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Abstract: A population balance model for the aggregation of iron oxide nanoflowers (IONfs) is
presented. The model is based on the fixed pivot technique and is validated successfully for four
kinds of aggregation kernels. The extended Derjaguin, Landau, Verwey, and Overbeek (xDLVO)
theory is also employed for assessing the collision efficiency of the particles, which is pertinent to
the total energy of the interaction. Colloidal stability experiments were conducted on IONfs for
two dispersant cases—aqueous phosphate buffered saline solution (PBS) and simulated body fluid
(SBF). Dynamic light scattering (DLS) measurements after 24-h of incubation show a significant size
increase in plain PBS, whereas the presence of proteins in SBF prevents aggregation by protein corona
formation on the IONfs. Subsequent simulations tend to overpredict the aggregation rate, and this
can be attributed to the flower-like shape of IONfs, thus allowing patchiness on the surface of the
particles that promotes an uneven energy potential and aggregation hindering. In silico parametric
study on the effects of the ionic strength shows a prominent dependency of the aggregation rate
on the salinity of the dispersant underlying the effect of repulsion forces, which are almost absent
in the PBS case, promoting aggregation. In addition, the parametric study on the van der Waals
potential energy effect—within common Hamaker-constant values for iron oxides—shows that this is
almost absent for high salinity dispersants, whereas low salinity gives a wide range of results, thus
underlying the high sensitivity of the model on the potential energy parameters.

Keywords: nanoflowers; aggregation; population balance equations; xDLVO theory

1. Introduction

The stability of colloids is a very important aspect that may affect pertinent applica-
tions of the synthetic nanoparticles, and therefore an understanding of the aggregation
mechanisms and subsequent time-frames of a specific suspension is crucial. In particular,
inorganic nanoparticles exhibit a tendency towards aggregation when dispersed in saline
solutions. In addition, with the ion’s specific effects, there is a significant influence of charge,
shape, and surface functional groups on the aggregation of different colloidal particles [1–3].
Although experimental studies are usually used for defining the time-dependent particle
size distribution (PSD) of nanoparticles in a particular dispersant, in silico methods are
emerging as an easy-to-use and cost-effective alternative. Based on the Smoluchowski’s
coagulation equation that describes the population balance of the particles in conjunction
with the process and kinetics of aggregation, several methods have been developed for
numerically simulating these mechanisms by discretizing the size distribution range into
consecutive sections and solving the aforementioned equations successively for each sec-
tion. An extensively used method is the one developed by Hounslow et al. [4], which
discretizes the range into consecutive volume sections, each of which is double in size in
terms of volume compared to the previous. The equations are expressed in such a way
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so as to ensure the correct prediction of the total number of particles and, in addition, a
correction parameter was introduced so as to ensure conservation of mass. The limiting fac-
tor of having sections of predefined volume was overcome by Kumar and Ramkrishna [5],
who introduced a method of discretizing the volume range in sections of an arbitrary size,
thus providing the flexibility to focus on the behavior and outcome at certain volumes of
the spectrum, which was also capable of correctly evaluating two different moments of
the distribution. An extensive review of the solution methods of the population balance
equations (PBE) is given by Vanni [6].

There has since been a wide utilization of the aforementioned methods for modeling
aggregation in liquid solutions. Biggs et al. [7] applied the method developed by Houn-
slow et al. [4] for modelling activated sludge flocculation, providing a good approximation
of the change in mean floc size with time. The flocculation of colloidal suspensions by salts
and polymers was studied by Runkana et al. [8], also by applying the method by Houn-
slow et al. [4], this time in a more sophisticated model encompassing the Derjaguin, Landau,
Verwey, and Overbeek (DLVO) theory. The model predictions are in close agreement with
the experimental results for the flocculation of colloidal hematite suspensions in the pres-
ence of KCl and polyacrylic acid at different concentrations. Atmuri et al. [9] performed
a combined experimental and modelling study to explore aggregation in concentrated
attractive colloidal suspensions using a PBE model in conjunction with the DLVO theory
for describing the interparticle potential. Although the model is reported to predict much
faster aggregation rates than those observed experimentally, the authors argue that it is the
first PBE model that can successfully predict stable aggregate size and aggregation regimes
of charged colloidal particles over a range of salt concentrations and particle concentrations.
Liang et al. [10] used the Kumar and Ramkrishna [5] method, also taking into account
the DLVO theory, for studying the aggregation behavior of submicron-sized particles of
praseodymium-doped zirconium silicate, a ceramic pigment, in an aqueous suspension.
The model was modified to predict the stable state of the aggregation by introducing the
volume mean size of the aggregate to the stability ratio. In this study, experiments were also
performed for investigating the aggregation of the particles in an aqueous suspension in
the presence of sodium dodecyl benzene sulfonate or potassium chloride, and the authors
report that the predicted data were in reasonable agreement with the experimental results,
with an exception regarding predictions for certain levels of suspension concentrations. A
similar study employing the same model was performed by Huang et al. [11], who studied
the dispersion/aggregation behavior of colloidal particles in the suspension under different
conditions by a modified population balance model (PBM). The colloidal system consisted
of a dispersion of praseodymium-doped zirconium silicate pigment in an aqueous suspen-
sion by modified hydroxyl copolymer and an experimental study was also performed, with
the authors ultimately reporting that predicted data are similar to the experimental results.

Iron oxide nanoparticles (IONps) are a prominent class of nanostructures, with im-
pactful medical applications owing to their intrinsic magnetic properties. IONps lay on
the superparamagnetic regime, allowing them to be used as contrast agents in magnetic
resonance imaging (MRI), as well as nanoheaters for the magnetic hyperthermia treat-
ment of cancer [12]. The shape and size of IONps dictates their colloidal stability, magnetic
properties, and the corresponding biomedical application [13,14]. Several synthetic method-
ologies have been reported for the preparation of IONps, the most common of which is
the “co-precipitation method” due to its high yield and low cost. The main disadvantages
of this method are increased polydispersity of the final ferrofluid, sedimentation after
prolonged storage, and aggregation effects. To overcome these limitations, a shift of interest
has been noted towards the “polyol method”, where IONps are prepared in hydrophylic
polyol solvents that act both as reducing and capping agents [15]. Through this method,
IONps with narrow size distributions, controllable shape, and exceptional colloidal stability
in aqueous solutions can be formulated. The formation of citrate coated high crystallinity
iron oxide nanoflowers (IONfs) can be achieved via polyol synthesis by controlling the
ratio on the polyols used, as reported by Hugounenq et al. [16]. The multicore IONf shape
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yields superior magnetic properties than the plain spherical nanoparticles, rendering them
suitable for biomedical applications [17]. The aim of the current study is three-fold: (i) to
carry out case-specific experiments on the colloidal stability of IONfs and specify the effects
of using citrate coating, (ii) to develop an in silico model for simulating colloidal stability
taking into account the xDLVO theory, and (iii) to study by simulation the effects on the
colloidal stability of parameters such as ionic strength and van der Waals forces.

2. Materials and Methods
2.1. Numerical Model

The population balance equation (PBE) [18] is a basic tool in the field of colloidal
science for the description of interparticle behavior and for the subsequent prediction of
the evolution particle aggregation and consequent size distribution with time. Based on
this, a discretized form of the PBE for aggregation of particles is given as [10,11]:

dNi
dt

= −Ni

∞

∑
j=1

βi,jNj +
1
2

i−1

∑
j=1

βi−j,jNi−jNj (1)

where i represents a particle-size section; Ni is the number concentration of particles in
section i; and βi,j is the aggregation kernel, which is a combination of collision frequency k
and collision efficiency λ, and is expressed as

βi,j = ki,j·λi,j (2)

The first term on the right-hand side of (1) describes the loss of particles of size i
because of their aggregation with other particles, whereas the second term represents the
addition of particles of size i by their formation due to the aggregation of smaller particles.

The part of the aggregation kernel that corresponds to collision frequency is pertinent
to the Brownian motion of the particles, i.e., perikinetic aggregation, and is given by
the equation developed by Smolukowski [18], assuming the collision of two particles of
diameters di and dj:

ki,j =
2kBT

3µ

(
ri + rj

)2

rirj
(3)

where kB is Boltzmann’s constant, T is the absolute temperature, and µ is the fluid viscosity.
The part of the aggregation kernel that corresponds to collision efficiency is pertinent

to the total energy of interaction, which is a function of the forces acting between surfaces,
and includes van der Waals force, electrostatics, short range repulsion by hydration, long
range hydrophobic attraction, magnetic forces, steric forces or bridging due to adsorbed
polymer, etc. [19]. This term is generally assumed to be the inverse of the Fuchs’ stability
ratio, W, and is given by the following equation [20]:

1
λi,j

= Wi,j =
(
ri + rj

) ∫ ∞

ri+rj

exp(Vtot/kBT)
R2 dR (4)

where Vtot is the total interaction energy and R is the center-to-center distance between
the particles. Based on the classic and extended DLVO theory, the total interaction energy
concerning the present case is given by the following:

Vtot = VvdW + Vedl + Vmag (5)

where VvdW is the energy due to van der Waals forces, Vedl is due to the electrical double
layer, and Vmag is due to the magnetic forces. In the Hamaker theory, the van der Waals
energy of attraction for two spheres is given by the following:
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VvdW(R) = −A
6

{
2rirj

R2 −
(
ri + rj

)2 +
2rirj

R2 −
(
ri − rj

)2 + ln

[
R2 −

(
ri + rj

)2

R2 −
(
ri − rj

)2

]}
(6)

where A represents the Hamaker constant [10]. For estimating the electrical double layer
repulsion Vedl between two spherical particles having surface potentials ϕi and ϕj, the
following analytical expression used in the past [8,10] is employed:

Vedl = 64πεΓε0

(
kBT
zCe

)2
(

rirj

ri + rj

)
tanh

(
zCeϕi
4kBT

)
tanh

( zCeϕj

4kBT

)
exp(−κh0) (7)

where e is the elementary charge; zC is the valence of the counter ions; ε0 and εΓ are
the dielectric constants of vacuum and the solvent, respectively; and ϕ represents the
surface potential of the particles. The Debye−Hückel parameter κ is a function of the salt
concentration ci, the valence zi of electrolyte ions, and temperature T:

κ =

(
e2NA ∑i ciz2

i
ε0εΓkBT

)1/2

(8)

where NA is the Avogadro number. The magnetic energy between two particles that
behave as magnetic dipoles and are oriented in a head-to-tail configuration is given by the
following [21]:

Vmag = −
8πµ0

(
Mir3

i
)(

Mjr3
j

)
9R3 (9)

where M is the magnetization of the material and µ0 is the permeability of the vacuum.
According to the method by Kumar and Ramkrishna [5], the size range can be divided

into consecutive sections of arbitrary volume sizes (also referred to as size bins) from x1 to
xK of arbitrary size (Figure 1), and (1) thereby becomes:

dNi
dt

= −Ni

K

∑
k=1

βi,k Nk +
j≥k

∑
xi−1≤(xj+xk)≤xi+1

(
1− 1

2
δj,k

)
ωβ j,k NjNk (10)

where δj,k is the Kronecker delta. The method indicates that when the collision two of
particles of volume xj and xk form a particle of volume υ = xj + xk between preset grid
volumes xi-1 and xi (Figure 1), then this is arithmetically split between these neighboring
grid volumes. For the preservation of numbers and mass within the whole spectrum, this
split is defined by ω in (10) as follows:

ω =

{ xi+1−υ
xi+1−xi

, xi ≤
(
xj + xk

)
≤ xi+1

υ−xi−1
xi−xi−1

, xi−1 ≤
(
xj + xk

)
≤ xi

(11)

Figure 1. Computational grid.

For the numerical solution of (10), a FORTRAN code is developed with exploitation of
the ODEPACK solver [22].
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2.2. Experimental Procedure

All of the reagents were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA) and
the solvents were purchased from Fischer Scientific (Waltham, MA, USA, HPLC grade).
Fetal Bovine serum (FBS) was obtained from PAN Biotech GmbH (Aidenbach, Germany).
All of the other chemicals and materials were commercially available and of high grade,
and are described below. Citrate coated IONfs were synthesized through the polyol method
according to Hugounenq et al. [16]. The final ferrofluid was an aqueous colloidal solution
of 15 nm IONfs, measured by transmission electron microscopy (TEM) (Figure 2), with a
maghemite crystal structure, assessed through X-ray diffraction spectroscopy (XRD). The
volume magnetization (M) of the IONfs was determined at 0.735 A/m via SQUID-based
magnetometry. To assess their colloidal stability in terms of aggregation, size measurements
were conducted in a Malvern Zetasizer Nano ZS dynamic light scattering (DLS) instrument.

Figure 2. TEM images of IONfs at two different magnifications Scale bars are at 50 nm (left) nm and
10 nm (right).

IONfs were dispersed in an aqueous phosphate buffered saline solution (PBS) at a
1000µM concentration of iron content. Separate measurements for the same iron concentra-
tion were conducted in PBS supplemented with 10% v/v fetal bovine serum (FBS) to use as
the simulated body fluid (SBF). FBS is a biofluid containing over 3700 different proteins,
among them albumin represents ~60% and globulins ~40%, while the rest is ~1% [23]. The
samples were first treated at 37 ◦C (mean physiological temperature) and measured in
15 consecutive cycles with 30 s duration and 30 s time gap. Two time points were selected
for the measurement, the first (t0) was within 3 min after mixing the IONfs with PBS or
SBFand the second (t24) after 24-h of incubation at 37 ◦C.

3. Results and Discussion
3.1. Model Validation

Validation of the model was carried out based on analytical expressions for three kinds
of collision frequency kernels and where the collision-efficiency effect was not considered,
i.e., λ = 1. For this purpose, the PBE equation was expressed in non-dimensionalised form,
as follows:

dÑi
dτ

= −Ñi

∞

∑
j=1

β̃i,jÑj +
1
2

i−1

∑
j=1

β̃i−j,jÑi−jÑj (12)

where Ñi = Ni/N0, β̃i,j = βi,j/β′0, τ = β′0N0t and N0 is initial number of particles, i.e., the
number of particles at t=0. In addition, υ0 is the volume used for non-dimensionalisation
of the particle volumes and, in this case, it is assumed as the median of the size bins.
The discretization was carried out assuming xi+1 = 2xi and 21 size bins. The benchmark
analytical solutions from the literature are provided for the number−density function n,
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the relation of which with the number concentration function is given in discretized form
as follows:

Ni =
∫ (xi+1+xi)/2

(xi+xi−1)/2
nidx (13)

and its non-dimensionalised form is ñi = ni/(N0/υ0).

3.1.1. Constant Kernel

This kernel is given as βi,j = β0 and therefore, β′0 = β0 and β̃i,j = 1. The analytical
solution for the initial condition

ñ0 = e−υ̃ (14)

where υ̃ = υ/υ0, is given by Gelbard and Seinfeld [24]:

ñ =
4

(τ + 2)2 exp
(
− 2υ̃

τ + 2

)
(15)

Using (13), we obtain the benchmark solution for the number concentration, and the
comparison with the numerical solution is shown in Figure 3a.

Figure 3. Validation of the model by comparison with the analytical expressions for (a) constant
kernel, (b) linear kernel, (c) quadratic kernel, and (d) Brownian kernel. Comp—computational results;
an—analytical expressions.
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3.1.2. Linear Kernel

This kernel is given as βi,j = β1
(
xi + xj

)
, and therefore β′0 = β1υ0 and β̃i,j = x̃i + x̃j

where x̃i = xi/υ0. The initial condition is again taken as in (14), the analytical solution of
which is given by Gelbard and Seinfeld [24]:

ñ =
1− T
υ̃
√

T
exp(−(1 + T)υ̃)I1

(
2υ̃
√

T
)

(16)

where T = 1− exp(−τ) and I1 is the modified Bessel function of first class and order
one. Using (13), we obtain the benchmark solution for the number concentration, and the
comparison with the numerical solution is shown in Figure 3b.

3.1.3. Quadratic Kernel

This kernel is given as βi,j = β2xixj , therefore β′0 = β2υ2
0 and β̃i,j = x̃i x̃j. For this case,

the initial condition ñ0 = exp(−υ̃)/υ̃ is used, the analytical solution of which is given by
Ernst et al. [25]:

ñ =
1

υ̃2
√

τ
exp(−(1 + T)υ̃)I1

(
2υ̃
√

τ
)

(17)

where

1 + T =

{
1 + τ, τ ≤ 1
2
√

τ, τ > 1

and I1 is the modified Bessel function of first class and order one. It is important to point
out that for this kernel, the mass is not conserved for τ > 1 due a loss of mass from finite
size clusters (sol particles) to the infinite cluster (gel or super particle) [25]. Using (13), we
obtain the benchmark solution for the number concentration, and the comparison with the
numerical solution is shown in Figure 3c.

3.1.4. Brownian Kernel

Taking into account Equation (3), this kernel can be expressed as βi,j = β3
(
di + dj

)2/

didj, therefore β′0 = β3 and β̃i,j =
(

d̃i + d̃j

)2
/d̃i d̃j, where d̃i =

3
√

x̃i. The initial condition
employed is given in (14) and the results obtained when solving (13) are given in Figure 3d
and are compared with past results [26].

It can be seen that there is a very good agreement between the numerical and analytical
solutions for all four cases for all of the time instances considered. This yields even for
τ = 2 in the case of the quadratic kernel, meaning that the model is also capable of taking
into account the loss of mass.

3.2. Aggregation Experiments

The IONfs in an aqueous dilution right after synthesis demonstrated a hydrodynamic
radius (by number) of 16.56 ± 4.53 nm, whereas after one year, no significant alterations
were observed (17.75 ± 4.70 nm), indicating a colloidally stable solution free of sedimenta-
tion or aggregation. The storage condition was refrigeration at 2–4 ◦C.

The measurements corresponding to simulated body fluids in terms of salinity (PBS)
and the presence of proteins (SBF) are discussed for t0 and t24. The average size value by
number of 15 consecutive measurements of IONfs in PBS at t0 and t24 are 16.22 ± 8.034 nm
and 79.60 ± 19.25 nm, respectively. A significant increase in size was reported after 24-h
incubation in PBS, dictated by the presence of salts in the colloidal solution (Figure 4a).
For the sample of IONfs dispersed in SBF at t0, the average size value by number is
25.80 ± 9.01 nm, whereas at t24 it is at 35.62 ± 11.71 nm. It is worth mentioning that the
presence of FBS adds a second peak in these measurements, which was determined at
5.22 ± 1.43 nm, by measuring the plain SBF without IONfs. Again, there is an apparent
increase in size that corresponds to the formation of protein corona (PC), but not that
substantial to indicate aggregation. This can be confirmed by the ζ-potential decrease
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before and after treatment with 10% FBS in PBS from −27 mV to −19 mV. The latter can be
attributed to the attractive interactions induced between the carboxylic acid of IONfs and
the protein’s functional groups present in FBS (e.g., NH2). PC forms when nanoparticles
are in close contact with proteins, such as albumins, which adsorb on their surface, further
stabilizing them in the medium [27]. According to our data, IONfs seem to aggregate more
in plain PBS than in SBF; this behavior can be attributed to the formation of PC, which
averts the adsorption of the salts due to the higher affinity for the proteins rather than the
salt counter ions [28]. In low nanoparticle concentrations, like the one used in our research,
aggregation phenomena stemming from the PC formation are minimal (Figure 4b). FBS is a
biological fluid that contains more than 3700 different proteins, with 12 orders of magnitude
differences in their relative concentrations. Among all of the proteins in the serum, albumin
represents the most abundant fraction and accounts for ~60% mass of the total proteins in
the solution (1 mM), with globulins being the second most abundant (~40%) and all the
rest representing less than 1% [23]. The observation of aggregation blocking due to PC is
consistent with previous studies [29].

Figure 4. Initial and 24-h size distribution of IONfs in (a) PBS and (b) SBF.

3.3. Simulations

In the present case and according to the discrete measurements by the dynamic light
scattering (DLS) analyzer, the computational grid included 28 size bins, i.e., K = 28 in (10),
corresponding exactly to the aforementioned discretization obtained from the experiments.
The values of the parameters involved in the equations are given in Table 1.

Table 1. Parameters used in the simulations.

Parameter Value

M 1 0.6864 cP
T 2 310 K
zc

3 1
εΓ

4 78.5
Φ 5 −0.027 V
M 6 0.7346 A/m
A 7 3.1 × 10−20 J

PBS 8

KCl 2.68 mM
KH2PO4 1.47 mM
NaCl 136.89 mM

K2HPO4 8.10 mM
1 viscosity of solvent; 2 temperature; 3 valence of counter ion; 4 dielectric constant of the solvent; 5 surface potential
(approx. zeta potential); 6 intensity of magnetization; 7 Hamaker constant; 8 phosphate buffered saline solution.
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The PBS results highlight the progress regarding the percentage number concentration
Ni
′, where Ni

′ = Ni/Nt
0% with Nt

0 showing the total number of particles at the current time
instant. Simulations show a fair agreement with the experimental results (Figure 5a). The
observed deviation from the experiments can be attributed to the uncertainty regarding the
Hamaker constant, but also to the balance between the potential energies, as it seems that
when the ionic strength is low, then the der Waals forces are dominant and can affect the ag-
gregation mechanism. With respect to the physics of aggregation, a higher aggregation rate
in simulations compared to experiments has also been reported in the past [9]. The effect of
patchiness of the particles can be significant in the case of nanoflowers, as these particles
deviate markedly from perfect spheres and therefore there can be important differences in
the surface potential, which cause the particles to have a reversible aggregation, i.e., they
also undergo breakup. In addition, the fact that the particles do not coalesce but retain
their shape forming fractal aggregates, the shape of which is far from a perfect sphere,
may therefore cause the corresponding kernel to not exactly represent this differentiated
phenomenology of aggregates. Therefore, this effect is difficult to be accounted in the
PBE model. Next, the magnitude of potentials is studied. It should be noted that in the
experiments, no magnetic field was applied, so there is no magnetic potential. However,
this is taken into account in the simulations, so as to study its effect when a magnetic
field is assumed and to confirm its negligibility [30]. The magnitude of the potentials as a
function of the dimensionless distance between the particle surfaces is shown in Figure 5b.
It can be seen that the magnetic potential is the least effective of the potentials considered,
and therefore has the lowest contribution in the total potential energy even in its most
prominent effect, which is the head-to-tail configuration of particles, as assumed in (9), and
which would anyway not be possible in the present case where IONfs aggregate in near
spherical clusters. In view of this, the effects of the ionic strength and van der Waals forces
were further studied.

Figure 5. Simulations for a 24 h period (a) comparison with experimental results and (b) poten-
tial energies. Tot—total; vdw—van der Walls; edl—electric double layer; mag—magnetic; comp—
computational; exp—experiment.

3.3.1. Effects of Ionic Strength

Various cases of ionic strength are considered, namely the aforementioned PBS case
and cases that are usually used in experiments [31] involving 1:1 electrolyte (e.g., NaCl or
KCl) with a molarity of 1 mM and 10 mM, whereas a case of no electric double layer (EDL)
potential energy was also considered. The van der Walls potential energy corresponds
to A = 3.1 × 10−20 J. It can be seen that, as expected, the introduction of dispersants of a
higher molarity weakens the effects of EDL, as the Debye length increases and consequently
imposes exponential decreasing of the EDL potential. Therefore, attractive forces (Van der
Waals) remain dominant, as in the case of PBS, where the total potential energy remains
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negative for all distance values (Figure 6b). Consequently, the aggregation rate is higher
in the cases of a higher molarity, and the PBS case is almost identical to having no EDL
potential, as also observed in the past [32]. In addition, molarities as low as 1 mM induce
lower aggregation rates than in the experiment (Figure 6a).

Figure 6. Effects of ionic strength on (a) particle size distribution and (b) total potential energy.

3.3.2. Effects of van der Waals Forces

Van der Waals potential energy effect on the aggregation rate is calculated for two
cases of ionic strengths. The Hamaker constant value was used as a parameter and the
range of values considered were obtained from the literature. These values can be as low
as n 2 × 10−20 J for IONps [33], and reach values of up to 4.5 × 10−20 J especially for
maghemite NPs [34]. In the case of PBS, it seems that the changes within the range of
Hamaker constants studied are marginal, i.e., there is no apparent change in the aggregation
rate and the results after 24 h are almost identical (Figure 7a). In this case, the total potential
energy is again dominated by van der Waals forces and shows no repulsive effects for any
surface distance (Figure 7b).

Figure 7. Effects of Hamaker constant for PBS on (a) particle size distribution; (b) total potential
energy (values of A are in 10−20 J).

Conversely, the total potential energy for lower molarities such as 10 mM solution
induces dominant repulsive effects within the surface distance range (Figure 8b). In this
case, there are differences in the effect of the Hamaker constant values on the aggregation
rate within the studied range (Figure 8a), and this seems to be pertinent to the balance
between repulsive and attractive potentials, which consequently makes the integral of the
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total potential with respect to the NP surface distance very sensible to variations. The
rates are lower than the previous case and for A = 2, the result for a 24-h period is almost
identical to the experimental observations.

Figure 8. Effects of Hamaker constant for NaCl (10 mM) on (a) particle size distribution; (b) total
potential energy (values of A are in 10−20 J).

4. Conclusions

IONfs were synthesized using the polyol method and their colloidal stability in terms
of aggregation was assessed by DLS measurements in both a PBS and an SBF suspension.
In the first case, a significant increase in the size is observed after 24-h incubation, whereas
in the second case, the presence of proteins induces the formation of a protein corona in
the IONfs, thereby preventing aggregation, as also confirmed by the DLS measurements.
Simulations using a validated in silico model for solving the particle balance equation in
conjunction with the xDLVO theory show a slight overprediction of the aggregation rate.
This can be attributed to the patchiness on the NP surface or the fractal nature of aggregates
that cannot be considered in the present model. Further study on the effects of the ionic
strength shows a scarcity of repulsion forces with increasing salinity, thereby inducing a
higher aggregation rate, whereas the PBS case is almost identical as having no EDL effects.
In addition, the range of Hamaker constant values for IONs seem to have no effect on the
aggregation rate in the case of the PBS, whereas for lower salinity, the experimental case
can even be predicted exactly, thus underlying the high sensitivity of aggregation models
on the potential energy parameters.
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