palma, L.; Vilardi, G. Olive mill wastewater integrated purification through pre-treatments using coagulants and biological methods: Experimental, modelling and scale-up. J. Clean. Prod. 2019, 236, 117622. [Google Scholar] [CrossRef]
- Stráský, J.; Janeček, M.; Harcuba, P.; Bukovina, M.; Wagner, L. The effect of microstructure on fatigue performance of Ti-6Al-4V alloy after EDM surface treatment for application in orthopaedics. J. Mech. Behav. Biomed. Mater. 2011, 4, 1955–1962. [Google Scholar] [CrossRef]
- Tang, L.; Du, Y.T. Experimental study on green electrical discharge machining in tap water of Ti–6Al–4V and parameters optimization. Int. J. Adv. Manuf. Technol. 2013, 70, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Prakash, C.; Singh, S.; Pruncu, C.I.; Mishra, V.; Królczyk, G.; Pimenov, D.Y.; Pramanik, A. Surface modification of Ti-6Al-4V alloy by electrical discharge coating process using partially sintered Ti-Nb electrode. Materials 2019, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Czelusniak, T.; Higa, C.F.; Torres, R.D.; Laurindo, C.A.H.; Júnior, J.M.F.D.P.; Lohrengel, A.; Amorim, F.L. Materials used for sinking EDM electrodes: A review. J. Braz. Soc. Mech. Sci. Eng. 2018, 41, 14. [Google Scholar] [CrossRef]
- Nimbalkar, V.S.; Shete, M.T. Electric Discharge Machining (EDM) of Titanium Alloys: A Review. Int. J. Eng. Res. 2017, V6, 776–778. [Google Scholar] [CrossRef]
- Chandrashekarappa, M.P.G.; Kumar, S.; Jagadish, J.; Pimenov, D.; Giasin, K. Experimental analysis and optimization of edm parameters on hchcr steel in context with different electrodes and dielectric fluids using hybrid taguchi-based pca-utility and critic-utility approaches. Metals 2021, 11, 419. [Google Scholar] [CrossRef]
- Fauchais, P.; Vardelle, A.; Dussoubs, B. Quo vadis thermal spraying? J. Therm. Spray Technol. 2001, 10, 44–66. [Google Scholar] [CrossRef]
- Homayoun, H.; Shahbaz, M.; Ebrahimi, R. Investigation of Floating and Single-Action Dies in Producing Dense Compacts with High Aspect Ratio. Iran. J. Sci. Technol. Trans. Mech. Eng. 2019, 44, 1005–1011. [Google Scholar] [CrossRef]
- Shaik, R.U.; Fusilli, L.; Giovanni, L. New Approach of Sample Generation and Classification for Wildfire Fuel Mapping on Hyperspectral (Prisma) Image. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5417–5420. [Google Scholar] [CrossRef]
- Maddu, J.; Karrolla, B.; Vuppala, S.; Shaik, R.U. Formation and Optimization of Electrical Discharge Coatings Using Conventional Electrodes. Energies 2021, 14, 5691. [Google Scholar] [CrossRef]
- Muniappan, A.; Raj, J.A.; Jayakumar, V.; Prakash, R.S.; Sathyaraj, R. Optimization of WEDM process parameters using standard deviation and MOORA method. IOP Conf. Ser. Mater. Sci. Eng. 2018, 402, 012139. [Google Scholar] [CrossRef]
- Mukhuti, A.; Rout, A.; Tripathy, S. Optimization of INCONEL 600 using wire EDM by MOORA and Taguchi’s method. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT); IEEE: Piscataway, NJ, USA, 2016; pp. 1577–1582. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Naik, S.S.; Rana, J. Experimental Analysis of Wire EDM Process Parameters for Micromachining of High Carbon High Chromium Steel by Using MOORA Technique. Micro Nano Mach. Eng. Mater. 2018, 137–148. [Google Scholar] [CrossRef]
- Izwan, N.S.L.B.; Feng, Z.; Patel, J.B.; Hung, W.N. Prediction of Material Removal Rate in Die-sinking Electrical Discharge Machining. Procedia Manuf. 2016, 5, 658–668. [Google Scholar] [CrossRef] [Green Version]
- Varma, K.S.; Rao, M.J.; Uddien, S.R. Multi-Response Optimization and Regression Analysis of Process Parameters for Wire-EDMed HCHCr Steel Using Taguchi’s Technique. Mech. Mater. Sci. Eng. 2017, 10. [Google Scholar] [CrossRef]
- Buschaiah, K.; Jagadeeswararao, M.; Krishnaiah, A. Investigation on the Influence of Edm Parameters on Machining Characteristics for Aisi 304. Mater. Today Proc. 2018, 5, 3648–3656. [Google Scholar] [CrossRef]
- JagadeeswaraRao, M.; Shaik, R.U.; Buschaiah, K. Grey Relational Analysis of EDM Process Parameters for Incoloy-800. In International Conference on Emerging Trends in Engineering (ICETE); Satapathy, S., Raju, K., Molugaram, K., Krishnaiah, A., Tsihrintzis, G., Eds.; Learning and Analytics in Intelligent Systems; Springer: Cham, Switzerland, 2019; Volume 2. [Google Scholar] [CrossRef]
- Maniyar, K.G.; Ingole, D.S. Multi response Optimization of EDM Process Parameters for Aluminium Hybrid Composites by GRA. Mater. Today Proc. 2018, 5 Pt 3, 19836–19843. [Google Scholar] [CrossRef]
- Maddu, J.; Buschaiah, K.; Shaik, R.U. A Review on Electrical Discharge Coating (EDC) and its Multi-Optimization Techniques. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1185, 012027. [Google Scholar] [CrossRef]
- Meel, R.; Singh, V.; Katyal, P.; Gupta, M. Optimization of process parameters of micro-EDD/EDM for magnesium alloy using Taguchi based GRA and TOPSIS method. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Sahu, A.K.; Mahapatra, S.S.; Chatterjee, S.; Thomas, J. Optimization of surface roughness by MOORA method in EDM by electrode prepared via selective laser sintering process. Mater. Today Proc. 2018, 5 Pt 3, 19019–19026. [Google Scholar] [CrossRef]
Element | Titanium | Aluminium | Vanadium | Iron | Oxygen | Carbon | Nitrogen | Hydrogen | Ref |
---|---|---|---|---|---|---|---|---|---|
Weight% | 89.464–90 | 5.5–6.75 | 3–4.5 | <0.3 | <0.2 | <0.1 | <0.05 | <0.015 | [19] |
Run | Current (Amps) | Ton (µs) | Toff (µs) | Flushing | Electrodes |
---|---|---|---|---|---|
Pressure (bar) | |||||
1 | 10 | 200 | 40 | 0 | Copper-1 |
2 | 10 | 400 | 80 | 0.5 | Bromnze-1 |
3 | 10 | 600 | 120 | 1 | Brass-1 |
4 | 20 | 200 | 40 | 0.5 | Bronze-2 |
5 | 20 | 400 | 80 | 1 | Brass -2 |
6 | 20 | 600 | 120 | 0 | Copper-2 |
7 | 30 | 200 | 40 | 0 | Brass-3 |
8 | 30 | 400 | 80 | 0.5 | Copper-3 |
9 | 30 | 600 | 120 | 1 | Bronze-3 |
10 | 10 | 200 | 40 | 1 | Bronze-4 |
11 | 10 | 400 | 80 | 0 | Brass-4 |
12 | 10 | 600 | 120 | 0.5 | Copper-4 |
13 | 20 | 200 | 40 | 1 | Copper-5 |
14 | 20 | 400 | 80 | 0 | Bronze-5 |
15 | 20 | 600 | 120 | 0.5 | Brass-5 |
16 | 30 | 200 | 40 | 0.5 | Brass-6 |
17 | 30 | 400 | 80 | 1 | Copper-6 |
18 | 30 | 600 | 120 | 0 | Bronze-6 |
Input Parameters | Output Parameters | ||||||
---|---|---|---|---|---|---|---|
Experiments | Current (Amps) | Ton (μs) | Toff (μs) | Flushing Pressure (bar) | Electrodes | MRR (mm3/min) | Ra (µm) |
1 | 10 | 200 | 40 | 0 | Copper-1 | 1.16479 | 4.95 |
2 | 10 | 400 | 80 | 0.5 | Bromnze-1 | 0.96614 | 9.13 |
3 | 10 | 600 | 120 | 1 | Brass-1 | 0.19639 | 6.545 |
4 | 20 | 200 | 40 | 0.5 | Bronze-2 | 3.2754 | 6.805 |
5 | 20 | 400 | 80 | 1 | Brass-2 | 0.23928 | 11.02 |
6 | 20 | 600 | 120 | 0 | Copper-2 | 0.79233 | 6.9325 |
7 | 30 | 200 | 40 | 0 | Brass-3 | 0.62077 | 4.4675 |
8 | 30 | 400 | 80 | 0.5 | Copper-3 | 1.50113 | 3.8825 |
9 | 30 | 600 | 120 | 1 | Bronze-3 | 1.81242 | 11.61 |
10 | 10 | 200 | 40 | 1 | Bronze-4 | 1.41761 | 7.015 |
11 | 10 | 400 | 80 | 0 | Brass-4 | 0.82299 | 7.5125 |
12 | 10 | 600 | 120 | 0.5 | Copper-4 | 0.40406 | 11.32 |
13 | 20 | 200 | 40 | 1 | Copper-5 | 3.65237 | 6.02 |
14 | 20 | 400 | 80 | 0 | Bronze-5 | 2.47404 | 3.885 |
15 | 20 | 600 | 120 | 0.5 | Brass-5 | 0.21494 | 9.02 |
16 | 30 | 200 | 40 | 0.5 | Brass-6 | 0.7088 | 10.13 |
17 | 30 | 400 | 80 | 1 | Copper-6 | 0.85779 | 7.515 |
18 | 30 | 600 | 120 | 0 | Bronze-6 | 2.06321 | 6.1 |
Experiments | -nd Angle | Rank | ID | Rank | MAOT | Rank |
---|---|---|---|---|---|---|
1 | 0.523759 | 6 | 0.407744 | 6 | 0.203928316 | 6 |
2 | 0.649438 | 13 | 0.850006 | 13 | 0.514031557 | 13 |
3 | 0.724869 | 16 | 1.569646 | 16 | 1.040733572 | 16 |
4 | 0.306271 | 3 | 0.107085 | 3 | 0.032286807 | 3 |
5 | 0.733156 | 18 | 1.74672 | 18 | 1.168936543 | 18 |
6 | 0.641067 | 10 | 0.805553 | 10 | 0.481761682 | 10 |
7 | 0.616797 | 9 | 0.693726 | 9 | 0.401269021 | 9 |
8 | 0.385929 | 4 | 0.183075 | 4 | 0.068913022 | 4 |
9 | 0.600007 | 8 | 0.628096 | 8 | 0.354653269 | 8 |
10 | 0.555468 | 7 | 0.486952 | 7 | 0.256789623 | 7 |
11 | 0.645751 | 12 | 0.829998 | 12 | 0.499491453 | 12 |
12 | 0.719186 | 15 | 1.473113 | 15 | 0.97044709 | 15 |
13 | 0.20953 | 2 | 0.046984 | 2 | 0.009772648 | 2 |
14 | 0.187813 | 1 | 0.037327 | 1 | 0.006969425 | 1 |
15 | 0.731041 | 17 | 1.696185 | 17 | 1.132449399 | 17 |
16 | 0.685009 | 14 | 1.089674 | 14 | 0.689414919 | 14 |
17 | 0.641214 | 11 | 0.806301 | 11 | 0.482304034 | 11 |
18 | 0.428714 | 5 | 0.237302 | 5 | 0.098646616 | 5 |
Experiments | Normalization of Decision Matrix | Normalized Weighted Matrix | YA | ||
---|---|---|---|---|---|
MRR (gm) | Ra (µm) | MRR (gm) | Ra (µs) | ||
1 | 0.168974 | 0.149308 | 0.028162 | 0.024885 | −3.78521 |
2 | 0.140156 | 0.275391 | 0.023359 | 0.045898 | −8.16386 |
3 | 0.02849 | 0.197419 | 0.004748 | 0.032903 | −6.34861 |
4 | 0.475156 | 0.205261 | 0.079193 | 0.03421 | −3.5296 |
5 | 0.034712 | 0.332399 | 0.005785 | 0.0554 | −10.7807 |
6 | 0.114942 | 0.209107 | 0.019157 | 0.034851 | −6.14017 |
7 | 0.090054 | 0.134754 | 0.015009 | 0.022459 | −3.84673 |
8 | 0.217766 | 0.117109 | 0.036294 | 0.019518 | −2.38137 |
9 | 0.262924 | 0.350196 | 0.043821 | 0.058366 | −9.79758 |
10 | 0.20565 | 0.211595 | 0.034275 | 0.035266 | −5.59739 |
11 | 0.11939 | 0.226602 | 0.019898 | 0.037767 | −6.68951 |
12 | 0.058616 | 0.341448 | 0.009769 | 0.056908 | −10.9159 |
13 | 0.529843 | 0.181583 | 0.088307 | 0.030264 | −2.36763 |
14 | 0.358904 | 0.117184 | 0.059817 | 0.019531 | −1.41096 |
15 | 0.031181 | 0.272073 | 0.005197 | 0.045345 | −8.80506 |
16 | 0.102824 | 0.305554 | 0.017137 | 0.050926 | −9.4212 |
17 | 0.124438 | 0.226677 | 0.02074 | 0.037779 | −6.65721 |
18 | 0.299306 | 0.183996 | 0.049884 | 0.030666 | −4.03679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maddu, J.; Karrolla, B.; Shaik, R.U.; Vuppala, S. Comparative Study of Optimization Models for Evaluation of EDM Process Parameters on Ti-6Al-4V. Modelling 2021, 2, 555-566. https://doi.org/10.3390/modelling2040029
Maddu J, Karrolla B, Shaik RU, Vuppala S. Comparative Study of Optimization Models for Evaluation of EDM Process Parameters on Ti-6Al-4V. Modelling. 2021; 2(4):555-566. https://doi.org/10.3390/modelling2040029
Chicago/Turabian StyleMaddu, JagadeeswaraRao, Buschaiah Karrolla, Riyaaz Uddien Shaik, and Srikanth Vuppala. 2021. "Comparative Study of Optimization Models for Evaluation of EDM Process Parameters on Ti-6Al-4V" Modelling 2, no. 4: 555-566. https://doi.org/10.3390/modelling2040029
APA StyleMaddu, J., Karrolla, B., Shaik, R. U., & Vuppala, S. (2021). Comparative Study of Optimization Models for Evaluation of EDM Process Parameters on Ti-6Al-4V. Modelling, 2(4), 555-566. https://doi.org/10.3390/modelling2040029